Abstract:
Catalyst systems and methods for making and using the same. A method of methylating a catalyst composition while substantially normalizing the entiomeric distribution is provided. The method includes slurrying the organometallic compound in dimethoxyethane (DME), and adding a solution of RMgBr in DME, wherein R is a methyl group or a benzyl group, and wherein the RMgBr is greater than about 2.3 equivalents relative to the organometallic compound. After the addition of the RMgBr, the slurry is mixed for at least about four hours. An alkylated organometallic is isolated, wherein the methylated species has a meso / rac ratio that is between about 0.9 and about 1.2.
Abstract:
A process for the preparation of N-arylamine compounds, the process including: reacting a compound having an amino group with an arylating compound in the presence of a base and a transition metal catalyst under reaction conditions effective to form an N-arylamine compound; wherein the transition metal catalyst comprises a complex of a Group 8-10 metal and at least one chelating ligand comprising (R)-(-)-l-[(S)-2-dicyclohexylphosphino]- ferrocenyl]ethyldi-t-butylphosphine.
Abstract:
A method for controlling sheeting in a gas phase reactor that includes producing a polyolefin with at least one metallocene catalyst and at least one static control agent in at least one gas phase reactor, measuring entrainment static using a static probe, and adjusting the concentration of the static control agent in response to changes in the measured entrainment static is disclosed.
Abstract:
The present invention relates to a continuous gas phase process comprising passing a recycle stream through a fluidized bed in a gas phase fluidized bed reactor, wherein the recycle stream comprises a low molecular weight dew point increasing component and a high molecular weight component, polymerizing an alpha-olefin monomer in the presence of a catalyst, and controlling an amount of the low molecular weight dew point increasing component in the recycle stream such that a dew point approach temperature of the recycle stream is less than the dew point approach temperature when operating with the higher molecular weight dew point increasing component alone.
Abstract:
A process for the production of an ethylene alpha-olefin copolymer is disclosed, the process including polymerizing ethylene and at least one alpha- olefin by contacting the ethylene and the at least one alpha-olefin with a metallocene catalyst in at least one gas phase reactor at a reactor pressure of from 0.7 to 70 bar and a reactor temperature of from 20°C to 150°C to form an ethylene alpha-olefin copolymer. The resulting ethylene alpha-olefin copolymer may have a density D of 0.927 g/cc or less, a melt index (I 2 ) of from 0.1 to 100 dg/min, a MWD of from 1.5 to 5.0. The resulting ethylene alpha-olefin copolymer may also have a peak melting temperature Tmax second meit satisfying the following relation: T max second melt > D*398 - 245.
Abstract:
The present invention relates to a continuous gas phase process comprising polymerizing one or more hydrocarbon monomer(s) in a fluidized bed reactor in the presence of catalyst system or polymerization catalyst and a condensable fluid for a period of at least 12 hours where the bed temperature is less than the Critical Temperature and the dew point temperature of the gas composition in the reactor is within 25 °C of the bed temperature.
Abstract:
Processes for transitioning among polymerization catalyst systems, preferably catalyst systems that are incompatible with each other. In particular, the processes relate to transitioning from olefin polymerizations utilizing metallocene catalyst systems to olefin polymerizations utilizing traditional Ziegler-Natta catalyst systems.
Abstract:
A method for increasing the solubility of a magnesium halide includes providing an electron donating solvent, contacting a magnesium halide with the solvent; and providing an electron donor compound to form a magnesium halide composition. The composition is characterized by solubility in the electron donor solvent that does not decrease up to the boiling point of the solvent. A polymerization catalyst precursor composition comprises the product of mixing the magnesium halide composition with a transition metal compound. Active catalysts prepared from such precursors and a method of polymerization using such catalysts are also disclosed.
Abstract:
Processes of producing fluorided catalyst compounds and process of producing polyolefins using these catalyst compounds are disclosed. An embodiment of the process includes contacting a nitrogenous metallocene compound with a fluoriding agent, which preferably includes a fluorided anhydrous acid, for a time sufficient to form a fluorided metallocene catalyst compound. An example of the process to produce a fluorided metallocene is: wherein N is nitrogen, R and R" are groups selected from hydrogen, hydrocarbons, heteroatomcontaining hydrocarbons and halides, p can be 0 (if no substituent groups are present on the Cp rings) or an integer from 1 to 5; adjacent R groups can form another ring system (e.g., to form a tetrahydroindenyl or indenyl group); and the other groups are defined as herein; wherein "Eq." are the equivalents of fluoriding agent combined with the nitrogenous metallocene compound ranging from 1 to 10 in one embodiment.
Abstract:
This invention relates to a method to start un an olefin polymerization process comprising: a) calculating a trajectory, from elements including catalyst deactivation rate constants (k ), for the rate of introduction of a catalyst system, into a reactor, said catalyst system comprising two different metal catalyst compounds (A and B) and at least one activator, wherein the ratio of the deactivation constants of the two different metal catalyst compounds kd /kd is not 1; and b) introducing olefin monomer, a catalyst system, optional co-monomer, and optional chain transfer or termination agents into a polymerization reactor in a manner such that the catalyst system introduction rate is manipulated to follow the trajectory until a desired production rate is achieved.