Abstract:
A structure of interest (T) is irradiated with radiation for example in the x-ray or EUV waveband, and scattered radiation is detected by a detector (19, 274, 908, 1012). A processor (PU) calculates a property such as linewidth (CD) or overlay (OV), for example by simulating (S16) interaction of radiation with a structure and comparing (S17) the simulated interaction with the detected radiation. The method is modified (S14a, S15a, S19a) to take account of changes in the structure which are caused by the inspection radiation. These changes may be for example shrinkage of the material, or changes in its optical characteristics. The changes may be caused by inspection radiation in the current observation or in a previous observation.
Abstract:
An initialization method for a sensor is described, the sensor being configured to perform a plurality of measurements of a property of an object using a respective plurality of different measurement parameters, different ones of the plurality of measurements using different measurement parameters, the method comprising: - estimating a characteristic of the property based on the plurality of measurements, the characteristic comprising a combination of respective outcomes of respective ones of the plurality of measurements weighted by a respective weighting coefficient; - using a plurality of models of the object, each respective one of the models being configured to enable a respective simulation of the performing of the plurality of measurements; - performing, for each of respective one of the plurality of models, a respective simulation, the respective simulation including simulating the plurality of measurements under control of a respective plurality of different simulation parameters to obtain a respective plurality of simulated characteristics of the property, the plurality of different simulation parameters being indicative of the plurality of different measurement parameters; - determining, for each respective one of the plurality of models, a respective bias representative of a respective difference between a respective theoretical characteristic of the property in accordance with the respective model and a respective further combination of the simulated characteristics of the property in the respective model; the respective further combination of the simulated characteristics comprising the plurality of weight coefficients, each particular one of the plurality of weight coefficients being associated with a particular one of the plurality of different simulation parameters; - using a cost function configured to optimize a correspondence between the simulated characteristic of the property and the theoretical characteristic of the property; the cost function being a function of the respective biases of the plurality of models; - optimizing the cost function, thereby deriving the plurality of the weight coefficients from the cost function; - using the weight coefficients and the associated simulation parameters in a controller associated with the sensor.
Abstract:
Apparatus, systems, and methods are used for detecting the alignment of a feature on a substrate using a polarization independent interferometer. The apparatus, system, and methods include optical elements that receive light that has diffracted or scattered from a mark on a substrate. The optical elements may split the diffracted light into multiple subbeams of light which are detected by one or more detectors. The diffracted light may be combined optically or during processing after detection. The system may determine alignment and/or overlay based on the received diffracted light having any polarization angle or state.
Abstract:
A lithographic apparatus includes an alignment sensor configured to determine the position of an alignment target comprising a periodic structure. The alignment sensor includes a demultiplexer (700) to demultiplex a number of intensity channels (one of them shown to be output at fiber 702). The demultiplexer includes a number of stages arranged in series and a number of demultiplexing components (706, 708a,b, 710a-d,712a-h), each demultiplexing component being operable to divide an input radiation beam into two radiation beam portions. The first stage has a first demultiplexing component (706) that is arranged to receive as an input radiation beam an incident radiation beam. Each successive stage is arranged such that it has twice the number of demultiplexing components as a preceding stage, each demultiplexing component of each stage after the first stage receiving as an input one of the radiation beam portions output from a demultiplexing component of the preceding stage.
Abstract:
A method of determining a configuration of a projection system for a lithographic apparatus, wherein manipulators of the projection system manipulate optical elements so as to adjust its optical properties, the method comprising: receiving dependencies of the optical properties of the projection system on a configuration of the manipulators, receiving a plurality of constraints of the manipulators, formulating a cost function, wherein the cost function represents a difference between the optical properties of the projection system for a given configuration of the manipulators and desired optical properties, wherein the cost function is formulated using the dependency of the optical properties on the configuration of the manipulators, scaling the cost function into a scaled variable space, wherein the scaling is performed by using the plurality of constraints and finding a solution configuration of the manipulators which substantially minimises the scaled cost function subject to satisfying the plurality of constraints.
Abstract:
An alignment sensor for a lithographic apparatus is arranged and constructed to measure an alignment of a movable part of the lithographic apparatus in respect of a stationary part of the lithographic apparatus. The alignment sensor comprises a light source configured to generate a pulse train at a optical wavelength and a pulse repetition frequency, a non-linear optical element, arranged in an optical propagation path of the pulse train, the non-linear optical element configured to transform the pulse train at the optical wavelength into a transformed pulse train in an optical wavelength range, an optical imaging system configured to project the transformed pulse train onto an alignment mark comprising a diffraction grating; a detector to detect a diffraction pattern as diffracted by the diffraction grating, and a data processing device configured to derive alignment data from the detected diffraction pattern as detected by the detector.
Abstract:
Disclosed is a metrology method relating to measurement of a structure on a substrate, said structure being subject to one or more asymmetric deviation. The method comprises obtaining at least one intensity asymmetry value relating to the asymmetric deviation, wherein the at least one intensity asymmetry value comprises a metric related to a difference or imbalance between the respective intensities or amplitudes of at least two diffraction orders of radiation diffracted by said structure; determining at least one phase offset value corresponding to the one or more asymmetric deviation based on said at least one intensity asymmetry value; and determining one or more measurement correction for said one or more asymmetric deviation from the one or more phase offset.
Abstract:
Disclosed is a method for obtaining a computationally determined interference electric field describing scattering of radiation by a pair of structures comprising a first structure and a second structure on a substrate. The method comprises determining a first electric field relating to first radiation scattered by the first structure; determining a second electric field relating to second radiation scattered by the second structure; and computationally determining the interference of the first electric field and second electric field, to obtain a computationally determined interference electric field.
Abstract:
The invention relates to a sensor (SE) comprising: • - a radiation source (LS) to emit radiation (LI) having a coherence length towards a sensor target (GR); and • - a polarizing beam splitter (PBS) to split radiation diffracted by the sensor target into radiation with a first polarization state and radiation with a second polarization state, wherein the first polarization state is orthogonal to the second polarization state, and wherein the sensor is configured such that after passing the polarizing beam splitter radiation with the first polarization state has an optical path difference relative to radiation with the second polarization state that is larger than the coherence length.
Abstract:
A lithographic apparatus comprises comprise a substrate table constructed to hold a substrate; and a sensor configured to sense a position of an alignment mark provided onto the substrate held by the substrate table. The sensor comprises a source of radiation configured to illuminate the alignment mark with a radiation beam, a detector configured to detect the radiation beam, having interacted with the alignment mark, as an out of focus optical pattern, and a data processing system. The data processing system is configured to receive image data representing the out of focus optical pattern, and process the image data for determining alignment information, comprising applying a lensless imaging algorithm to the out of focus optical pattern.