Abstract:
A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.
Abstract:
A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC- based power converter channel includes an AC -DC converter and a DC-AC inverter electrically coupled to the AC -DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of the one or more gas tube switching devices during a first portion of an operational cycle and "switch off the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.
Abstract:
Direct current (DC) circuit breaker methods and systems are described. In one example, a DC circuit breaker includes a breaker assembly (316) configured to interrupt a DC current, and a controller (315). The breaker assembly (316) includes an input portion (318), an output portion (320), and a gas tube switch (100) coupled between the input portion (318) and the output portion (320). The gas tube switch (100) includes an anode, a cathode, and a control grid. The controller (315) is configured to selectively operate the breaker assembly (316) to interrupt the DC current between the input portion (318) and the output portion (320).
Abstract:
A superconducting magnet apparatus includes a plurality of superconducting magnet coil sections connected in series and housed within a cryogenically cooled, vacuum container. A power source generates a current. A first lead is electrically connected to the superconducting magnet coil sections. A second lead is enclosed entirely within the vacuum container. The second lead has a first section and a second section, and the first section is electrically connected to the power source. The second section is electrically connected to the first lead, and rigidly connected to a linear displacement device enclosed entirely within the vacuum container. The linear displacement device linearly displaces the second section relative to the first section, so that the first section contacts the second section thereby electrically connecting the first and second sections, or by creating a gap between the first section and second section thereby electrically disconnecting the first section from the second section.
Abstract:
A contactless power transfer system for a mobile asset is presented. The system includes a primary loop disposed adjacent to a location that is coupled to a power source. A secondary receiving coil is disposed on the mobile asset and coupled to a traction motor for receiving power from the primary loop. The power transfer system further includes a field-focusing element that can focus a magnetic field from the primary loop onto the secondary receiving coil, the field-focusing element having a non-linear current distribution.
Abstract:
A system for measuring nutritional parameters of food items is provided. The system includes a holding cavity. The system further includes a sensor assembly that includes a transmitter antenna and at least one receiver antenna. The transmitter antenna is configured to transmit signals to a food item in the holding cavity. The receiver antenna is configured to receive response signals from the food item. The system includes at least one switch coupled to each antenna. The switch, in a first state, is configured to set the sensor assembly to an electric potential equal to that of the holding cavity. In a second state, the switch is configured to couple the sensor assembly to a power source. The system also includes a processing unit to process the signals received to determine the nutritional parameters of the food item.
Abstract:
A method of manufacturing a heat transfer device including providing first and second thermally conductive substrates that are substantially atomically flat, providing a patterned electrical barrier on the first or second thermally conductive substrates and disposing a low work function material on the first or second thermally conductive substrates in an area oriented between the patterned electrical barrier in a configuration in which the first and second thermally conductive substrates are positioned opposite from one another. The method also includes bonding the first and second thermally conductive substrates in the configuration and extracting a plurality of units having opposite sections of the first and second thermally conductive substrates, each unit having a portion of the patterned electrical barrier disposed about the low work function material.