Abstract:
A method for conformal dry etch of a liner material in a high aspect ratio trench is achieved by depositing or forming an inhomogeneous passivation layer which is thicker near the opening of a trench but thinner deep within the trench. The methods described herein use a selective etch following formation of the inhomogeneous passivation layer. The selective etch etches liner material faster than the passivation material. The inhomogeneous passivation layer suppresses the etch rate of the selective etch near the top of the trench (where it would otherwise be fastest) and gives the etch a head start deeper in the trench (where it would otherwise be slowest). This method may also find utility in removing bulk material uniformly from within a trench.
Abstract:
A semiconductor processing chamber may include a remote plasma region, and a processing region fluidly coupled with the remote plasma region. The processing region may be configured to house a substrate on a support pedestal. The support pedestal may include a first material at an interior region of the pedestal. The support pedestal may also include an annular member coupled with a distal portion of the pedestal or at an exterior region of the pedestal. The annular member may include a second material different from the first material.
Abstract:
A method of suppressing the etch rate for exposed silicon-and-oxygen-containing material on patterned heterogeneous structures is described and includes a two stage remote plasma etch. Examples of materials whose selectivity is increased using this technique include silicon nitride and silicon. The first stage of the remote plasma etch reacts plasma effluents with the patterned heterogeneous structures to form protective solid by-product on the silicon-and-oxygen-containing material. The plasma effluents of the first stage are formed from a remote plasma of a combination of precursors, including a nitrogen-containing precursor and a hydrogen-containing precursor. The second stage of the remote plasma etch also reacts plasma effluents with the patterned heterogeneous structures to selectively remove material which lacks the protective solid by-product. The plasma effluents of the second stage are formed from a remote plasma of a fluorine-containing precursor.
Abstract:
A method of suppressing the etch rate for exposed silicon-and-nitrogen-containing material on patterned heterogeneous structures is described and includes a two stage remote plasma etch. The etch selectivity of silicon relative to silicon nitride and other silicon-and-nitrogen-containing material is increased using the method. The first stage of the remote plasma etch reacts plasma effluents with the patterned heterogeneous structures to form protective solid by-product on the silicon-and-nitrogen-containing material. The plasma effluents of the first stage are formed from a remote plasma of a combination of precursors, including nitrogen trifluoride and hydrogen (H 2 ). The second stage of the remote plasma etch also reacts plasma effluents with the patterned heterogeneous structures to selectively remove material which lacks the protective solid by-product. The plasma effluents of the second stage are formed from a remote plasma of a fluorine-containing precursor.
Abstract:
A method of selectively etching a metal-containing film from a substrate comprising a metal-containing layer and a silicon oxide layer includes flowing a fluorine-containing gas into a plasma generation region of a substrate processing chamber, and applying energy to the fluorine-containing gas to generate a plasma in the plasma generation region. The plasma comprises fluorine radicals and fluorine ions. The method also includes filtering the plasma to provide a reactive gas having a higher concentration of fluorine radicals than fluorine ions, and flowing the reactive gas into a gas reaction region of the substrate processing chamber. The method also includes exposing the substrate to the reactive gas in the gas reaction region of the substrate processing chamber. The reactive gas etches the metal-containing layer at a higher etch rate than the reactive gas etches the silicon oxide layer.
Abstract:
A method of etching patterned heterogeneous silicon-containing structures is described and includes a remote plasma etch with inverted selectivity compared to existing remote plasma etches. The methods may be used to conformally trim polysilicon while removing little or no silicon oxide. More generally, silicon-containing films containing less oxygen are removed more rapidly than silicon-containing films which contain more oxygen. Other exemplary applications include trimming silicon carbon nitride films while essentially retaining silicon oxycarbide. Applications such as these are enabled by the methods presented herein and enable new process flows. These process flows are expected to become desirable for a variety of finer linewidth structures. Methods contained herein may also be used to etch silicon-containing films faster than nitrogen-and-silicon containing films having a greater concentration of nitrogen.
Abstract:
The present disclosure provides methods for cleaning chamber components post substrate etching. In one example, a method for cleaning includes activating an etching gas mixture using a plasma to create an activated etching gas mixture, the etching gas mixture comprising hydrogen-containing precursor and a fluorine-containing precursor and delivering the activated etching gas mixture to a processing region of a process chamber, the process chamber having an edge ring positioned therein, the edge ring comprising a catalyst and anticatalytic material, wherein the activated gas removes the anticatalytic material from the edge ring.
Abstract:
Methods of conditioning interior processing chamber walls of an etch chamber are described. A fluorine-containing precursor may be remotely or locally excited in a plasma to treat the interior chamber walls periodically on a preventative maintenance schedule. The treated walls promote an even etch rate when used to perform gas-phase etching of silicon regions following conditioning. Alternatively, a hydrogen-containing precursor may be remotely or locally excited in a plasma to treat the interior chamber walls in embodiments. Regions of exposed silicon may then be etched with more reproducible etch rates from wafer-to-wafer. The silicon etch may be performed using plasma effluents formed from a remotely excited fluorine-containing precursor.
Abstract:
Methods of etching exposed silicon on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and a hydrogen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon while very slowly removing other exposed materials. The silicon selectivity results, in part, from a preponderance of hydrogen-containing precursor in the remote plasma which hydrogen terminates surfaces on the patterned heterogeneous structures. A much lower flow of the fluorine-containing precursor progressively substitutes fluorine for hydrogen on the hydrogen-terminated silicon thereby selectively removing silicon from exposed regions of silicon. The methods may be used to selectively remove silicon far faster than silicon oxide, silicon nitride and a variety of metal-containing materials.
Abstract:
A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with water vapor. The chemical reaction resulting from the combination produces reactants which etch the patterned heterogeneous structures to produce, in embodiments, a thin residual structure exhibiting little deformation. The methods may be used to conformally trim silicon oxide while removing little or no silicon, polysilicon, silicon nitride, titanium or titanium nitride. In an exemplary embodiment, the etch processes described herein have been found to remove mold oxide around a thin cylindrical conducting structure without causing the cylindrical structure to significantly deform.