Abstract:
The invention relates to a method for modifying genetic material in algal cells that includes the use of rare-cutting endonuclease to target specific genomic sequences. In particular, the invention relates to a method for modifying genetic material in algal cells wherein rare-cutting endonuclease, especially a homing endonuclease or a TALE-Nuclease, is expressed over several generations to efficiently modify said target genome sequences.
Abstract:
The invention relates to a method for modifying genetic material in algal cells that includes the use of rare-cutting endonuclease to target specific genomic sequences. In particular, the invention relates to a method for modifying genetic material in algal cells wherein rare-cutting endonuclease, especially a homing endonuclease or a TALE-Nuclease, is expressed over several generations to efficiently modify said target genome sequences.
Abstract:
This invention relates to genetically engineered strains of yeast and methods for producing recombinant protein (e.g., collagen). Recombinant protein of the present invention is used to produce biofabricated leather or a material having leather-like properties containing recombinant or engineered collagen. The yeast strains are engineered to produce ascorbate and/or increased production of α ketoglutarate.
Abstract:
The invention provides engineered diatoms and methods of producing oil using diatoms. The invention also provides methods of modifying the lipids quantity and/or quality produced by diatom organisms through genome engineering. Also provided are oils, fuels, oleochemicals, chemical precursors, and other compounds manufactured from such modified diatoms.
Abstract:
The invention relates to a method for modifying genetic material in algal cells that includes the use of rare-cutting endonuclease to target specific genomic sequences. In particular, the invention relates to a method for modifying genetic material in algal cells wherein rare-cutting endonuclease, especially a homing endonuclease or a TALE-Nuclease, is expressed over several generations to efficiently modify said target genome sequences.
Abstract:
Testosteronan, a heparosan analog having the structure [-4-D-GlcUA-a1,4-D-GlcNAc-a1-]n, is produced by testosteronan synthase, a single protein that is a dual-action catalyst that utilizes UDP-GlcUA and UDP-GlcNAc to synthesize a polysaccharide having the structure [-4-D-GlcUA- a1,4-D-GlcNAc-a1-]n.
Abstract:
The present invention relates to a method for the production of hyaluronic acid (HA) in Bacillus subtilis and Escherichia coli through plasmid vectors wherein the gene is under the control of strong promoter P grac , and a system for the selection of stable bacterial strains for the production of high levels of hyaluronic acid.
Abstract:
The present invention relates to a method of producing hyaluronic acid (HA) in Escherichia coli and Bacillus megaterium through episomal plasmid vectors wherein the gene is under the control of strong promoter T7, preferably under the control of strong promoter T7 of bacteriophage T7, and a system for the selection of stable bacterial strains producing high levels of hyaluronic acid.
Abstract:
A process for producing nucleoside 5'-triphosphates (NTP) from nucleoside 5'-diphosphates (NDP) other than adenosine 5'-diphosphate, characterized by using a polyphosphate kinase as an enzyme and polyphosphoric acid as the phosphate donor; and application of this process to various glycosylation reactions. This process makes it possible to conveniently and economically synthesize NTP from NDP enzymatically. Also, it becomes possible thereby to economically recycle and synthesize sugar nucleotides and synthesize, for example, oligosaccharides associating therewith without resort to expensive phosphoenolpyruvic acid, ATP, etc. in the reactions for reproducing or converting NDP into NTP in the systems for enzymatically synthesizing oligosaccharides by combining with the synthesis of oligonucleotides, etc.