Abstract:
An ion source, capable of generating high density wide ribbon ion beam, utilizing one or more helicon plasma sources is disclosed. In addition to the helicon plasma source(s), the ion source also includes a diffusion chamber. The diffusion chamber has an extraction aperture oriented along the same axis as the dielectric cylinder of the helicon plasma source. In one embodiment dual helicon plasma sources, located on opposing ends of the diffusion chamber are used to create a more uniform extracted ion beam. In a further embodiment, a multicusp magnetic field is used to further improve the uniformity of the extracted ion beam.
Abstract:
An ion source, capable of generating high density wide ribbon ion beam, utilizing one or more helicon plasma sources is disclosed. In addition to the helicon plasma source(s), the ion source also includes a diffusion chamber. The diffusion chamber has an extraction aperture oriented along the same axis as the dielectric cylinder of the helicon plasma source. In one embodiment dual helicon plasma sources, located on opposing ends of the diffusion chamber are used to create a more uniform extracted ion beam. In a further embodiment, a multicusp magnetic field is used to further improve the uniformity of the extracted ion beam.
Abstract:
A method for fabricating a semiconductor-based device includes providing a doped semiconductor substrate, introducing a second dopant into the substrate to define a pn junction, and introducing a neutralizing species into the substrate in the neighborhood of the pn junction to reduce a capacitance associated with the pn junction. A semiconductor-based device includes a semiconductor substrate having first and second dopants, and a neutralizing species. The first and second dopants define a pn junction, and the neutralizing species neutralizes a portion of the first dopant in the neighborhood of the pn junction to decrease a capacitance associated with the pn junction.
Abstract:
An ion source, capable of generating high-density wide ribbon ion beam, utilizing one or more plasma sources is disclosed. In addition to the plasma source(s), the ion source also includes a diffusion chamber. The diffusion chamber has an extraction aperture oriented along the same axis as the dielectric cylinder of the plasma source. In one embodiment, dual plasma sources, located on opposing ends of the diffusion chamber are used to create a more uniform extracted ion beam. In a further embodiment, a multicusp magnetic field is used to further improve the uniformity of the extracted ion beam.
Abstract:
The present invention discloses a system and method for generating gas cluster ion beams (GCIB) having very low metallic contaminants. Gas cluster ion beam systems are plagued by high metallic contamination, thereby affecting their utility in many applications. This contamination is caused by the use of thermionic sources, which impart contaminants and are also susceptible to short lifecycles due to their elevated operating temperatures. While earlier modifications have focused on isolating the filament from the source gas cluster as much as possible, the present invention represents a significant advancement by eliminating the thermionic source completely. In the preferred embodiment, an inductively coupled plasma and ionization region replaces the thermionic source and ionizer of the prior art. Through the use of RF or microwave frequency electromagnetic waves, plasma can be created in the absence of a filament, thereby eliminating a major contributor of metallic contaminants.
Abstract:
A method for fabricating a semiconductor-based device includes providing a doped semiconductor substrate, introducing a second dopant into the substrate to define a pn junction, and introducing a neutralizing species into the substrate in the neighborhood of the pn junction to reduce a capacitance associated with the pn junction. A semiconductor-based device includes a semiconductor substrate having first and second dopants, and a neutralizing species. The first and second dopants define a pn junction, and the neutralizing species neutralizes a portion of the first dopant in the neighborhood of the pn junction to decrease a capacitance associated with the pn junction.
Abstract:
A method of applying a suicide to a substrate while minimizing adverse effects, such as lateral diffusion of metal or "piping" is disclosed. The Implantation of the source and drain regions of a semiconductor device are performed at cold temperatures, such as below 0°C. This cold implant reduces the structural damage caused by the impacting ions. Subsequently, a suicide layer is applied, and due to the reduced structural damage, metal diffusion and piping into the substrate is lessened. In some embodiments, an amorphization implant is performed after the implantation of dopants, but prior to the application of the sificide, By performing this pre-siiicide implant at cold temperatures, similar results can be obtained.
Abstract:
An ion source, capable of generating high-density wide ribbon ion beam, utilizing one or more plasma sources is disclosed. In addition to the plasma source(s), the ion source also includes a diffusion chamber. The diffusion chamber has an extraction aperture oriented along the same axis as the dielectric cylinder of the plasma source. In one embodiment, dual plasma sources, located on opposing ends of the diffusion chamber are used to create a more uniform extracted ion beam. In a further embodiment, a multicusp magnetic field is used to further improve the uniformity of the extracted ion beam.
Abstract:
An non-Faraday ion dose measurement device is positioned within a plasma process chamber and includes a sensor located above a workpiece within the chamber. The sensor is configured to detect the number of secondary electrons emitted from a surface of the workpiece exposed to a plasma implantation process. The sensor outputs a current signal proportional to the detected secondary electrons. A current circuit subtracts the detected secondary current generated from the sensor and subtracts it from a bias current supplied to the workpiece within the chamber. The difference between the currents provides a measurement of the ion dose current calculated in situ and during the implantation process.
Abstract:
A method and apparatuses for providing improved electrical contact to a semiconductor wafer during plasma processing applications are disclosed. In one embodiment, an apparatus (100) includes a wafer platen (106) for supporting the wafer; and a plurality of electrical contact elements (120), each of the plurality of electrical contact elements (1'2O) are configured to provide a path for supplying a bias voltage from a bias power supply to the wafer (102) on the wafer platen (106). The plurality of electrical contact elements (120) are also geometrically arranged such that at least one electrical contact element contacts an inner surface region (114) (e.g., region between a center of wafer and a distance approximately half of the radius of the wafer) and at least one electrical contact element contacts an outer annular surface region (116) (e.g., region between an outer edge of wafer and a distance approximately half of the radius of the wafer).