Abstract:
A semiconductor diode laser having a broad vertical waveguide and a broad lateral waveguide is disclosed emitting laser light in a single vertical mode and a single lateral mode narrow beam. The vertical waveguide comprises a coupled cavity structure, wherein light, generated in the active medium placed in the first cavity leaks into the second cavity and returns back. Phase matching conditions govern the selection of a single vertical mode. A multi-stripe lateral waveguide comprises preferably a lateral photonic band crystal with a lateral optical defect created by selected pumping of multistripes. This approach allows the selection of a single lateral mode having a higher optical confinement factor and/or a lower absorption loss and/or a lower leakage loss compared to the rest lateral optical modes. This enables a single lateral mode lasing from a broad area field coupled laser array. A laser system comprised of multiple field coupled laser arrays on a single wafer and a set of external mirrors enables an ultra-broad field coupled laser bar emitting a coherent laser light in a single vertical optical mode and a single lateral optical mode. A laser system comprised of multiple ultra-broad field coupled laser bars on different wafers and a set of external mirrors enables an ultra-broad field coupled laser stack emitting coherent laser light in a single vertical optical mode and a single lateral optical mode. This allows realization of ultrahigh power ultrahigh brightness laser systems based on semiconductor diode lasers.
Abstract:
A semiconductor diode laser having a broad vertical waveguide and a broad lateral waveguide is disclosed emitting laser light in a single vertical mode and a single lateral mode narrow beam. The vertical waveguide comprises a coupled cavity structure, wherein light, generated in the active medium placed in the first cavity leaks into the second cavity and returns back. Phase matching conditions govern the selection of a single vertical mode. A multi-stripe lateral waveguide comprises preferably a lateral photonic band crystal with a lateral optical defect created by selected pumping of multistripes. This approach allows the selection of a single lateral mode having a higher optical confinement factor and/or a lower absorption loss and/or a lower leakage loss compared to the rest lateral optical modes. This enables a single lateral mode lasing from a broad area field coupled laser array. A laser system comprised of multiple field coupled laser arrays on a single wafer and a set of external mirrors enables an ultra-broad field coupled laser bar emitting a coherent laser light in a single vertical optical mode and a single lateral optical mode. A laser system comprised of multiple ultra-broad field coupled laser bars on different wafers and a set of external mirrors enables an ultra-broad field coupled laser stack emitting coherent laser light in a single vertical optical mode and a single lateral optical mode. This allows realization of ultrahigh power ultrahigh brightness laser systems based on semiconductor diode lasers.
Abstract:
A semiconductor diode laser that generates light at wavelengths longer than conventional diode lasers. The laser includes a first gain element that generates a first "pump" laser beam having a first optical frequency and a second gain element that generates a second "pump" laser beam having a second optical frequency. The first and second pump beams are mixed in a third section to create a wave of nonlinear polarization oscillating at the difference frequency of the first two beams. Power from this nonlinear polarization wave is coupled by a near-field phase grating to excite an electromagnetic output beam which propagates perpendicular to the laser axis. The frequency of this output beam may be much smaller than either pump beam.
Abstract:
An artificial saturable absorber uses additive pulse mode-locking to enable pulse operation of an on-chip laser operation. Four different artificial saturable absorbers are disclosed. The first includes an integrated coupler, two arms each containing some implementation of the end-reflector, and a phase bias element in one arm. The second includes an integrated directional coupler, two integrated waveguide arms, and another integrated coupler as an output. The third includes an integrated birefringent element, integrated birefringent-free waveguide, and integrated polarizer. And the fourth includes a multimode waveguide that allows for different modes to propagate in such a way that the difference in the spatial distribution of intensity causes a nonlinear phase difference between the modes. These are just some examples of an on-chip fully integrated artificial saturable absorber with instantaneous recovery time that allow for generation of sub-femtosecond optical pulses at high repetition rates using passive mode-locking.
