Abstract:
A method of selectively forming a spacer on a first class of transistors and devices formed by such methods. The method can include depositing a conformal first deposition layer on a substrate with different classes of transistors situated thereon, depositing a blocking layer to at least one class of transistors, dry etching the first deposition layer, removing the blocking layer, depositing a conformal second deposition layer on the substrate, dry etching the second deposition layer and wet etching the remaining first deposition layer. Devices may include transistors of a first class with larger spacers compared to spacers of transistors of a second class.
Abstract:
A semiconductor device having high tensile stress. The semiconductor device comprises a substrate having a source region and a drain region. Each of the source region and the drain region includes a plurality of separated source sections and drain sections, respectively. A shallow trench isolation (STI) region is formed between two separated source sections of the source region and between two separated drain sections of the drain region. A gate stack is formed on the substrate. A tensile inducing layer is formed over the substrate. The tensile inducing layer covers the STI regions, the source region, the drain region, and the gate stack. The tensile inducing layer is an insulation capable of causing tensile stress in the substrate.
Abstract:
A method including forming a transistor structure structure comprising a gate electrode over an active region of a substrate, the active region defined by a trench isolation structure and changing a performance of a narrow width transistor with respect to a wide width transistor by introducing a dopant into the active region adjacent an interface defined by the trench isolation structure and the gate electrode. A structure including a gate electrode formed on a substrate, an active region adjacent an interface defined by a trench isolation structure and a gate electrode and an implant within the active region to change a performance of a transistor.
Abstract:
A method of providing a halo implant region in a substrate of a MOS device having a gate electrode thereon and defining source/drain regions, a MOS device fabricated according to the above method, and a system comprising the MOS device. The method comprises: defining undercut recesses in the substrate at the source/drain regions thereof, the undercut recesses extending beneath the gate electrode; creating a halo implant region beneath the gate electrode between the recesses; and providing raised source/drain structures in the undercut recesses after creating the halo implant region.
Abstract:
A method of selectively forming a spacer on a first class of transistors and devices formed by such methods. The method can include depositing a conformal first deposition layer on a substrate with different classes of transistors situated thereon, depositing a blocking layer to at least one class of transistors, dry etching the first deposition layer, removing the blocking layer, depositing a conformal second deposition layer on the substrate, dry etching the second deposition layer and wet etching the remaining first deposition layer. Devices may include transistors of a first class with larger spacers compared to spacers of transistors of a second class.
Abstract:
A MOS device comprises a gate stack comprising a gate electrode disposed on a gate dielectric, a first spacer and a second spacer formed on laterally opposite sides of the gate stack, a source region proximate to the first spacer, a drain region proximate to the second spacer, and a channel region subjacent to the gate stack and disposed between the source region and the drain region. The MOS device of the invention further includes a buried oxide (BOX) region subjacent to the channel region and disposed between the source region and the drain region. The BOX region enables deeper source and drain regions to be formed to reduce transistor resistance and suicide spike defects while preventing gate edge junction parasitic capacitance.
Abstract:
A MOS device comprises a gate stack comprising a gate electrode disposed on a gate dielectric, a first spacer and a second spacer formed on laterally opposite sides of the gate stack, a source region proximate to the first spacer, a drain region proximate to the second spacer, and a channel region subjacent to the gate stack and disposed between the source region and the drain region. The MOS device of the invention further includes a buried oxide (BOX) region subjacent to the channel region and disposed between the source region and the drain region. The BOX region enables deeper source and drain regions to be formed to reduce transistor resistance and suicide spike defects while preventing gate edge junction parasitic capacitance.
Abstract:
A semiconductor device and method to form a semiconductor device is described. The semiconductor includes a gate stack disposed on a substrate. Tip regions are disposed in the substrate on either side of the gate stack. Halo regions are disposed in the substrate adjacent the tip regions. A threshold voltage implant region is disposed in the substrate directly below the gate stack. The concentration of dopant impurity atoms of a particular conductivity type is approximately the same in both the threshold voltage implant region as in the halo regions. The method includes a dopant impurity implant technique having sufficient strength to penetrate a gate stack.
Abstract:
A method of providing a halo implant region in a substrate of a MOS device having a gate electrode thereon and defining source/drain regions, a MOS device fabricated according to the above method, and a system comprising the MOS device. The method comprises: defining undercut recesses in the substrate at the source/drain regions thereof, the undercut recesses extending beneath the gate electrode; creating a halo implant region beneath the gate electrode between the recesses; and providing raised source/drain structures in the undercut recesses after creating the halo implant region.