Abstract:
Disclosed is a composition having: a diphthalonitrile compound having at least two phthalonitrile groups; a reactive plasticizer; and an amine curing agent. Also disclosed is a composition having: a diphthalonitrile compound having at least two phthalonitrile groups; a nonreactive plasticizer; and an amine curing agent. Also disclosed is a method of: providing a composition having a phthalonitrile compound; heating the composition to a processing temperature until the composition has a viscosity of 30-40 Pa⋅s at the processing temperature to form a partially cured composition; placing the partially cured composition into a material chamber of an extrusion machine; heating the partially cured composition and the material chamber to within 10°C of the processing temperature; and extruding fiber from the extrusion machine.
Abstract:
A method of: providing a solution of a dichloroaromatic compound having an electron-withdrawing group bound to each aromatic ring containing one of the chloride groups; an excess of a dihydroxyaromatic compound; an organic transition metal complex or a transition metal salt; a base; and a solvent; and heating the solution to a temperature at which the dichloroaromatic compound and the dihydroxyaromatic compound react to form an aromatic ether oligomer that is a dihydroxy-terminated compound or a dimetallic salt thereof. Water formed during the heating is concurrently distilled from the solution. A method of curing a phthalonitrile monomer in the presence of an acid and a curing agent to form a phthalonitrile thermoset.
Abstract:
The present invention relates to an alternating or statistical conjugated copolymer comprising: at least one benzotriazole unit B having general formula (Ia) or (Ib) : wherein the group R is selected from alkyl, aryl, acyl or thioacyl groups, possibly substituted; at least one conjugated structural unit A, wherein each unit B is connected with at least one unit A in any of the positions 4, 5, 6 or 7, preferably in positions 4 or 7.
Abstract:
The present invention relates to an alternating or statistical conjugated copolymer comprising: at least one benzotriazole unit B having general formula (Ia) or (Ib) : wherein the group R is selected from alkyl, aryl, acyl or thioacyl groups, possibly substituted; at least one conjugated structural unit A, wherein each unit B is connected with at least one unit A in any of the positions 4, 5, 6 or 7, preferably in positions 4 or 7.
Abstract:
The object of the present invention is to provide a composition for conductive materials from which a conductive layer having a high carrier transport ability can be made, a conductive material formed of the composition and having a high carrier transport ability, a conductive layer formed using the conductive material as a main material, an electronic device provided with the conductive layer and having high reliability, and electronic equipment provided with the electronic device. The composition for conductive materials of the present invention contains a compound represented by the following general formula (Al): wherein eight Rs may be the same or different and each independently represents a hydrogen atom, a methyl group or an ethyl group, Y represents a group containing at least one substituted or unsubstituted aromatic hydrocarbon ring or substituted or unsubstituted heterocycle, and X 1 , X 2 , X 3 and X 4 may be the same or different and each independently represents a substituent represented by the following general formula, (A2): wherein n 1 is an integer of 3 to 8, m l is an integer of 0 to 3, and Z 1 represents a hydrogen atom, a methyl group or an ethyl group.
Abstract:
Different formulations of copolymers can be used to adjust or "tune" the energy levels (HOMO and LUMO) and the color of light emitted by an organic electronic device. The copolymer may principally include of electron-rich and electron-deficient monomeric units whose composition and number are chose to optimize the efficiency of the device. A relatively smaller amount of fluorophore monomeric units may also be used to adjust the emission wavelength. The copolymer can be used in displays and potentially other electronic devices.
Abstract:
The invention concerns nitrogenous polymers containing structural units of formula (I), wherein the symbols and indices have the following meanings: Ar , Ar and Ar are identical or different and designate mono and/or polynuclear aryl and/or heteroaryl groups, or carbon atoms, which are optionally linked via one or a plurality of bridges and/or condensed, it further being possible for these groups to be optionally substituted; X is a single bond, -O-, -S-, -SO-, -SO2-, NR , -CR R -, -CO-, -CR =CR , CR R -CR R or SiR R ; R -R are identical or different and designate H, a hydrocarbon residue with 1 to 22 carbon atoms or Ar , where Ar is the same as or different from Ar and has the same meanings as Ar ; and n is 1, 2 or 3.
Abstract:
Devices and materials containing certain stable, polycyclic aromatic compounds exhibit sensible, second order nonlinear optical effects. In general, useful polycyclic aromatic compounds possess electron-donating and electron-withdrawing chemical functionality but no center of inversion symmetry on either the molecular or crystalline unit cell level.
Abstract:
"Black" photoactive materials that comprise synthetic eumelanin polymers are provided, as are methods of making and using the polymers. The synthetic eumelanin polymers are made from the plant oil vanillin, and exhibit defined structural and chemical characteristics (e.g. homogeneity, solubility, etc.) that make them suitable for use in devices that require photoactive materials, such as solar cells.