Abstract:
Systems and techniques for refined row guidance parameterization with Hough transform are described herein. An electronic representation of a field (ERF) can be received. A steering variable calculation can be performed by executing a cascaded Hough transform on the ERF. An intermediate value used in calculating the steering variable can be selected. A refined intermediate value can be identified from the intermediate value by measuring a difference between the intermediate value and an anchor value. The steering variable calculation can be adjusted using the refined intermediate value
Abstract:
Systems and techniques for refined row guidance parameterization with Hough transform are described herein. An electronic representation of a field (ERF) can be received. A steering variable calculation can be performed by executing a cascaded Hough transform on the ERF. An intermediate value used in calculating the steering variable can be selected. A refined intermediate value can be identified from the intermediate value by measuring a difference between the intermediate value and an anchor value. The steering variable calculation can be adjusted using the refined intermediate value
Abstract:
The present invention relates to a method for calculating the offset of a yaw rate signal, wherein the method comprises the following steps: a. Observing the pinion angle signal p, the at least one wheel speed signal w, and the yaw rate signal y, for a time t; b. If the pinion angle speed signal p is below a threshold pmax, and the wheel speed signal w is below a threshold wmax, and the yaw rate signal y is below a threshold ymax, the start a waiting time t1; c. If after t1 the signals p, w and y are still below their thresholds, then start a calculation for a time t2 of the yaw rate offset yo, wherein the average yaw rate ya is acquired for a time t2; and d. If during t2 the signals p, w and y remain below their thresholds, then the average yaw rate ya is stored as yaw rate offset yo; e. If the signals p, w and y still remain below their thresholds, then proceed to step c, if at least one of the signals p, w and y exceeded the respective thresholds, then proceed to step a.
Abstract:
An electric assisted steering control strategy for a steering system for a vehicle is arranged to assist the driver in controlling the vehicle during a split niu braking operation. The steering is provided with assistance being based on at least one operational variable representing a corrective steer angle for the vehicle which is added to a main assistance torque via a driver feedback controller, and the strategy is adapted to employ an estimate of yaw moment of the vehicle as the operational variable, the yaw moment being determined by processing the speed of wheels on opposite sides of the vehicle.
Abstract:
An electric assisted steering control strategy for a steering system for a vehicle is arranged to assist the driver in controlling the vehicle during a split niu braking operation. The steering is provided with assistance being based on at least one operational variable representing a corrective steer angle for the vehicle which is added to a main assistance torque via a driver feedback controller, and the strategy is adapted to employ an estimate of yaw moment of the vehicle as the operational variable, the yaw moment being determined by processing the speed of wheels on opposite sides of the vehicle.
Abstract:
Lenkverfahren eines Flurförderzeugs (1) – insbesondere Mehrwegeflurförderzeug – zum Bewegen des Flurförderzeugs – insbesondere in eine Zielposition (Z) – wobei die rotatorische und/oder die translatorische Bewegungskomponente wahlweise automatisch gelenkt wird.
Abstract:
Systems and methods are described for controlling vehicle steering. A target yaw rate and a target side-slip angle are determined for the vehicle and an initial steering angle setting is determined based on a position of a steering wheel operated by a driver of the vehicle. A nonlinear vehicle model is applied to calculate a compensated steering angle setting based on the initial steering angle setting, an actual yaw rate of the vehicle, and an actual side-slip angle of the vehicle. A steering system of the vehicle is then controls the angle of the front wheels of the vehicle based on the compensated steering angle and, by doing so, causes both the actual yaw rate and the actual side-slip angle to approach the target yaw rate and the target side-slip angle, respectively.
Abstract:
Es wird ein Verfahren zur Erkennung von instabilen Fahrzuständen vorgeschlagen, wobei das Verfahren die folgenden Schritte umfasst: a) Ermitteln, ob sich eine Differenz zwischen einem ersten Wert einer Fahrzustandsgröße, der mittels eines ersten Sensors ermittelt wird, und einem zweiten Wert der Fahrzustandsgröße, der aus Messwerten mindestens eines weiteren Sensors berechnet wird, mit der Zeit betragsmäßig vergrößert, b) Filtern der Differenz mittels eines Verzögerungsglieds, nachdem festgestellt worden ist, dass die Differenz sich vergrößert hat, c) Vergleichen der gefilterten Differenz und der ungefilterten Differenz, d) Feststellen des Vorliegens eines instabilen Fahrzustands, wenn der Vergleich ergibt, dass eine Abweichung zwischen der gefilterten Differenz und der ungefilterten Differenz einen vorgegebenen Schwellenwert überschreitet. Das Verfahren ermöglicht die Erkennung eines instabilen Fahrzustands auch dann, wenn eine Fahrzustandsgröße einen beliebig großen Offsetfehler aufweist.