Abstract:
A hard mask etch stop is formed on the top surface of tall fins to preserve the fin height and protect the top surface of the fin from damage during etching steps of the transistor fabrication process. In an embodiment, the hard mask etch stop is formed using a dual hard mask system, wherein a hard mask etch stop layer is formed over the surface of a substrate, and a second hard mask layer is used to pattern a fin with a hard mask etch stop layer on the top surface of the fin. The second hard mask layer is removed, while the hard mask etch stop layer remains to protect the top surface of the fin during subsequent fabrication steps.
Abstract:
A method of providing a halo implant region in a substrate of a MOS device having a gate electrode thereon and defining source/drain regions, a MOS device fabricated according to the above method, and a system comprising the MOS device. The method comprises: defining undercut recesses in the substrate at the source/drain regions thereof, the undercut recesses extending beneath the gate electrode; creating a halo implant region beneath the gate electrode between the recesses; and providing raised source/drain structures in the undercut recesses after creating the halo implant region.
Abstract:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an IlD disposed on a top surface of a metal gate disposed on the substrate.
Abstract:
A method for forming a semiconductor device having abrupt ultra shallow epi-tip regions comprises forming a gate stack on a crystalline substrate, performing a first ion implantation process to amorphisize a first pair of regions of the substrate disposed adjacent to and on laterally opposite sides of the gate stack, forming a pair of spacers on the substrate disposed on laterally opposite sides of the gate stack, performing a second ion implantation process to amorphisize a second pair of regions of the substrate that are disposed on laterally opposite sides of the gate stack and adjacent to the spacers, applying a selective wet etch chemistry to remove the amorphisized first and second pair of regions and form a pair of cavities on laterally opposite sides of the gate stack, and depositing a silicon alloy in the pair of cavities to form source and drain regions and source and drain epi-tip regions.
Abstract:
Embodiments of the invention provide a transistor with stepped source and drain regions. The stepped regions may provide significant strain in a channel region while minimizing current leakage. The stepped regions may be formed by forming two recesses in a substrate to result in a stepped recess, and forming the source/drain regions in the recesses.
Abstract:
A method of providing a halo implant region in a substrate of a MOS device having a gate electrode thereon and defining source/drain regions, a MOS device fabricated according to the above method, and a system comprising the MOS device. The method comprises: defining undercut recesses in the substrate at the source/drain regions thereof, the undercut recesses extending beneath the gate electrode; creating a halo implant region beneath the gate electrode between the recesses; and providing raised source/drain structures in the undercut recesses after creating the halo implant region.
Abstract:
Eine Struktur auf einer Schichtenoberfläche des Halbleiter-Wafers weist zumindest einen für elektromagnetische Strahlung reflektierenden ersten Flächenbereich (8,9) und zumindest einen zweiten, im Wesentlichen nicht reflektierenden Flächenbereich (10,11,12) auf. Auf diese Schichtenoberfläche wird eine lichtdurchläßige Isolationsschicht (13) und eine lichtempfindliche Schicht erzeugt. Die elektromagnetische Strahlung wird mit einem Einfallswinkel θ auf die lichtempfindliche Schicht gerichtet und die Struktur der Schichtenoberfläche mit einem lateralen Ersatz in die lichtempfindliche Schicht abgebildet.
Abstract:
Verfahren zum Erzeugen einer metallischen oder metallhaltigen Schicht (5) unter Verwendung eines Präkursors auf einer silizium- oder germaniumhaltigen Schicht insbesondere eines elektronischen Bauelements, bei dem auf die silizium- oder germanium-haltige Schicht (3) vor der Verwendung des Präkursors eine Zwischenschicht (4) aufgebracht wird, die zumindest für die Elemente des Präkursors, die die silizium- oder germaniumhaltige Schicht ätzen würden, eine Diffusionsbarriere bildet und selbst gegenüber dem Praäkursor ätzresistent ist.
Abstract:
Die vorliegende Erfindung betrifft ein neuartiges Verfahren zur Herstellung eines Speicherkondensators, welcher als Graben- oder Stapelkondensator ausgeführt ist und insbesondere in einer DRAM-Speicherzelle verwendet wird. Das erfindungsgemäße Verfahren umfaßt die Schritte zum Bilden einer unteren metallischen Kondensatorelektrode (13), eines Speicherdielektrikums (14) und einer oberen Kondensatorelektrode (15), wobei die untere metallische Kondensatorelektrode (13) in der Weise selbstjustiert auf einem Silizium-Grundmaterial (1) gebildet wird, daß zunächst freiliegende Silizium-Bereiche an den Stellen, an denen die untere Kondensatorelektrode zu bilden ist, erzeugt werden und sodann auf den freiliegenden Silizium-Bereichen Metallsilizid (13) selektiv gebildet wird.
Abstract:
The invention relates to a novel method for production of a memory capacitor, embodied as a trench or laminar condenser and is used, in particular, in a DRAM memory cell. Said method comprises the following steps: a lower metallic condenser electrode (13), a storage dielectric (14) and an upper condenser electrode (15) are formed, whereby the lower metallic condenser electrode (13) is formed in a self-justified manner on a silicon base material (1), then a free silicon region is formed in those positions where the lower condenser electrode is to be formed and then metal silicide (13) is formed selectively on the free silicon.