Abstract:
The game console system includes a user interface module and a graphics processing module that are remotely situated from one another and solely coupled to one another via one or more communication links. The graphics processing module is positioned within a controlled environment chamber that thermally and acoustically isolates the user interface module from the graphics processing module. The user interface module includes a controller and a console coupled to the controller. The console also is configured to be coupled to a display.
Abstract:
A system and method for inductively heating a work piece. The induction heating system is coupleable to a plurality of temperature feedback devices operable to provide a signal representative of work piece temperature. The induction heating system is operable to control the output of the induction heating system based on the plurality of signals representative of work piece temperature received from the plurality of temperature feedback devices.
Abstract:
A memory system includes nonvolatile physical memory, such as flash memory, that exhibits a wear mechanism asymmetrically associated with write operations. A relatively small cache of volatile memory reduces the number of writes, and wear-leveling memory access methods distribute writes evenly over the nonvolatile memory.
Abstract:
A method of tracking a second electronic device with respect to a first electronic device is disclosed. The method includes transmitting a first waveform of a first frequency along a first fixed path associated with the first device. A second waveform having a frequency based on the first frequency is wirelessly transmitted from the first device to the second device along a first wireless path. The second waveform is wirelessly transmitted from the second device to the first device along a second wireless path. The first and second waveforms are received at the phase comparator circuit. A first phase relationship of the received first waveform is then compared to a second phase relationship of the received re-transmitted waveform. A coordinate of the second device is determined with respect to a reference coordinate based on the comparing.
Abstract:
Bandwidth for information transfers between devices is dynamically changed to accommodate transitions between power modes employed in a system. The bandwidth is changed by selectively enabling and disabling individual control links and data links that carry the information. During a highest bandwidth mode for the system, all of the data and control links are enabled to provide maximum information throughout. During one or more lower bandwidth modes for the system, at least one data link and/or at least one control link is disabled to reduce the power consumption of the devices. At least one data link and at least one control link remain enabled during each low bandwidth mode. For these links, the same signaling rate is used for both bandwidth modes to reduce latency that would otherwise be caused by changing signaling rates. Also, calibration information is generated for disabled links so that these links may be quickly brought back into service.
Abstract:
One or more timing signals used to time data and command transmission over highspeed data and command signaling links are paused or otherwise disabled when a memory system enters a low-power state, and require substantial time to be re-established at appropriate frequency and/or phase as the system returns to an active operating state. Instead of waiting for the high-speed timing signals to be re-established before beginning memory access operations, an alternative, lower-frequency timing source is used to time transfer of one or more memory-access commands over a combination of data and command signaling links while the high-speed timing signals are being restored, thereby hastening transmission of memory-access commands to memory devices and reducing the incremental latency required to exit the low-power state. A timing signal generators capable of glitchlessly shifting a timing signal between two or more oscillation frequencies may also (or alternatively) be provided, thus enabling different- frequency timing signals to be delivered to system components via the same timing signal paths in either operating state. When the timing signal is used to time data (or command) transfer over information-bearing signaling links, the ability to glitchlessly shift the timing signal frequency enables a corresponding glitchless shift between lower and higher data rates on the information-bearing signaling links.
Abstract:
A source-terminated transmitter conveys digital signals over a short channel as a voltage signal that transitions between levels for each symbol transition. The transmitter produces each transition by issuing a charge pulse onto the channel, and thus creates a series of charge pulses. The number of charge pulses per unit time is proportional to the transition density of the signal, as no charge pulse is required between like symbols. The supply current used to deliver the pulses is therefore dependent upon the data pattern. This data dependency can induce supply fluctuations, which can in turn cause errors and otherwise reduce performance. The transmitter issues a synthetic charge pulse for each adjacent pair of like symbols to reduce the data dependency of the supply current. The synthetic pulses can be scaled to match the charge required for symbol transitions on a given channel.
Abstract:
A system and method for synchronizing a strobed memory system 10. During memory read and/or memory write operations the corresponding data strobe is sampled at the data destination 50/55 according to a local clock signal 71/73. Based on ' the results of the sampling, the data strobe and local clock signal are synchronized. In this manner, the data is synchronized to the local clock signal so that sampling of data at the data destination can be performed according to the local clock signal rather than the data strobe.
Abstract:
A multi-rank memory system in which calibration operations are performed between a memory controller and one rank of memory while data is transferred between the controller and other ranks of memory. A memory controller performs a calibration operation that calibrates parameters pertaining to transmission of data via a first data bus between the memory controller and a memory device in a first rank of memory. While the controller performs the calibration operation, the controller also transfers data with a memory device in a second rank of memory via a second data bus.
Abstract:
A memory system maps physical addresses to device addresses in a way that reduces power consumption. The system includes circuitry for deriving efficiency measures for memory usage and selects from among various address-mapping schemes to improve efficiency. The address-mapping schemes can be tailored for a given memory configuration or a specific mixture of active applications or application threads. Schemes tailored for a given mixture of applications or application threads can be applied each time the given mixture is executing, and can be updated for further optimization. Some embodiments mimic the presence of an interfering thread to spread memory addresses across available banks, and thereby reduce the likelihood of interference by later- introduced threads.