Abstract:
A system and method for generating a radio frequency (RF) waveform are described. The method includes defining a train of on-off pulses separated by an off state having no on- off pulses. The method further includes applying a multi-level pulse waveform that adjusts a magnitude of each of the on-off pulses to generate an RF waveform. The method includes sending the RF waveform to an electrode.
Abstract:
Systems and methods for applying frequency and match tuning in a non-overlapping manner are described. For example, a radio frequency (RF) generator is tuned for a time interval and an impedance match is not tuned for the time interval. The impedance match is tuned before or after the RF generator is tuned. Such a non-overlap in the tuning of the RF generator and the impedance match facilitates a reduction in reflected power during a pulse without the tuning of the RF generator interfering with the tuning of the impedance match.
Abstract:
A method for etching a substrate includes performing, in a plasma chamber, a first etch of a substrate material using a plasma etch process. The first etch forms features to a first depth in the material. Following the first etch, the method includes performing, in the plasma chamber without removing the substrate from the chamber, an atomic layer passivation (ALP) process to deposit a conformal film of passivation over the mask and the features formed during the first etch. The ALP process uses a vapor from a liquid precursor to form passivation over the features and the mask. The method further includes performing, in the plasma chamber, a second etch of the material using the plasma etch process. The conformal film of passivation is configured to protect the mask and sidewalls of the features during the second etch. A plasma processing system also is described.
Abstract:
A radiofrequency (RF) filter includes an inductive element having multiple coil sections collectively forming an undivided coil of a cable of twisted magnetic wires. At least two adjacent coil sections have different turn pitches. The cable of twisted magnetic wires includes two wires per channel and is configured for at least one channel. The cable of twisted magnetic wires at a first end of the inductive element is configured for connection to an electrical component that is to receive power from a power supply. The cable of twisted magnetic wires at a second end of the inductive element is configured for connection to the power supply. Terminating capacitive elements are electrically connected between a reference ground potential and a respective wire of the cable of twisted magnetic wires at respective locations between the second end of the inductive element and the power supply.
Abstract:
A substrate is positioned on a substrate support structure within a plasma processing volume of an inductively coupled plasma processing chamber. A first radiofrequency signal is supplied from a first radiofrequency signal generator to a coil disposed outside of the plasma processing volume to generate a plasma in exposure to the substrate. A second radiofrequency signal is supplied from a second radiofrequency signal generator to an electrode within the substrate support structure. The first and second radiofrequency signal generators are controlled independent of each other. The second radiofrequency signal has a frequency greater than or equal to about 27 megaHertz. The second radiofrequency signal generates supplemental plasma density at a level of the substrate within the plasma processing volume while generating a bias voltage of less than about 200 volts at the level of the substrate.
Abstract:
Methods and apparatus for controlling plasma in a plasma, processing system having at least an inductively coupled plasma (ICP) processing chamber are disclosed. The ICP chamber employs at least a first/center RF coil, a second/edge RF coii disposed concentrically with respect to the firsi/center RF coil, and a RF coil set having at least a third/mid. RF coil disposed concentrically with respect to the first/center RF coil and the second/edge RF coii in a manner such that the third/mid RF coil is disposed in between the first/center RF coil and the second/edge RF coil. During processing, RF currents in the same direction are provided to the first/center RF coil and the second/edge RF coil while RF current in the reverse direction (reiative to the direction of the currents provided to the first/center RF coil and the second'edge RF coil) is provided to the third/mid RF coil.
Abstract:
Systems and methods for increasing peak ion energy with a low angular spread of ions are described. In one of the systems, multiple radio frequency (RF) generators that are coupled to an upper electrode associated with a plasma chamber are operated in two different states, such as two different frequency levels, for pulsing of the RF generators. The pulsing of the RF generators facilitates a transfer of ion energy during one of the states to another one of the states for increasing ion energy during the other state to further increase a rate of processing a substrate.
Abstract:
A substrate processing system includes a processing chamber including a substrate support to support a substrate. A coil is arranged around the processing chamber. A first RF source provides first RF power at a first magnitude and a first frequency. A first pulsing circuit applies a duty cycle to the first RF source. A tuning circuit receives an output of the first pulsing circuit, includes a first variable capacitor, and has an output in communication with the coil to generate plasma in the processing chamber. A controller includes a data acquisition module to generate feedback. A feedback control module controls at least one of the first frequency and the first variable capacitor based on the feedback and a gain value. The controller selects the gain value based on at least one of the first frequency and the duty cycle.
Abstract:
A plasma processing chamber and methods for operating the chamber are provided. An exemplary chamber includes an electrostatic chuck for receiving a substrate and a dielectric window connected to a top portion of the chamber. An inner side of dielectric window faces a plasma processing region that is above the electrostatic chuck and an outer side of the dielectric window is exterior to the plasma processing region. Inner and outer coils are disposed above the outer side of the dielectric window, and the inner and outer coils are connected to a first RF power source. A powered grid is disposed between the outer side of dielectric window and the inner and outer coils. The powered grid is connected to a second RF power source that is independent from the first RF power source.
Abstract:
This invention discloses a ceramic showerhead for an inductively coupled plasma processing apparatus which includes a processing chamber in which a semiconductor substrate is processed, a substrate support on which the semiconductor substrate is supported during processing thereof, and an antenna operable to generate and maintain a plasma in the processing chamber. The ceramic showerhead forms a dielectric window of the chamber and a gas delivery system is operable to alternately supply an etching gas and a deposition gas to a plenum in the showerhead and replace the etching gas in the plenum with the deposition gas within 200 milliseconds