Abstract:
A molded article is provided that includes a resin matrix having a surface, the resin matrix formed from cross-linked polyester resin or vinyl-ester resin. Microspheroids having a mean diameter of from 16 to 45 microns are embedded in the resin matrix. The microspheroids having a specific gravity of between 0.19 and 0.6 and an isotactic crush strength of greater than or equal to 2750 kilopascals (kPa). Surface activating agent alkoxysilane molecules are covalently bonded to each of the microspheroids. Filler particles are also present in the resin matrix. Fibers are also present in in the resin matrix. The fibers being natural fibers, glass fibers, carbon fibers, or a combination thereof. The article has a specific gravity of between 0.80 and 1.25.
Abstract:
A molded article is provided that has a resin matrix having a surface, the resin matrix formed from cross-linked polyester resin or vinyl-ester resin. Glass fibers are crossed linked to the resin matrix via a silane coupling agent reactive with the matrix. A molded article is provided that has a resin matrix having a surface, the resin matrix formed from cross-linked polyester resin or vinyl-ester resin. Glass fibers each covalently bonded to at least one microspheroid matrix via a silane coupling agent reactive with a surface of the at least one microspheroids are present in increase the fiber pull strength. A sizing composition for treating glass fibers is also provided for use in such articles.
Abstract:
A process for resin transfer molding (RTM) with staggered injection of a resin is provided that injects resin into a plurality of injection ports of a mold. The temperature and pressure applied to the mold are controlled during injection to limit promote rapid filling of the mold cavity. The injection ports are activated for injecting the resin in any order of individually, in groups, or pairings. Fibers are readily added to the mold separately or within the resin. Cycle times of from 1 to 5 minutes are provided for the process.
Abstract:
A vehicle component is provided that includes a first cured layer of a molding composition having a predominant fiber filler chopped glass fibers, a second cured layer of molding composition having a predominant fiber filler chopped carbon fibers, and a bonding agent with elongation properties configured to accommodate the differential coefficients of linear thermal expansion between the first cured layer and the second cured layer. The second cured layer is substantially devoid of glass fiber. The bonding agent is an elastomeric adhesive, which is operative from -40 to 205°C. The first cured layer forms an outer skin layer surface of a vehicle and the second cured layer forms an interior layer, where the outer skin layer surface has a class-A finish.
Abstract:
A process for forming a composite sandwich panel assembly is provided that includes positioning a top sheet and a bottom sheet on opposing sides of an open pore matrix core. The top sheet, bottom sheet, and core are exposed to a heat source with the application of a clamping pressure to the top and the bottom sheet. The heat source is then removed and the clamping pressure maintained for a period of time. The clamping pressure is removed when the top sheet, bottom sheet, and core have cooled and fused together. An assembly formed by such a process is also provided.
Abstract:
A molding composition formulation is provided of a thermoset cross-linkable polyol having unsaturated backbone comprising the structure defined by formula 1 : (1) a reinforcing filler; and optionally, a flame retardant, a UV stabilizer or a composition comprising one of the foregoing.
Abstract:
A molding composition formulation is provided that includes polypropylene, glass fiber, and a cellulosic powder used as a filler. The filler may be at least one of coconut shell powder, walnut shell powder, or rice hull. The molding composition formulation may further include natural cellulosic fiber illustratively including at least one of coconut fibers, bamboo fibers, sugar cane fibers, or banana skin fibers. The molding composition may be compression moldable long fiber thermoplastic (LFTD). The molding composition formulation may be used in thermoforming. In a specific embodiment of the molding composition, the formulation proportion of the polypropylene is 50 to 60 percent of the formulation; and the polypropylene substitute is 5 to 15 percent of the formulation, and in an alternative embodiment, the formulation proportion of the polypropylene is 40 to 80 percent, the cellulosic powder is 1 to 25 percent, and the glass fiber is 1 to 50 percent.
Abstract:
An automated process is provided for debundling carbon fiber tow that includes feeding a carbon fiber tow into a chopper. The carbon fiber tow is cut to form lengths of chopped tow portions. The lengths of chopped tow portions are distributed on a moving conveyor. The lengths of chopped tow portions are exposed to a first plasma discharge from a first plasma source on the moving conveyor to create debundled carbon fibers. Alternatively, the carbon fiber tow is exposed to the the first plasma discharge prior to being cut into lengths. A system for applying chopped fibers to a sheet of molding compound includes a chopper for cutting a carbon fiber tow into lengths of chopped tow portions. A conveyor belt receives the lengths of chopped tow portions. At least one plasma generating source is arrayed across of the conveyor.
Abstract:
A process is provided for overmolding an insert or substrate with non-oriented thermoplastic fibers present in an amount that allows them to thermally bond in the presence of non-oriented filler fibers. The thermoplastic fiber fusion retains the filler fibers within the insert upon cooling. The filler fibers are selected to modify the properties of the insert and an overmolded article formed with the insert therein. Such overmolded articles are used in applications including vehicle components such as automotive interior light bases, posts, undercar components, cross members, chassis components, and frame components; architectural components such as home door interiors, sound damping panels, and weather resistant wood replacement. Articles formed with the inventive process yield weight reductions compared to conventional insert overmoldings, along with low scrap generation, process flexibility with respect to part shape and fiber material. Improved recyclability and reduce costs are realized with the inclusion of natural fiber fillers.