Abstract:
The present invention is directed to a coating composition comprising polyurea and polyurethane. Further, the present invention is directed to a coating composition comprising polyurea or, polyurea and polyurethane, and flame retardant. The polyurea is formed from a reaction mixture comprising isocyanate and amine wherein the ratio of equivalents of isocyanate groups to equivalents of amine groups is greater than 1 and the isocyanate-functional component and the amine-functional component can be applied to a substrate at a volume mixing ratio of 1:1.
Abstract:
Coating compositions comprising a polyurea formed from a reaction mixture comprising: (a) a first component comprising an isocyanate, the first component having a viscosity of = 2000 centipoise at a temperature = 7°C; and (b) a second component comprising an amine. Substrates coated at least in part with such a composition are also disclosed. Footwear coated at least in part with polyurea are also disclosed.
Abstract:
A method of preparing an organic sol of particles is provided. Steps include: a) providing a suspension of particles in an aqueous medium; b) adding an organic liquid to form an admixture where the concentration of particles in the admixture is less than or equal to 40 percent by weight; c) maintaining the admixture at a temperature and pressure and for a time sufficient to reduce the water content to less than 30 percent by weight while simultaneously adding a water-compatible organic liquid at a rate sufficient to maintain a concentration of particles in the admixture at less than or equal to 50 percent by weight; and d) adding at least one polymer while maintaining the admixture at a temperature and pressure and for a time sufficient to provide an organic so[ of particles comprising 1 percent by weight or less of water.
Abstract:
Coating compositions are provided which are formed from components comprising (a) at least one polysiloxane comprising at least one reactive functional group; (b) at least one reactant comprising at least one functional group that is reactive with at least one functional group selected from the at least one reactive functional group of the at least one polysiloxane and at least one functional group of at least one reactant; and (c) a plurality of particles, wherein each component is different, and wherein the at least one reactive functional group of the at least one polysiloxane and the at least one reactive functional group of the at least one reactant are substantially nonreactive with the particles. A multi-component composite coating composition formed from a basecoat and a topcoat deposited from the curable coating composition also is provided. The multi-component composite coating compositions of the invention provide highly scratch resistant color-plus-clearcoatings capable of retaining scratch resistance after weathering.
Abstract:
Coating compositions comprising a polyurea formed from a reaction mixture comprising isocyanate and an acrylated amine are disclosed. The (meth)acrylated amine is the reaction product of a polyamine and a (meth)acrylate; when the (meth)acrylate comprises a poly(meth)acrylate, the reaction product further comprises a mono(meth)acrylate and/or a monoamine. Methods for using the coatings, and substrates coated therewith, are also disclosed.
Abstract:
The present invention is directed to a compositions comprising polyurea an adhesion promoter wherein the adhesion promoter comprises an adduct of an aminosilane and a material chosen from an acrylate, a methacrylate, a lactone, and mixtures thereof. The present invention is also directed to methods of applying the compositions to improve the adhesion of a polyurea or polyurea and polyurethane coating to a substrate.
Abstract:
Coating compositions are provided which include a polysiloxane comprising at least one reactive functional group, at least one material comprising at least one reactive functional group, and at least one boron-containing compound. Also provided are multi-layer composite coatings formed from a basecoat deposited from a pigmented coating composition and a topcoat applied over the basecoat, the topcoat deposited from the aforementioned coating composition. Methods for repairing a multi-layer composite coating and coated substrates are also provided. The compositions of the invention provide highly scratch resistant coatings, particularly highly scratch resistant color-plus-clear coatings, which have excellent intercoat adhesion to subsequently applied coating layers.
Abstract:
Radiation curable coating compositions are disclosed. The radiation curable coating composition comprises a) an organic film-forming binder comprising (i) a urethane (meth)acrylate comprising the reaction product of reactants comprising a polyol and a polyisocyanate comprising at least two (meth)acrylate functional groups per molecule; and (ii) a highly functional (meth)acrylate; and b) a (meth)acrylate functional silsesquioxane dispersed in the binder. Also disclosed are related methods for coating a substrate, coated substrates and cured coatings formed from the radiation curable coating compositions.
Abstract:
Coating compositions comprising a polyurea formed from a reaction mixture comprising: (a) a first component comprising an isocyanate, the first component having a viscosity of = 2000 centipoise at a temperature = 7°C; and (b) a second component comprising an amine. Substrates coated at least in part with such a composition are also disclosed. Footwear coated at least in part with polyurea are also disclosed.
Abstract:
The reaction product of a triamine and a dialkyl maleate and/or dialkyl fumarate, wherein the reaction product has a viscosity of less than 2000 cPs is disclosed. Polyurea coatings comprising this reaction product are also disclosed, as are substrates coated with the same.