Abstract:
Mechanisms may be used for aggregating acknowledgement (ACK), block ACK (BA) and/or short packets transmissions for multi-user (MU) wireless communication systems. Aggregation mechanisms may be used for uplink (UL) and/or downlink (DL) orthogonal frequency division multiple access (OFDMA), and/or UL/DL multiple-user multiple input multiple output (MU-MIMO) transmissions, for example. Multi-user short packets may be aggregated and/or simultaneously transmitted for DL, UL, or peer-to-peer (P2P) transmissions.
Abstract:
A method and apparatus for power savings in a wireless local area network (WLAN) are disclosed. A station (STA) may receive parameters that associate the STA to a specific group of STAs and perform a channel access during a period that is allowed for the group of STAs based on the parameters. The STA may receive information regarding an access slot that is allowed for the group of STAs and access a channel during the access slot. The STA may receive a schedule for wake up from a doze state and goes in and out of the doze state based on the schedule. A highest channel access priority may be provided to a sensor or meter type of STA. The STA may indicate to an access point (AP) that the STA will not listen to a traffic indication map (TIM) or a delivery TIM (DTIM) in a beacon.
Abstract:
A method and apparatus is described herein for performing loop power control and transmission power control (TPC) in a wireless network. Described herein are methods including using separate power control loops for communication with an entire wireless network and for point-to-point (P2P) transmissions and separate power control loops for omni-directional and directional beamformed transmissions. Also described herein are methods and apparatuses for requesting clear channel assessment (CCA) measurements and adjusting CCA thresholds and transmission power based on the reported measurements. Methods and apparatuses are also described wherein access points (APs) coordinate transmission power to reduce interference with each other and to determine optimal transmission power to each mobile station (STA).
Abstract:
WTRUs, access points (APs) and methods thereon are disclosed. A method on a WTRU may include receiving a message from an AP that comprises a beamformee capability element; sending a second message to the AP that comprises a beamformer capability element; and receiving, from the AP, a third message in response to the second message that indicates a group to which the WTRU is assigned. The group may be based on the beamformer capability element and the group may indicate UL transmission information to be used by the WTRU. A method on an AP may include determining a group for multiple WTRUs based on a received beamformer capability element. A method on a WTRU may include sending to an AP a message with a low overhead preamble for UL MU-MIMO. The low overhead preamble may include LTFs that enable the AP to distinguish the WTRU from other WTRUs.
Abstract:
A method and apparatus may provide multi-user parallel channel access (MU-PCA) and/or single-user parallel channel access (SU-PCA) using transmit and/or receive with symmetrical bandwidth, in the downlink (DL), uplink (UL), or combined DL and UL. SU-PCA and MU-PCA may support unequal modulation and coding schemes (MCS) and unequal transmit power. Medium access control (MAC) layer, Physical layer (PHY), and mixed and PHY layer methods and procedures may support UL, DL and combined UL and DL SU-PCA and MU-PCA using transmit and/or receive with symmetrical bandwidth. MU-PCA and/or SU-PCA may also be supported by MAC and PHY layer designs and procedures for downlink, uplink and combined uplink and downlink using transmit/receive with asymmetrical bandwidth.
Abstract:
Method and apparatus for transmission and reception of a Greenfield preamble are provided. In the method and apparatus, the Greenfield preamble may be a single user (SU) preamble or a multi user (MU) preamble. As an MU preamble, the Greenfield preamble includes a short training field (STF), a first long training field (LTF), a first signal (SIG) field, at least one additional LTF, and a second SIG field. Additionally, the Greenfield preamble may be utilized for efficient transmission and reception of control information to wireless devices, whereby the control information may be indicated using the STF, the first LTF, or the first or second SIG fields.
Abstract:
Modulating millimeter waves may be embodied via a plurality of means. In at least one embodiment of the process disclosed herein, the process includes receiving, at a transmitter, a set of bits. The process also includes generating at least two complex-valued symbols based on the set of bits using a pipelined modulation at least in part by (i) mapping the set of bits to a first symbol using a first constellation mapping and (ii) mapping the set of bits to a second symbol using a second constellation mapping. The process also includes selecting a first data communication resource in a first single carrier channel for the first symbol and selecting a second data communication resource in a second single carrier channel for the second symbol. The process also includes transmitting, via the transmitter, the first and second symbols using the respective selected data communication resources.
Abstract:
Methods and apparatuses are described herein for adapting clear channel assessment (CCA) thresholds with or without Transmit Power Control (TPC) are disclosed. An IEEE 802.11 station (STA) may dynamically calculate a STA specific transmit power control (TPC) value and a STA specific clear channel assessment (CCA) value based on a target TPC parameter and a target CCA parameter. The target TPC parameter and the target CCA parameter may be received from an IEEE 802.11 cluster head configured to control TPC and CCA for a plurality of STAs associated with the BSS. The target TPC parameter and the target CCA parameter also may be related. The STA may then determine whether a carrier sense multiple access (CSMA) wireless medium of a wireless local area network (WLAN) basic service set (BSS) is occupied or idle based on the STA specific CCA value.
Abstract:
Methods and apparatus are presented for WiFi sectorization and beamforming. In one embodiment, an access point (AP) may send a Request to Send (RTS) to a first station (STA), receive a Sectorized Coordinated Beam (CB/S)-Clear to Send (CTS) from the first STA, and receive a CBS-CTS from a second STA. The AP may then send a Null Data Packet (NDP) Announcement (NDPA), followed by a NDP. The NDP may be sent using sub-sector beamforming. The AP may receive feedback from the first STA, and may create a targeted beam to transmit data to the first STA. The AP may determine sector order and timing based on the feedback. The AP may also identify whether the STA is a sector-edge STA or non-sector-edge (or sector center) STA. The AP may allow the STA to transmit based on whether the STA is assigned to the sector-edge or non-sector edge group.
Abstract:
A method and apparatus may be used to support coordinated and cooperative sectorized transmissions. Power control and clear channel assessment for sectorized transmissions may be used, along with sectorized beacon and associated procedures. Transmissions in a network may be protected by a first access point (AP) sending an omni-directional transmission and a beamformed or sectorized transmission to a station (STA), an overlapping basic service set (OBSS) confirming a spatially orthogonal (SO) condition based on the omni-directional transmission, and a second AP monitoring the omni-directional transmission and confirming the SO condition. The STA may be configured to receive a request-to-send (RTS) frame indicating data is available for transmission, and transmit a cooperative sectorized (CS) clear-to-send (CTS) frame indicating an ability for multiple AP reception.