Abstract:
A chip-scale scanning lidar includes a two dimensional (2D) scanning micromirror for a transmit beam and a 2D scanning micromirror for a receive beam, a laser diode and a photodetector, a first waveguide and first grating outcoupler coupled to a front facet of the laser diode, a second waveguide and a second grating outcoupler coupled to a rear facet of the laser diode on a substrate. A first fixed micromirror, a second micromirror, a third micromirror, and a focusing component are in a dielectric layer bonded to the substrate over the laser diode and photodetector. The photodetector is optically coupled to the second fixed micromirror and the third fixed micromirror for coherent detection.
Abstract:
A continuous wave (CW) heterodyne light detection and ranging (LIDAR) air velocity sensor system that comprises a first light emitting structure arranged to send a signal light in a first direction in space; a second light emitting structure arranged to produce a local oscillator light having a wavelength different from the wavelength of the signal light by a predetermined wavelength; a receiver arranged to receive light from said first direction in space; and a first optical mixer for mixing the received light with said local oscillator light.
Abstract:
A continuous wave (CW) heterodyne light detection and ranging (LIDAR) air velocity sensor system that comprises a first light emitting structure arranged to send a signal light in a first direction in space; a second light emitting structure arranged to produce a local oscillator light having a wavelength different from the wavelength of the signal light by a predetermined wavelength; a receiver arranged to receive light from said first direction in space; and a first optical mixer for mixing the received light with said local oscillator light.
Abstract:
A reconfigurable electro-magnetic tile includes a laser layer including a plurality of lasers, and a pixelated surface comprising a plurality of metal patches and a plurality of switches, wherein each respective switch of the plurality of switches is in a gap between a first respective metal patch and a second respective metal patch, wherein each respective switch is optically coupled to at least one respective laser of the plurality of lasers, and wherein each switch of the plurality of switches includes a phase change material.
Abstract:
A method of manufacturing an optical waveguide includes: aligning a silicon on insulator wafer and a target substrate, the target substrate including a benzocyclobutene layer; bonding a silicon layer of the silicon on insulator wafer with the benzocyclobutene layer of the target substrate by using heat and pressure; and removing the silicon on insulator wafer such that the silicon layer remains on the benzocyclobutene layer.
Abstract:
A continuous wave (CW) heterodyne light detection and ranging (LIDAR) air velocity sensor system that comprises a first light emitting structure arranged to send a signal light in a first direction in space; a second light emitting structure arranged to produce a local oscillator light having a wavelength different from the wavelength of the signal light by a predetermined wavelength; a receiver arranged to receive light from said first direction in space; and a first optical mixer for mixing the received light with said local oscillator light.
Abstract:
A chip scale ultra violet laser source includes a plurality of laser elements on a substrate each including a back cavity mirror, a tapered gain medium, an outcoupler, a nonlinear crystal coupled to the outcoupler with a front facet that has a first coating that is anti-reflectivity (AR) to a fundamental wavelength of the laser element and high reflectivity (HR) to ultra violet wavelengths, and has an exit facet that has a second coating that has HR to a fundamental wavelength of the laser element and AR to the ultra violet wavelengths, a photodetector coupled to the outcoupler, a phase modulator coupled to the photodetector and coupled to the back cavity mirror, and a master laser diode on the substrate coupled to the phase modulator of each laser element. Each laser element emits an ultra violet beamlet and is frequency and phase locked to the master laser diode.