Abstract:
Embodiments of the subject invention relate to a method and apparatus for providing a apparatus that can function as a photovoltaic cell, for example during the day, and can provide solid state lighting, for example at night. The apparatus can therefore function as a lighting window. An embodiment can integrate an at least partially transparent one-side emitting OLED and a photovoltaic cell. The photovoltaic cell can be sensitive to infrared light, for example light having a wavelength greater than 1 µm. The apparatus can be arranged such that the one direction in which the OLED emits is toward the inside of a building or other structure and not out into the environment.
Abstract:
An image sensor is constructed on a substrate that is a read-out transistor array with a multilayer array of infrared photodetectors formed thereon. The infrared photodetectors include a multiplicity of layers including an infrared transparent electrode distal to the substrate, a counter electrode directly contacting the substrate, and an infrared sensitizing layer that comprises a multiplicity of nanoparticles. The layers can be inorganic or organic materials. In addition to the electrodes and sensitizing layers, the multilayer stack can include a hole-blocking layer, an electron-blocking layer, and an anti-reflective layer. The infrared sensitizing layer can be PbS or PbSe quantum dots.
Abstract:
Imaging devices include an IR up-conversion device on a CMOS imaging sensor (CIS) where the up-conversion device comprises a transparent multilayer stack. The multilayer stack includes an IR sensitizing layer and a light emitting layer situated between a transparent anode and a transparent cathode. In embodiments of the invention, the multilayer stack is formed on a transparent support that is coupled to the CIS by a mechanical fastener or an adhesive or by lamination. In another embodiment of the invention, the CIS functions as a supporting substrate for formation of the multilayer stack.
Abstract:
Embodiments of the invention are directed to a transparent up-conversion device having two transparent electrodes. In embodiments of the invention, the up-conversion device comprises a stack of layers proceeding from a transparent substrate including an anode, a hole blocking layer, an IR sensitizing layer, a hole transport layer, a light emitting layer, an electron transport layer, a cathode, and an antireflective layer. In an embodiment of the invention, the up-conversion device includes an IR pass visible blocking layer,
Abstract:
Embodiments described herein generally relate to monodisperse nanoparticles that are capable of absorbing infrared radiation and generating charge carriers. In some cases, at least a portion of the nanoparticles are nanocrystals. In certain embodiments, the monodisperse, IR-absorbing nanocrystals are formed according to a method comprising a nanocrystal formation step comprising adding a first precursor solution comprising a first element of the nanocrystal to a second precursor solution comprising a second element of the nanocrystal to form a first mixed precursor solution, where the molar ratio of the first element to the second element in the first mixed precursor solution is above a nucleation threshold. The method may further comprise a nanocrystal growth step comprising adding the first precursor solution to the first mixed precursor solution to form a second mixed precursor solution, where the molar ratio of the first element to the second element in the second mixed precursor solution is below the nucleation threshold
Abstract:
Photodetectors, methods of fabricating the same, and methods using the same to detect radiation are described. A photodetector can include a first electrode, a light sensitizing layer, an electron blocking/tunneling layer, and a second electrode. Infrared-to-visible upconversion devices, methods of fabricating the same, and methods using the same to detect radiation are also described. An Infrared-to-visible upconversion device can include a photodetector and an OLED coupled to the photodetector.
Abstract:
Photodetectors, methods of fabricating the same, and methods using the same to detect radiation are described. A photodetector can include a first electrode, a light sensitizing layer, an electron blocking/tunneling layer, and a second electrode. Infrared-to-visible upconversion devices, methods of fabricating the same, and methods using the same to detect radiation are also described. An Infrared-to-visible upconversion device can include a photodetector and an OLED coupled to the photodetector.
Abstract:
Embodiments of the invention are directed to an improved device for sensing infrared (IR) radiation with upconversion to provide an output of electromagnetic radiation having a shorter wavelength than the incident IR radiation, such as visible light. The device comprises an anode, a hole blocking layer to separate an IR sensing layer from the anode, an organic light emitting layer that is separated from the anode by the IR sensing layer, and a cathode. The hole blocking layer assures that when a potential is applied between the anode and the cathode the organic light emitting layer generates electromagnetic radiation only when the IR sensing layer is irradiated with IR radiation.
Abstract:
Embodiments of the subject invention relate to solar panels, methods of fabricating solar panels, and methods of using solar panels to capture and store solar energy. An embodiment of a solar panel can include a photovoltaic cell that is sensitive to visible light and an infrared photovoltaic cell that is sensitive to light having a wavelength of greater than 0.70 mum.
Abstract:
Embodiments of the invention are directed to IR photodetectors with gain resulting from the positioning of a charge multiplication layer (CML) between the cathode and the IR sensitizing layer of the photodetector, where accumulating charge at the CML reduces the energy difference between the cathode and the CML to promote injection of electrons that result in gain for an electron only device. Other embodiments of the invention are directed to inclusion of the IR photodetectors with gain into an IR-to-visible up-conversion device that can be used in night vision and other applications.