Abstract:
Memory die can be stacked to form a three-dimensional integrated circuit. For example, through-silicon vias (TSVs) can permit signals to pass vertically through the three-dimensional integrated circuit. Disclosed herein are apparatuses and methods to perform post package trimming of memory die, which advantageously permits the memory die to be trimmed after the memory die is stacked, such that test and trimming characteristics are relatively close to that which will be actually be encountered.
Abstract:
An integrated circuit clock buffer is described which includes a pulser circuit having a delayed feedback to provide a pulsed signal in response to a transition in the external clock signal. The pulser circuit includes a delay element having an output node coupled to the input node of an inverter. The delay element and inverter are coupled between a first and second transistor. The buffer circuit generates non-skewed internal clock signals.
Abstract:
A shared counter (32) performs multiple counting functions in an electronic circuit, such as a memory integrated circuit. An input selection circuit (21) selects one of M input data sets at a given time to be provided as counter initialization data. A counter circuit (32) provides counter output data based on the counter initialization data. An output circuit (35) provides the counter output data to K destination circuits in the electronic circuit. The output circuit (35) provides only one of the K destination circuits with the counter output data at a given time.
Abstract:
An asynchronous self-adjusting circuit (20) includes an input circuit (22) receiving an input signal and providing an output signal. The input circuit (22) starts to switch the output signal to a first logic level based on the level of the input signal reaching a falling edge adjustable trip point, and starts to switch the output signal to a second logic level base on the level of the input signal reaching a rising edge adjustable trip point. A control circuit (24) dynamically and asynchronously adjusts the falling and rising edge adjustable trip points as a function of a previous value of the input signal to permit the asynchronous self-adjusting circuit to respond quickly to changes in the input signal without causing oscillation of the output signal by asynchronously controlling when the output signal is permitted to again switch logic states one the output signal switches logic states.
Abstract:
A semiconductor device assembly includes a substrate and a die coupled to the substrate. The die includes a first contact pad electrically coupled to a first circuit on the die including at least one active circuit element, a second contact pad electrically coupled to a second circuit on the die including only passive circuit elements, and a plated pad electrically coupling at least a part of the first contact pad to at least a part of the second contact pad. The substrate includes a substrate contact electrically coupled to the plated pad on the die.
Abstract:
A system and method for decoding command signals that includes a command decoder configured to generate internal control signals to perform an operation based on the command signals and an operating state. The same combination of command signals can request different commands depending on the operating state. A command is selected from a first set of operations according to the command signals when the memory system is in a first operating state and a command is selected from a second set of operations according to the command signals when the memory system is in a second operating state.
Abstract:
A synchronous random access memory, such as a synchronous dynamic random access memory or a synchronous graphic random access memory, is responsive to command signals and includes multiple bank memory arrays. A command decoder/controller responds to command signals to initiate, in a first system clock cycle, an auto-refresh command controlling an auto refresh operation to a specified one of the multiple bank memory arrays.
Abstract:
In a memory device such as a page-oriented synchronous dynamic random access memory device (SDRAM), a memory array and associated circuitry are divided into multiple internally defined circuit banks. Commands and addresses applied to the memory device affect all internal banks identically, but on a time-staggered basis. In an eight bank embodiment, activation of a selected row is first initiated in Bank0 by registration of an ACTIVE command and a coincident row address. One system clock cycle later, activation of the selected row is initiated in Bank1, and so on until activation of the selected row is initiated in Bank7 seven clock cycles after the intial registration of the command. A READ or WRITE command and coincident column address can be applied after the activation time limit has been met for the selected row in Bank0. The READ or WRITE command then affects successive banks in the above-described time staggered manner. Similarly, a PRECHARGE command can be applied when the read latency or write recovery time limit has been met for Bank0, and this command is executed in a time staggered manner in the successive banks. In a four bank embodiment, command registration and execution is staggered every two successive system clock cycles.