Abstract:
A signal distribution network has segments that each have a buffer circuit, a transmission line coupled to the buffer circuit, an inductor coupled to the buffer circuit through the transmission line, and a variable capacitance circuit coupled to the inductor and coupled to the buffer circuit through the transmission line. A capacitance of the variable capacitance circuit is set to determine a phase and an amplitude of a signal transmitted through the transmission line. A signal distribution network can include a phase detector, a loop filter circuit, and a resonant delay circuit. The phase detector compares a phase of a first periodic signal to a phase of a second periodic signal. The resonant delay circuit has a variable impedance circuit having an impedance that varies based on changes in an output signal of the loop filter circuit.
Abstract:
A phase detector circuit compares the phases of first and second periodic input signals to generate an output signal. The phase detector includes a circuit that makes two different combinations of the first and the second periodic input signals to generate third and fourth periodic signals. This circuit causes the third periodic signal to be based on a first combination of the first periodic signal and the second periodic signal that imparts a first relative phase shift. The circuit causes the fourth periodic signal to be based on a second combination of the first periodic signal and the second periodic signal to provide a different relative phase shift. The phase detector also includes a comparison circuit that compares a measure of the power of the third periodic signal to a measure of the power of the fourth periodic signal to generate the phase comparison output signal.
Abstract:
A phase detection circuit can include two phase detectors that each generate a non-zero output in response to input signals being aligned in phase. The input signals are based on two periodic signals. The phase detection circuit subtracts the output signal of one phase detector from the output signal of the other phase detector to generate a signal having a zero value when the periodic signals are in phase. Alternatively, a phase detector generates a phase comparison signal indicative of a phase difference between periodic signals. The phase comparison signal has a non-zero value in response to input signals to the phase detector being aligned in phase. The input signals are based on the periodic signals. An output circuit receives the phase comparison signal and generates an output having a zero value in response to the periodic signals being aligned in phase.
Abstract:
A circuit for performing clock recovery according to a received digital signal (30). The circuit includes at least an edge sampler (105) and a data sampler (145) for sampling the digital signal, and a clock signal supply circuit. The clock signal supply circuit provides edge clock (25) and data clock (20) signals offset in phase from one another to the respective clock inputs of the edge sampler (105) and the data sampler (145). The clock signal supply circuit is operable to selectively vary a phase offset between the edge and data clock signals.
Abstract:
A device includes a transmitter coupled to a node, where the node is to couple to a wired link. The transmitter has a plurality of modes of operation including a calibration mode in which a range of communication data rates over the wired link is determined in accordance with a voltage margin corresponding to the wired link at a predetermined errorrate. The range of communication data rates includes a maximum data rate, which can be a non-integer multiple of an initial data rate.
Abstract:
A communication system supports high-speed communication over a signal lane that extends between respective transmitting and receiving integrated circuit (IC) devices. One or both of the IC devices includes an equalizer to offset channel characteristics that otherwise impair speed performance. A margining circuit on the receiving IC measures a timing margin of the received signal and adjusts the equalization settings for one or both transmitters to maximize the timing margin. Another embodiment compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex error analysis and adaptation circuitry on the higher-performance side of the lane. The error analysis and adaptation circuitry reduces the error margin of the transmitted signal to introduce bit errors at the receiver, analyzes the bit errors to measure ISI imposed by the channel, and adjusts voltage offsets of the continuous-time signal to compensate for the ISI. In some embodiments the receiver calculates the system response for diagnostics and for computing equalization settings.
Abstract:
A device (102) implements data reception with edge-based partial response decision feedback equalization. The device implements a tap weight adapter circuit (114) that sets the tap weights that are used for adjustment of a received data -signal (104). The tap weight adapter circuit (114) sets the tap weights based. on previously determined data values and input from an edge analysis of the received data signal using a set of edge samplers. The edge analysis (116) may include adjusting the sampled data signal by the tap weights determined by the tap weight adapter circuit. A clock generation circuit (220) generates an edge clock signal to control the edge sampling performed by the set of edge samplers. The edge clock signal is generated as a function of the signals of the edge samplers and prior data values determined by the equalizer.
Abstract:
A driver supports differential and single-ended signaling modes. Complementary transistors with a common tail node are provided with complementary input signals in the differential mode. A current source coupled to the tail node maintains a relatively high tail impedance and a constant tail current in the differential mode. The tail node is set to a low impedance in single-ended modes to decouple the two transistors, allowing them to amplify uncorrelated input signals. The current source draws multiple current levels in the single- ended mode to compensate for changes in tail current that result from changes in the relative values of the uncorrelated data in the single-ended modes. A termination block provides termination resistance in the differential mode, pull-up transistors in a single-ended mode that employs push-pull drivers, and is omitted in a single-ended mode that lacks driver-side termination.
Abstract:
A transceiver architecture supports high-speed communication over a signal lane (120-125) that extends between a high-performance integrated circuit (IC) (105) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers (110). The. architecture compensates for performance asymmetry between ICs communicating over a bidirectional lan by instantiating relatively complex transmit (Tx1) and receive (Rx1) equalization cir.cuitry on the higher-performance, side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated (162) based upon the signal response at the receiver of the higher-performance IC (Rx1N).
Abstract:
A transceiver architecture supports high-speed communication over a signal lane (120-125) that extends between a high-performance integrated circuit (IC) (105) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers (110). The. architecture compensates for performance asymmetry between ICs communicating over a bidirectional lan by instantiating relatively complex transmit (Tx1) and receive (Rx1) equalization cir.cuitry on the higher-performance, side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated (162) based upon the signal response at the receiver of the higher-performance IC (Rx1N).