Abstract:
The invention relates to an imaging system of a microlithographical projection light system, comprising a projection lens (200, 300, 500, 600) which is used to reproduce a mask which can be positioned on a lens plane on a light-sensitive layer which can be positioned on an image plane; and a fluid inlet (205) which is used to fill an intermediate chamber between the image plane and a final optical element (201, 309, 506) of the projection lens, with immersion liquid (202, 310, 507, 601), on the image plane. The final optical element of the projection lens on the image plane is arranged, in the direction of gravity, after the image plane and the projection lens is embodied in such a manner that the immersion fluid, in the immersion state, comprises a convex curve, in the direction oriented away from the image plane, at least in one area. According to the invention, the final optical element (201, 309, 506) of the projection lens on the image plane is arranged below the image plane in such a manner that the immersion fluid (202, 310, 507, 601) is at least partially arranged in an essentially dish-shaped area on the final optical element on the image plane. Said system can also comprises a rotator which is used to rotate a substrate comprising the light-sensitive layer (401) between a transport position, wherein the light-sensitive layer is arranged on a substrate surface disposed in the counter direction to the direction of gravity, and a position of exposure, wherein the light-sensitive layer (401) is arranged on a substrate surface disposed in the direction of gravity.
Abstract:
Eine mikrolithographische Projektionsbelichtungsanlage weist ein Projektionsobjektiv (20) auf, das ein Objekt (24) auf eine Bildebene (28) abbildet und eine Linse (L3) mit einer gekrümmten Fläche (S) hat. In dem Projektionsobjektiv (20) befindet sich ein flüssiges oder festes Medium (34), das unmittelbar an die gekrümmte Fläche (S) über einen Bereich hinweg angrenzt, der für die Abbildung des Objekts (24) nutzbar ist. Die Projektionsbelichtungsanlage weist außerdem einen verstellbaren Manipulator (M) zur Verringerung einer Bildfeldwölbung auf, die durch eine Erwärmung des Mediums (34) während des Projektionsbetriebs verursacht wird.
Abstract:
Abbildungssystem einer mikrolithographischen Projektionsbelichtungsanlage, mit einem Projektionsobjektiv (200, 300, 500, 600) zur Abbildung einer in einer Objektebene positionierbaren Maske auf eine in einer Bildebene positionierbare lichtempfindliche Schicht; und einer Flüssigkeitszufuhr (205) zum Füllen eines Zwischenraums zwischen der Bildebene und einem bildebenenseitig letzten optischen Element (201, 309, 506) des Projektionsobjektivs mit Immersionsflüssigkeit (202, 310, 507, 601); wobei das bildebenenseitig letzte optische Element des Projektionsobjektivs in Schwerkraftrichtung nachfolgend zur Bildebene angeordnet ist; und wobei das Projektionsobjektiv derart ausgelegt ist, dass im Immersionsbetrieb die Immersionsflüssigkeit in zur Bildebene abgewandter Richtung wenigstens bereichsweise konvex gekrümmt ist. Es wird auch vorgesehen, dass das bildebenenseitig letzte optische Element (201, 309, 506) des Projektionsobjektivs unter der Bildebene derart angeordnet ist, dass die Immersionsflüssigkeit (202, 310, 507, 601) zumindest teilweise in einem im wesentlichen wannenförmigen Bereich auf dem bildebenenseitig letzten optischen Element angeordnet wird. Auch kann ein Rotator zum Drehen eines die lichtempfindliche Schicht (401) aufweisenden Substrats zwischen einer Transportorientierung, in der die lichtempfindliche Schicht auf einer entgegengesetzt zur Schwerkraftrichtung liegenden Substratoberfläche angeordnet ist, und einer Belichtungsorientierung, in welcher die lichtempfindliche Schicht (401) auf einer in Schwerkraftrichtung liegenden Substratoberfläche angeordnet ist, vorgesehen sein.
Abstract:
The invention relates to a projection lens of a microlithographic projection exposure apparatus, for imaging an object plane illuminated during the operation of the projection exposure apparatus into an image plane, wherein the projection lens comprises at least one mirror segment arrangement (100, 200, 400) composed of a plurality of separate mirror segments (111, 112, 113, 211, 311, 411, 412, 413,...), and wherein the optically usable area of at least one individual mirror segment (111, 112, 113, 211, 311, 411, 412, 413,...) in said mirror segment arrangement amounts to at most 10% of the maximum subaperture on the mirror segment arrangement that occurs during the operation of the projection exposure apparatus.
