Abstract:
Zur Schaffung einer einfachen Vorrichtung zur Positionierung von sterilen Instrumenten, insbesondere von Punktionsnadeln, Injektionsnadeln oder Operationssonden, zu einem Patienten (P) hin, mit einer zumindest auf ihrer Innenseite sterilen Hülle (3), die ein steriles Instrument (2) wenigstens teilweise umhüllt, und mit mindestens einer an der Hülle (3) angebrachten, gasdichten Durchführung, wird vorgeschlagen, dass das sterile Instrument (2) mindestens eine sterile Instrumentenhalterung (2') aufweist und durch Bewegung der Instrumentenhalterung (2') außerhalb der Hülle (3) in mindestens zwei Raumrichtungen gesteuert bewegbar ist.
Abstract:
A guard for providing a cut-resistant pathway through a body orifice or incision to circumferentially protect tissue at the margin is provided. The guard is made of flexible, cut-resistant mesh material having a plurality of interwoven thermosetting filaments. The guard has a central lumen and at least one flared end. The flared end, which serves to anchor the guard in the body opening, is deformable into a reduced configuration to facilitate its insertion and removal. The layer of mesh stretches laterally to increase the diameter of the central lumen. The flexibility and expandability of the guard allows the guard to conform to body openings of different sizes. The guard may include a drawstring to cinch the flared distal end from the proximal end. The guard is thermoset with the flared distal end that is biased to spring back to its normal, undeformed configuration when released from a deformed configuration.
Abstract:
A biocompatible tissue isolator is used to isolate and extract tissue during a surgical procedure. A method of using the tissue isolator for isolating and extracting morcellated tissue during the surgery.
Abstract:
Described herein are a sterile handle for use with a robotic surgical system, for example, during spinal surgery. In certain embodiments, the sterile handle adds functionalities and an interface to existing surgical tools such that the robotic system may be commanded from the sterile field during surgery. The sterile handle permits a user, such as a surgeon, to physically manipulate the location of the end-effector of a robotic surgical system. The sterile handle may include an input device that allows the user to limit the movement of the end-effector, such as limiting the movement to translations or rotations only. The sterile handle may detect the presence of a user's hand. This ensures the end-effector is only moved when the user manipulates the sterile handle and reduces the likelihood that the end-effector is moved unintentionally.
Abstract:
A disposable partially flexible surgical fluid container. The apparatus includes a triangular shaped portion comprising a rigid fluid collection portion for storing fluids, a flexible sealing portion for creating a seal for catching surgical fluids, an ergonomic handle portion for grasping and holding and a horizontal bottom portion for standing the apparatus upright when placed on a flat surface. The flexible sealing portion includes a flexible, conformable material for conforming to flat, convex and concave wound surfaces and creating a seal between the flexible pouring portion and the wound surfaces to prevent leaking of collected surgical fluids (e.g., irrigation fluids, etc.) during a surgery.
Abstract:
Surgical access ports useful in minimally invasive surgical procedures are provided. The access ports comprise a cannula that defines a passageway for one or more surgical instruments through a tissue tract and a dome extending from the cannula to provide an expanded diameter for receiving one or more surgical instruments.
Abstract:
A interconnectable port is provided. The interconnectable port is adapted to be at least partially placed in an incision in a patient's body. The interconnectable port comprises a first and second port adapted be interconnected to form the interconnectable port, wherein the second port is disconnectable from the first port, wherein the first port is connected to a first portion of a flexible wall, and the second port is connected to a second portion of the flexible wall, and wherein the flexible wall is adapted to form a chamber.
Abstract:
A surgical instrument includes a handpiece having a user input feature and a user feedback feature. A shaft assembly extends distally from the handpiece. An end effector is disposed at a distal end of the shaft assembly. The end effector includes an active feature responsive to actuation of the user input feature. The active feature is operable to operate on tissue in response to actuation of the user input feature. The user feedback feature is operable to provide feedback to the user that indicates information relating to operation of the end effector. The feedback may include haptic, visual, and/or auditory feedback.
Abstract:
An apparatus comprises a base and at least one indicator in communication with the base. The base comprises a housing and at least one slot. The at least one slot is shaped to receive a reusable component from a surgical instrument. The at least one indicator is in communication with the at least one slot. The base is configured to detect at least one characteristic related to the reusable component when the reusable component is placed into the at least one slot. Wherein the at least one indicator is configured to provide a signal to the user regarding the at least one characteristic.
Abstract:
A surgical instrument operable to sever tissue includes a body assembly and a selectively coupleable end effector assembly. The end effector assembly may include a transmission assembly, an end effector, and a rotational knob operable to rotate the transmission assembly and the end effector. The body assembly includes a trigger and a casing having a distal aperture configured to receive a portion of the end effector assembly. First and second coupling mechanism portions cooperatively couple the end effector assembly to the body assembly for use. The coupling may mechanically and/or electrically couple the end effector assembly to the body assembly via various coupling mechanisms. For instance, a threaded slip nut may couple to threads within the body assembly. In one configuration, the end effector assembly may have locking tabs that rotate into rotational recesses in the body assembly. The locking tabs may include electrical contacts and/or optically perceivable indicators.