Abstract:
A lighting device, comprising: a light source (58) on a heat sink (52); a diffuser (76) on said heat sink and spaced apart from said light source; and wavelength conversion material (66) on said heat sink and disposed between the light source and the diffuser and spaced from the light source and the diffuser wherein said lamp is arranged to fit within the A19 envelope while emitting a substantially uniform emission pattern.
Abstract:
One close loop system and method for electrophoretic deposition (EPD) of phosphor material on light emitting diodes (LEDs) . The system comprises a deposition chamber sealed from- ambient air. A mixture of phosphor material and solution is provided to the chamber with the mixture also being sealed from ambient air. A carrier holds a batch of LEDs in the chamber with the mixture contacting the areas of the LEDs for phosphor deposition. A voltage supply applies a voltage to the LEDs and the mixture to cause the phosphor material to deposit on the LEDs at the mixture contacting areas.
Abstract:
Methods of packaging a semiconductor light emitting device positioned in a reflective cavity are provided. A first quantity of encapsulant material is dispensed into the reflective cavity including the light emitting device therein and the first quantity of encapsulant in the reflective cavity is cured. A second quantity of encapsulant material is dispensed onto the cured first quantity of encapsulant material. A lens is positioned in the reflective cavity on the dispensed second quantity of encapsulant material. The dispensed second quantity of encapsulant material is cured to attach the lens in the reflective cavity.
Abstract:
A semiconductor light emitting device includes a light emitting diode (LED) chip, a recipient luminophoric medium on the LED chip, a patterned superstrate on the recipient luminophoric medium opposite the LED chip, the patterned superstrate comprising a patterned superstrate on the recipient luminophoric medium opposite the LED chip, the patterned superstrate comprising a patterned surface that is configured to reduce a variation in a color point of a light emitted by the semiconductor light emitting device as a function of an angle off an optical axis of the LED chip
Abstract:
The present disclosure is directed to LED components, and systems using such components, having a light emission profile that may be controlled independently of the lens shape by varying the position and/or orientation of LED chips with respect to one or both of an overlying lens and the surface of the component. For example, the optical centers of the LED emitting surface and the lens, which are normally aligned, may be offset from each other to generate a controlled and predictable emission profile. The LED chips may be positioned to provide a peak emission shifted from a perpendicular centerline of the lens base. The use of offset emitters allows for LED components with shifted or tilted emission patterns, without causing output at high angles of the components. This is beneficial as it allows a lighting system to have tilted emission from the LED component and primary optics.
Abstract:
Lighting fixtures (10) are described utilizing a plurality of light sources, or light engines, which are mounted together in a modular fashion in the light fixture opening (14). In some embodiments, the plurality of light sources can comprise lighting panels (18) that together form the overall fixture light source. The present invention is particularly applicable to troffer-style lighting fixtures that can be arranged with a plurality of lighting panels (18) arranged in the troffer opening (14) to illuminate the space below the troffer. Embodiments of the present invention can also utilize solid state light sources for the lighting panels (18), with some embodiments utilizing light emitting diodes (LEDs) (28).
Abstract:
An LED lamp or bulb (320) is disclosed that comprises a light source (324), a heat sink structure (325) and a remote phosphor carrier (328) having at least one conversion material. The phosphor carrier can be remote to the light sources and mounted to the heat sink so that heat from the phosphor carrier spreads into the heat sink. The phosphor carrier can have a three-dimensional shape, and can comprise a thermally conductive transparent material and a phosphor layer, with an LED based light source mounted to the heat sink such that light from the light source passes through the phosphor carrier. At least some of the LED light is converted by the phosphor carrier, with some lamp embodiments emitting a white light combination of LED and phosphor light. The phosphors in the phosphor carriers can be arranged to operate at a lower temperature to thereby operate at greater phosphor conversion efficiency and with reduced heat related damage to the phosphor. The lamps or bulbs can also comprise a diffuser over the phosphor carrier to distribute light and to conceal the phosphor carrier.
Abstract:
An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The diffuser dome can disperse the light passing through it into the desired emission pattern, such as omnidirection. In one embodiment, the light source can be blue emitting LED and the phosphor carrier can include a yellow phosphor, with the LED lamp or bulb emitting a white light combination of LED and phosphor light.
Abstract:
An LED lamp or bulb (50, 210, 240, 270) is disclosed that comprises a light source (58, 218, 248, 272), a heat sink structure (52, 212, 242, 274) and a remote planar phosphor carrier (62, 220, 250, 280) having at least one conversion material. The phosphor carrier can be remote to the light sources and mounted to the heat sink so that heat from the phosphor carrier spreads into the heat sink. The phosphor carrier can comprise a thermally conductive transparent material and a phosphor layer, with an LED based light source mounted to the heat sink such that light from the light source passes through the phosphor carrier. At least some of the LED light is converted by the phosphor carrier, with some lamp embodiments emitting a white light combination of LED and phosphor light. The phosphor arranged according to the present invention can operate at lower temperature to thereby operate at greater phosphor conversion efficiency and with reduced heat related damage to the phosphor.
Abstract:
LED based lamps and bulbs are disclosed that comprise a pedestal having a plurality of LEDs, wherein the pedestal at least partially comprises a thermally conductive material. A heat sink structure is included with the pedestal thermally coupled to the heat sink structure. A remote phosphor is arranged in relation to the LEDs so that at least some light from the LEDs passes through the remote phosphor and is converted to a different wavelength of light. Some lamp or bulb embodiments can emit a white light combination of light from the LEDs and the remote phosphor. These can include LEDs emitting blue light with the remote phosphor having a material that absorbs blue light and emits yellow or green light. A diffuser can be included to diffuse the emitting light into the desired pattern, such as omnidirectional.