Abstract:
A terahertz difference-frequency generation quantum cascade laser source that provides monolithic, electrically-controlled tunable terahertz emission. The quantum cascade laser includes a substrate, a lower cladding layer positioned above the substrate and an active region layer with optical nonlinearity positioned on the lower cladding layer. The active region layer is arranged as a multiple quantum well structure. One or more feedback gratings are etched into spatially separated sections of the cladding layer positioned on either side of the active region. The periodicity of each grating section determines the mid-infrared lasing frequencies. The grating sections are electrically isolated from one another and biased independently. Tuning is achieved by changing a refractive index of one or all of the grating sections via a DC current bias thereby causing a shift in the mid-infrared lasing frequency. In this manner, a monolithic, electrically-pumped, tunable THz source is achieved.
Abstract:
A tunable lasing device including a vertical external cavity surface emitting laser, adapted to generate a fundamental laser beam in response to pumping from a pump source, said fundamental laser beam having a fundamental wavelength and a fundamental linewidth; a fundamental resonator cavity adapted to resonate the fundamental beam therein; a first optical element located within the fundamental resonator cavity for control of the fundamental linewidth of the fundamental beam; a Raman resonator located at least partially in said fundamental resonator adapted to receive the fundamental beam and comprising therein, a solid state Raman active medium located therein for generating at least a first Stokes beam from the fundamental beam wherein said Raman resonator cavity is adapted to resonate said Stokes beam therein and further adapted to emit an output beam; and further comprising a nonlinear medium located within the Raman resonator cavity for nonlinear frequency conversion of at least one of the beams present in the fundamental or the Raman resonator cavity; said tunable lasing device further comprising an output coupler adapted to emit an output beam, said output beam comprising at least a portion of said frequency converted beam being derived from at least one of the resonating beams in said fundamental or said Raman resonator cavities.
Abstract:
An optical parametric oscillator comprising: an optical cavity; a semiconductor gain- medium (14) located within the optical cavity, such that together they form a semiconductor laser, and a nonlinear material (24) located within the cavity such that the nonlinear material continuously generates down- converted idler- and signal-waves in response to a pump-wave continuously generated by the semiconductor gain-medium, wherein the pump wave is resonant within the optical cavity and one or other but not both of the down-converted waves is resonant within the pump wave cavity or a further optical cavity. Brewster plates (40) ensure singly resonant OPO and a birefringent filter (30) is used for frequency setting. Coupled cavities alllow for setting the photon lifetime in the cavity that relaxation oscillations are prevented.
Abstract:
A light emitting device (400) comprises a waveguide (24) having an electrically pumped gain region (20), a saturable absorber (40), a non linear crystal (140), an inclined mirror (M1),and a light-concentrating structure (120). Light pulses (B1) emitted from the gain region (20) are reflected by the inclined mirror (M1) and focused by the light-concentrating structure (120) into the non linear crystal (140) in order to generate frequency-converted light pulses (B2). The gain region(20), the saturable absorber (40), the light-concentrating structure (120) and the inclined mirror (M1) are implemented on or in a common substrate (10). The resulting structure is stable and compact, and allows on-wafer testing of produced emitters (E1a, E1b, E1c). The folded structure allows easy alignment of the non linear crystal (140).
Abstract:
La présente invention concerne le domaine des oscillateurs paramétriques optiques (OPO). Elle concerne un système (S) monolithique sensiblement vertical , pour la conversion paramétrique à partir d'une onde de pompe à une longueur d'onde de pompe, ledit système comprenant au moins deux cavités résonantes (6, 7), lesdites cavités étant fortement couplées par au moins un miroir de couplage (3), au moins une desdites cavités comprenant un milieu non linéaire actif, ledit au moins un miroir de couplage étant agencé de sorte que les fréquences paramétriques associées à ladite longueur d'onde de pompe soient situées dans la bande d'arrêt dudit au moins un miroir pour une direction d'injection de ladite onde de pompe sensiblement selon l'axe dudit système.