Abstract:
Methods of ex situ synthesis of graphene, graphene oxide, reduced graphene oxide, other graphene derivative structures and nanoparticics useful as polishing agents are disclosed. Compositions and methods for polishing, hardening, protecting, adding longevity to, and lubricating moving and stationary parts in devices and systems, including, but not" limited lo, engines, turbos, turbines, tracks, races, wheels, bearings, gear systems, armor, heat shields, and other physical and mechanical systems employing machined interacting hard surfaces through the use of nano-polishing agents formed in situ from lubricating compositions and, in some cases, ex situ and their various uses are also disclosed.
Abstract:
The present invention relates to additives for use in lubricant compositions to processes for producing the additives, and to the use of the additives in lubricants and in systems that are lubricated. More specifically, the additive includes a capped particle (10) comprising: (i) one or more core particles (20) wherein the core particle is an inorganic particle having a dimension less than about 5 µm; and (ii) one or more multi-block copolymers (30) attached to the inorganic particles, wherein the multi-block copolymer comprises a) at least one nonpolar polymer block (51 ); b) at least one first polar polymer block (41 ); and c) at least one second polar polymer block (42); wherein the nonpolar polymer block is interposed between the first polar polymer block and the second polar polymer block, the first polar polymer block is attached to the core particle, and at least a portion of the second polar polymer block is not attached to the core particle. When used in a lubricant to lubricate a metallic surface of a workpiece (60), the capped particle preferably adhere to the metallic surface of the workpiece.
Abstract:
A bearing with lubricant having metal or metal alloy nanoparticles that are more anodic than the metal or metal alloy of which the inner or outer raceways of the bearing are constructed; and method for using the same.
Abstract:
A water-based release agent comprises: 30-99 % total solids by weight chemically exfoliated vermiculite, and 1-70 % total solids by weight of a plate-like filler. Such release agents are particularly suitable for use with gaskets. An anisotropic release agent is formed from which it is easy to release other materials.
Abstract:
A rheologically controlled glass lubricant for hot metal working comprises a glass powder, a binder, a rheological agent, and a weetting and viscosity modifier. These materials may be dispersed in a carrier. The lubricant is made by mixing the constituent elements, milling the mixture, and stabilizing the milled mixture. The lubricant can be used in a forging operation by coating a metal part with the lubricant, heating the coated part, placing the coated heated part in a forge, and rapidly applying sufficient pressure to deform the coated metal part into a desired shape.
Abstract:
This invention relates to the use of a metallic or non-metallic detergent which is a hydrocarbyl-substituted salicylic acid or a derivative thereof in a non-aqueous lubricant composition as an inhibitor of lead corrosion associated with ashless, organic ester, anti- wear additives and/or friction modifiers.
Abstract:
Compositions for lubricants and methods for producing the same using spherical bismuth powder and spherical copper powder particles are disclosed. In at least one embodiment, the lubricant includes a base oil, a grease, a copper powder, comprising at least one spherical particle, and a bismuth powder, comprising at least one spherical particle. The lubricant can be used as an engine oil, a gear oil, a grease lubricant, or a spray lubricant. When applying the lubricant to an internal combustible engine, the heat and pressure within the engine compresses the lubricant to infuse the copper and bismuth powder particles to the internal surface of the engine. When used in internal combustible engines, the disclosed lubricants deliver outstanding wear resistance, improve gas mileage, extend interval times needed for oil changes, and also reduce engine exhaust emission.
Abstract:
The invention relates to a coating (7) made up of a metal layer (8), in which a lubricant (1) which can be released by wear is embedded. In order to provide a wear- resistant coating (7) which is simply structured and economical to produce, the invention provides for the lubricant (1) to consist of an at least singly branched organic compound (2). The present invention further relates to a self- lubricating component (11) with a coating (7) according to the invention applied at least in certain portions, to a method for producing a coating (7), and also to a coating electrolyte (10) comprising at least one type of metal ions and at least one lubricant (1) consisting of an at least singly branched organic compound (2).