Abstract:
The invention provides a novel class of cyanine dyes that are functionalized with a linker moiety that facilitates their conjugation to other species and substituent groups which increase the water-solubility, and optimize the optical properties of the dyes. Also provided are conjugates of the dyes, methods of using the dyes and their conjugates and kits including the dyes and their conjugates.
Abstract:
The invention provides a novel class of scaffold-based labeled polymerase enzyme substrates. The polymerase enzyme substrates have a multivalent core or scaffold to which is attached fluorescent dye moieties and nucleoside phosphate moities. The polymerase enzyme substrates have multiple fluorescent dye moities and/or multiple nucleoside phosphate moieties. Preferred multivalent cores comprise trifunctional six membered aromatic moities. The invention also provides for sequencing methods and kits with scaffold-based labeled polymerase enzyme substrates.
Abstract:
The invention provides a novel class of cyanine dyes that are functionalized with sulfonic acid groups and a linker moiety that facilitates their conjugation to other species and substituent groups which increase the water-solubility, and optimize the optical properties of the dyes. Also provided are conjugates of the dyes, methods of using the dyes and their conjugates and kits including the dyes and their conjugates.
Abstract:
Compositions, devices, systems and methods for reducing and/or preventing photo-induced damage of one or more reactants in an illuminated analytical reaction by addition of one or more photo-induced damage mitigating agents to the reaction mixture and allowing the reaction to proceed for a period that is less than a photo-induced damage threshold period.
Abstract:
The present invention provides methods and compositions for performing illuminated reactions, particularly sequencing reactions, while mitigating and/or preventing photodamage to reactants that can result from prolonged illumination. In particular, the invention provides methods and compositions for incorporating photoprotective agents into conjugates comprising reporter molecules and nucleoside polyphosphates.
Abstract:
A multiple-core processor having a hierarchical microcode store. A processor may include multiple processor cores, each configured to independently execute instructions defined according to a programmer-visible instruction set architecture (ISA). Each core may include a respective local microcode unit configured to store microcode entries. The processor may also include a remote microcode unit accessible by each of the processor cores. Any given one of the processor cores may be configured to generate a given microcode entrypoint corresponding to a particular microcode entry including one or more operations to be executed by the given processor core, and to determine whether the particular microcode entry is stored within the respective local microcode unit of the given core. In response to determining that the particular microcode entry is not stored within the respective local microcode unit, the given core may convey a request for the particular microcode entry to the remote microcode unit.
Abstract:
Controlled initiation of primer extension in determination of nucleic acid sequence information by incorporation of nucleotides or nucleotide analogs. Preferred aspects include photo-initiated extension through the use of photo-cleavable blocking groups on termini of primer sequences followed by non-terminating primer extension using nucleotides or nucleotide analogs that are not extension terminators.
Abstract:
One or more processor cores (102, 104, 106, 108) of a multiple-core processing device (100) each can utilize a processing pipeline (800) having a plurality of execution units (e.g., integer execution units or floating point units) that together share a pre-execution front-end having instruction fetch, decode and dispatch resources. Further, one or more of the processor cores (102, 104, 106, 108) each can implement dispatch resources configured to dispatch multiple instructions in parallel to multiple corresponding execution units via separate dispatch buses. The dispatch resources further can opportunistically decode and dispatch instruction operations from multiple threads in parallel so as to increase the dispatch bandwidth. Moreover, some or all of the stages (802, 804, 806) of the processing pipelines (800) of one or more of the processor cores (102, 104, 106, 108) can be configured to implement independent thread selection for the corresponding stage.
Abstract:
A mechanism for superscalar decode of variable length instructions. A length decode unit may obtain a plurality of instruction bytes based on a scan window of a predetermined size. The instruction bytes may be associated with a plurality of variable length instructions, which are scheduled to be executed by a processing unit. The length decode unit may, for each instruction byte, estimate the start of a next variable length instruction following a current variable length instruction, and store a first pointer. A pre- pick unit may, for each instruction byte, use the first pointer to estimate the start of a subsequent variable length instruction following the next variable length instruction within the scan window, and store a second pointer. A pick unit may use a start pointer and related first and second pointers to determine the actual start of the variable length instructions within the scan window, and generate instruction pointers.
Abstract:
Controlled initiation of primer extension in determination of nucleic acid sequence information by incorporation of nucleotides or nucleotide analogs. Preferred aspects include photo-initiated extension through the use of photo-cleavable blocking groups on termini of primer sequences followed by non-terminating primer extension using nucleotides or nucleotide analogs that are not extension terminators.