Abstract:
Device and methods for use in a biosensor comprising a multisite array of test sites, the device and methods being useful for modulating the binding interactions between a (biomolecular) probe or detection agent and an analyte of interest from a biological by modulating the pH or ionic gradient near the electrodes in such biosensor. An electrochemically active agent that is suitable for use in biological buffers for changing the pH of the biological buffers. Method for changing the pH of biological buffers using the electrochemically active agents. The methods of modulating the binding interactions provided in a biosensor, analytic methods for more accurately controlling and measuring the pH or ionic gradient near the electrodes in such biosensor, and analytic methods for more accurately measuring an analyte of interest in a biological sample.
Abstract:
Lateral flow assay devices comprising a multisite array of test sites (8) for measuring a biomolecule analyte (3) having a solid support (5) including absorbent material for providing capillary flow, one device being divided into parallel lanes (7) in the flow direction. The devices comprising a sample portion for receiving a sample; a diagnostic portion comprising a multisite array of test sites (8) each comprising a probe for the biomolecular analyte (3), wherein at each test site of the multisite array the conditions for the interaction between the biomolecular analyte and the probe can be varied independently; an absorbent portion of absorbent material for providing capillary flow; and electrodes (10) for actuating and controlling conditions. The sample portion, diagnostic portion, and absorbent portion are in capillary flow communication resulting in a capillary flow from sample portion towards absorbent portion, whereby the sample flows across the probe at each test site in the diagnostic portion to provide contact between the sample and such probe. Methods for measuring analyte concentration in a sample using such lateral flow assay devices.
Abstract:
A complimentary metal oxide semiconductor (CMOS) sensor system (100) in one embodiment includes a doped substrate (102), a doped central island (108) extending downwardly within the doped substrate from an upper surface of the doped substrate, and a first doped outer island (106) extending downwardly within the doped substrate from the upper surface of the doped substrate, the first outer island electrically isolated from the central island within an upper portion of the substrate, and electrically coupled to the central island within a lower portion of the substrate.
Abstract:
A vision traffic markernetwork system comprises a plurality of vision traffic markersor traffic nodes configured to capture information such as an event, an environment, a profile, or a condition of an object such as vehicle, human, combination thereof, or the like, for example. The environment information may be time of day, day of week, weather, traffic condition, and the like. The nodes may be one of a traffic node, an ambient node, a repeater, a gateway, or a combination thereof. These nodes are arranged in network neighborhoods and configured to communicate withat least oneof the communication networks with at least one of the vision traffic markersor nodes, a control system, the automotive, a server, a global navigation system, other non-vision devices, traffic lights, street lights, electronic devices, or combination thereof, via one more links, either wirelessly or wired communication. The vision traffic marker network system analysis, process, distribute, and report the information to any vision traffic marker network system,client machines, and a server over a network.
Abstract:
Device and methods for use in a biosensor comprising a multisite array of test sites, the device and methods being useful for modulating the binding interactions between a (biomolecular) probe or detection agent and an analyte of interest by modulating the p H or ionic gradient near the electrodes in such biosensor. An electrochemically active agent that is suitable for use in biological buffers for changing the p H of the biological buffers. Method for changing the pH of biological buffers using the electrochemically active agents. The methods of modulating the binding interactions provided in a biosensor, analytic methods for more accurately controlling and measuring the pH or ionic gradient near the electrodes in such biosensor, and analytic methods for more accurately measuring an analyte of interest in a biological sample.
Abstract:
Device and methods for use in a biosensor comprising a multisite array of test sites, the device and methods being useful for modulating the binding interactions between a (biomolecular) probe or detection agent and an analyte of interest by modulating the p H or ionic gradient near the electrodes in such biosensor. An electrochemically active agent that is suitable for use in biological buffers for changing the p H of the biological buffers. Method for changing the pH of biological buffers using the electrochemically active agents. The methods of modulating the binding interactions provided in a biosensor, analytic methods for more accurately controlling and measuring the pH or ionic gradient near the electrodes in such biosensor, and analytic methods for more accurately measuring an analyte of interest in a biological sample.
Abstract:
Device for use in a biosensor comprising a multisite array of test sites, the device being useful for modulating the binding interactions between a (biomolecular) probe or detection agent and an analyte of interest from a biological by modulating the pH or ionic gradient near the electrodes in such biosensor. The device provides a biosensor which is more accurate, reliable and the results of which are more reproducible. Analytic methods for more accurately measuring an analyte of interest in a biological sample are also provided.
Abstract:
A device for generating thermal images includes a low resolution infrared (IR) sensor supported within a housing and having a field of view. The IR sensor is configured to generate thermal images of objects within the field of view having a first resolution. A spatial information sensor supported within the housing is configured to determine a position for each of the thermal images generated by the IR sensor. A processing unit supported within the housing is configured to receive the thermal images and to combine the thermal images based on the determined positions of the thermal images to produce a combined thermal image having a second resolution that is greater than the first resolution.
Abstract:
Methods of modulating the binding interactions between a (biomolecular) probe or detection agent and an analyte of interest from a biological sample in a biosensor having a multisite array of test sites. In particular, the methods modulate the pH or ionic concentration gradient near the electrodes in such biosensor. The methods of modulating the binding interactions provide a biosensor and analytic methods for more accurately measuring an analyte of interest in a biological sample.
Abstract:
A biomarker monitoring method and system in one embodiment includes a communications network, a portable wellness device configured to form a communication link with the communications network, the portable wellness device including a detector configured to detect at least one biomarker in a biologic sample, a first memory, a plurality of program instructions stored in the first memory, and a processing circuit operably connected to the first memory and configured to execute the program instructions to generate wellness data based upon detection of the at least one biomarker in the biologic sample, and a remote user interface operably connected to the communications network and configured to render the wellness data.