Abstract:
Control of temperatures in coral reef waters is described herein by deploying machines and renewable energy stations using methods in a system of distributed array of control stations for dynamically adjusting the atmospheric, terrestrial, reef and oceanic properties. The control stations modify the humidity, currents, wind flows and heat removal rate of the surface and facilitate cooling and control of large area of coral reef surface temperatures. The energy system is installed at control stations, with multiple machines to change the local parameters of the ocean. These stations are powered using renewable energy (RE) sources including solar, ocean currents, wind, waves and batteries to store energy and provide sufficient power and energy as required and available at all hours. These systems are used to reduce the temperatures of coral reefs, and prevent the bleaching of the corals, which permanently destroys the reef ecosystem.
Abstract:
Surface modification control stations and methods in a globally distributed array for dynamically adjusting the atmospheric, terrestrial and oceanic properties. The control stations modify the humidity, currents, wind flows and heat removal rate of the surface and facilitate cooling and control of large area of global surface temperatures. This global system is made of arrays of multiple sub-systems that monitor climate and act locally on weather with dynamically generated local forcing & perturbations for guiding in a controlled manner aim at long-term modifications. The machineries are part of a large-scale system consisting of an array of many such machines put across the globe. These are then used in a coordinated manner to modify large area weather and the global climate as desired. The energy system installed at a control stations, with multiple machines to change the local parameters of the ocean, these stations are powered using renewable energy (RE) sources including Solar, Ocean Currents, Wind, Waves and Batteries to store energy and provide sufficient power and energy as required and available at all hours.
Abstract:
A method including forming a transistor structure structure comprising a gate electrode over an active region of a substrate, the active region defined by a trench isolation structure and changing a performance of a narrow width transistor with respect to a wide width transistor by introducing a dopant into the active region adjacent an interface defined by the trench isolation structure and the gate electrode. A structure including a gate electrode formed on a substrate, an active region adjacent an interface defined by a trench isolation structure and a gate electrode and an implant within the active region to change a performance of a transistor.
Abstract:
Embodiments of the invention provide a transistor with stepped source and drain regions. The stepped regions may provide significant strain in a channel region while minimizing current leakage. The stepped regions may be formed by forming two recesses in a substrate to result in a stepped recess, and forming the source/drain regions in the recesses.
Abstract:
A method of providing a halo implant region in a substrate of a MOS device having a gate electrode thereon and defining source/drain regions, a MOS device fabricated according to the above method, and a system comprising the MOS device. The method comprises: defining undercut recesses in the substrate at the source/drain regions thereof, the undercut recesses extending beneath the gate electrode; creating a halo implant region beneath the gate electrode between the recesses; and providing raised source/drain structures in the undercut recesses after creating the halo implant region.
Abstract:
Renewable Energy (RE) sources are already one of the cheapest sources of energy available today but are variable and infirm, and the open ocean offers many opportunities to generate energy by using various disparate sources and methods on a floating station. These energy stations converting renewable energy including solar, ocean currents, wind, waves and batteries and hydrogen to store energy and provide sufficient stable power and energy as required and available most of the hours. The invention claimed here is a system to capture energy from a combination of wind, solar and ocean currents, along with batteries for storage and later use and hydrogen creation, storage and use for generation. In addition, apparatus is described that provide mechanical stability and resilience in deep open seas and reliably survive storms and hurricanes. Also described is a method for overcoming intermittency of ensuring continuous and stable energy export from the station, and finally methods to continually operate RE station in the open seas even during storms and hurricanes and survive the high winds and waves.
Abstract:
A MOS device comprises a gate stack comprising a gate electrode disposed on a gate dielectric, a first spacer and a second spacer formed on laterally opposite sides of the gate stack, a source region proximate to the first spacer, a drain region proximate to the second spacer, and a channel region subjacent to the gate stack and disposed between the source region and the drain region. The MOS device of the invention further includes a buried oxide (BOX) region subjacent to the channel region and disposed between the source region and the drain region. The BOX region enables deeper source and drain regions to be formed to reduce transistor resistance and suicide spike defects while preventing gate edge junction parasitic capacitance.
Abstract:
A MOS device comprises a gate stack comprising a gate electrode disposed on a gate dielectric, a first spacer and a second spacer formed on laterally opposite sides of the gate stack, a source region proximate to the first spacer, a drain region proximate to the second spacer, and a channel region subjacent to the gate stack and disposed between the source region and the drain region. The MOS device of the invention further includes a buried oxide (BOX) region subjacent to the channel region and disposed between the source region and the drain region. The BOX region enables deeper source and drain regions to be formed to reduce transistor resistance and suicide spike defects while preventing gate edge junction parasitic capacitance.
Abstract:
A system designed to capture energy from wind speeds and reliably operate across a wider range of wind speeds during storms and hurricanes and reliably survive many such storms and generate power. The system comprises apparatus, sensors and actuators to enable windmills to survive and operate in extremely high wind conditions. In another aspect of invention, a system is described with a wider operating window working at very low and high wind speeds by changing the aerodynamic profile of the turbine blades and arrangement depending on the wind speed. In another aspect of invention, a method to control the wind turbines system with active sensing, controllable actuators and machine learning based feedback mechanism to provide dynamic correction as required to ensure stable operation and safely survive under very low and high wind conditions.
Abstract:
The present technology provides an illustrative method for preparing fibers with desirable optical characteristics. The method includes providing a fiber that comprises a core layer and a cladding layer located around the core layer. The method further includes applying a nanostructure template to the cladding layer to form one or more photonic nanostructures having nanostructure scales and compressing the core layer to cause the core layer to bulge and form air gaps between the core layer and the one or more photonic nanostructures.