Abstract:
A method for forming a stair-step structure in a substrate is provided. An organic mask is formed over the substrate. A hardmask with a top layer and sidewall layer is formed over the organic mask. The sidewall layer of the hard mask is removed while leaving the top layer of the hardmask. The organic mask is trimmed. The substrate is etched. The forming the hardmask, removing the sidewall layer, trimming the organic mask, and etching the substrate are repeated a plurality of times.
Abstract:
Methods and apparatuses for spacer profile control using atomic layer deposition (ALD) in multi-patterning processes are described herein. A silicon oxide spacer is deposited over a patterned core material and a target layer of a substrate in a multi-patterning scheme. A first thickness of the silicon oxide spacer is deposited by multiple ALD cycles under a first oxidation condition that includes an oxidation time, a plasma power, and a substrate temperature. A second thickness of the silicon oxide spacer is deposited by multiple ALD cycles under a second oxidation condition, where the second oxidation condition is different than the first oxidation condition by one or more parameters. After etching the patterned core material, a resulting profile of the silicon oxide spacer is dependent at least in part on the first and second oxidation conditions.
Abstract:
A method for ion-assisted etching a stack of alternating silicon oxide and silicon nitride layers in an etch chamber is provided. An etch gas comprising a fluorine component, helium, and a fluorohydrocarbon or hydrocarbon is flowed into the etch chamber. The gas is formed into an in-situ plasma in the etch chamber. A bias of about 10 to about 100 volts is provided to accelerate helium ions to the stack and activate a surface of the stack to form an activated surface for ion-assisted etching, wherein the in-situ plasma etches the activated surface of the stack.
Abstract:
A method for forming a stair-step structure in a stack on a substrate is provided. The method comprises at least one stair step cycle. Each stair step cycle comprises trimming the mask and etching the stack. Etching the stack is provided in a plurality of cycles wherein each cycle comprises etching a SiO 2 layer and etching a SiN layer. Etching a SiO 2 layer comprises flowing a SiO 2 etching gas into the plasma processing chamber, wherein the SiO 2 etching gas comprises a hydrofluorocarbon, an inert bombardment gas, and at least one of SF 6 and NF 3 , generating a plasma from the SiO 2 etching gas, providing a bias, and stopping the SiO 2 layer etch. The etching a SiN layer comprises flowing a SiN etching gas into the plasma processing chamber, comprising a hydrofluorocarbon and oxygen, generating a plasma from the SiN etching gas, providing a bias, and stopping the SiN layer etch.
Abstract:
A substrate is positioned on a substrate support structure within a plasma processing volume of an inductively coupled plasma processing chamber. A first radiofrequency signal is supplied from a first radiofrequency signal generator to a coil disposed outside of the plasma processing volume to generate a plasma in exposure to the substrate. A second radiofrequency signal is supplied from a second radiofrequency signal generator to an electrode within the substrate support structure. The first and second radiofrequency signal generators are controlled independent of each other. The second radiofrequency signal has a frequency greater than or equal to about 27 megaHertz. The second radiofrequency signal generates supplemental plasma density at a level of the substrate within the plasma processing volume while generating a bias voltage of less than about 200 volts at the level of the substrate.
Abstract:
A method is provided for processing a wafer used in fabricating semiconductor devices. The method can comprise forming high-aspect ratio features on the wafer, which is followed by wet processing and drying. During drying, pattern collapse can occur. This pattern collapse can be repaired to allow for additional processing of the wafer. In some instance, pattern collapse can be repaired via etching where the etching breaks bonds that can have formed during pattern collapse.
Abstract:
A method of forming devices is provided. A phase change layer is provided. The phase change layer is etched by providing an etch gas comprising a bromine containing compound and forming a plasma from the etch gas. The phase change layer is of a material that may be heated by a current and then when cooled, either forms an amorphous material or a crystalline material, depending on how fast the material is cooled. In addition, the amorphous material has a resistance at least several times greater than the crystalline material.
Abstract:
A method for patterning a stack having a patterned organic mask with a plurality of mask features including sidewalls and tops, a hardmask and an etch layer, wherein the patterned organic mask is positioned over the hardmask which is positioned over the etch layer is provided. An atomic layer deposition is deposited, wherein the depositing the atomic layer deposition controllably trims the plurality of mask features of the patterned organic mask. The atomic layer deposition is broken through. The hardmask is selectively etched with respect to the patterned organic mask, wherein the atomic layer deposition reduces faceting of the plurality of mask features of the patterned organic mask during the selective etching.
Abstract:
A method for forming a photoresist mask may comprise providing a ultra-violet (UV) producing gas to a vacuum chamber having a substrate, ionizing the UV producing gas to produce UV rays to irradiate the substrate, and etching features into the substrate through the photoresist mask.
Abstract:
A method for performing a cleaning process in a processing chamber includes, without a substrate arranged on a substrate support of the processing chamber, supplying reactant gases in a side gas flow via side tuning holes of a gas distribution device to effect deposition of a coating on an edge ring of the substrate support. The side gas flow targets an outer region of the processing chamber above the edge ring, and the reactant gases are supplied at a first flow rate. The method further includes, while supplying the reactant gases via the side tuning holes, supplying inert gases in a center gas flow via center holes of the gas distribution device. The inert gases are supplied at a second flow rate that is greater than the first flow rate.