Abstract:
The invention relates to a reflective optical element 39 for the EUV wavelength range comprising a layer arrangement applied on the surface of a substrate, wherein the layer arrangement comprises at least one layer subsystem 37 consisting of a periodic sequence of at least one period of individual layers, wherein the period comprises two individual layers having different refractive indices in the EUV wavelength range, wherein the substrate has a variation of the density of more than 1% by volume at least along an imaginary surface 30 at a fixed distance of between 0 μm and 100 μm from the surface, and wherein the substrate is protected against long-term ageing or densification by EUV radiation either by means of a protective layer or by means of a protective layer subsystem of the layer arrangement or by means of a correspondingly densified surface region 35 of the substrate. Furthermore, the invention relates to a method for producing such a reflective optical element. Furthermore, the invention relates to a method for correcting such a reflective optical element, and to a projection lens comprising such an optical element, and to a projection exposure apparatus comprising such a projection lens.
Abstract:
A microlithographic projection exposure installation comprises a projection lens system (20), which projects an object (24) onto a focal plane (28) and which has a lens (L3) with a curved surface (S). A liquid or solid medium (34) is located in the projection lens system (20) and directly abuts against the curved surface (S) over an area that can be used for the projection of the object (24). The projection exposure installation also comprises an adjustable manipulator (M) for reducing a curvature of field that is caused by a heating of the medium (34) during the projection operation.
Abstract:
A projection objective of a microlithographic projection exposure apparatus (110) is designed for immersion operation in which an immersion liquid (134) adjoins a photosensitive layer (126). The refractive index of the immersion liquid is greater than the refractive index of a medium (L5; 142; L205; LL7; LL8; LL9). that adjoins the immersion liquid on the object side of the projection objective (120; 120'; 120"). The projection objective is designed such that the immersion liquid (134) is convexly curved towards the object plane (122) during immersion operation.
Abstract:
Die Erfindung betrifft einen Spiegel für eine mikrolithographische Projektionsbelichtungsanlage sowie ein Verfahren zur Bearbeitung eines Spiegels. Ein erfindungsgemäßer Spiegel weist eine optische Wirkfläche, ein Spiegelsubstrat und ein Vielfachschichtsystem zur Reflexion von auf die optische Wirkfläche auftreffender elektromagnetischer Strahlung einer Arbeitswellenlänge der Projektionsbelichtungsanlage auf, wobei das Vielfachschichtsystem eine Mehrzahl von Reflexionsschichtstapeln (16a, 16b, 16c, 26a, 26b) aufweist, zwischen denen jeweils eine Trennschicht (15a, 15b, 15c, 25a, 25b) angeordnet ist, und wobei diese Trennschicht aus einem Material hergestellt ist, welches eine Schmelztemperatur besitzt, die wenigstens 80°C beträgt und kleiner als 300°C ist.
Abstract:
The invention relates to a reflective optical element of an optical system for EUV lithography as well as to a method of manufacturing a reflective optical element of an optical system for EUV lithography, said reflective optical element (20) comprising a multilayer system (23, 83) for reflecting an incident electromagnetic wave having an operating wavelength in the EUV range, the reflected wave having a phase φ, and a capping layer (25, 85) made from a capping layer material, wherein the method comprises the following steps: determining, for said capping layer material, a dependency according to which the phase of the reflected wave varies with the thickness of the capping layer, determining a linearity-region in said dependency in which the phase of the reflected wave varies substantially linearly with the thickness of the capping layer (25, 85), and creating a thickness profile in said capping layer (25, 85) such that both the maximum thickness and the minimum thickness in said thickness profile are in said linearity-region.
Abstract:
A projection objective of a microlithographic projection exposure apparatus comprises a wavefront correction device (42) comprising a refractive optical element (44; 44a, 44b) that has two opposite optical surfaces (46, 48), through which projection light passes, and a circumferential rim surface (50) extending between the two optical surfaces (46, 48). A first and a second optical system (OS1, OS2) are configured to direct first and second heating light (HL1, HL2) to different portions of the rim surface (50) such that at least a portion of the first and second heating light enters the refractive optical element (44; 44a, 44b). A temperature distribution caused by a partial absorption of the heating light (HL1, HL2) results in a refractive index distribution inside the refractive optical element (44; 44a, 44b) that corrects a wavefront error. At least the first optical system (OS1) comprises a focusing optical element (55) that focuses the first heating light in a focal area (56) such that the first heating light emerging from the focal area (56) impinges on the rim surface (50).