Abstract:
The current invention involves the use of protein lectins produced by plants including the non-toxic carbohydrate binding subunits (B subunits) of plant "AB toxins" (PTB lectins) as delivery vehicles for mobilizing associated drug substances for delivery to animal and human cells. The resulting protein fusions or conjugates retain lectin carbohydrate specificity for binding to cells and cellular trafficking activity so as to deliver an associated drug compound to the site of disease manifestation. One embodiment of this invention concerns the ability of ricin toxin B subunit, as a model PTB lectin, to deliver enzyme replacement therapeutic drugs to cells of several organs of the body including the brain and central nervous system, eyes, ears, lungs, bone, heart, kidney, liver, and spleen for treating lysosomal diseases.
Abstract:
Disclosed herein are a modified sulfamidase, a composition comprising a modified sulfamidase, as well as methods for preparing a modified sulfamidase and therapeutic use of such a sulfamidase. In particular, the present disclosure relates to a modified sulfamidase comprising substantially no epitopes for glycan recognition receptors, thereby enabling transportation of said sulfamidase across the blood brain barrier of a mammal, wherein said sulfamidase has catalytic activity in the brain of said mammal.
Abstract:
Disclosed herein are a modified lysosomal protein, methods for preparing a modified lysosomal protein and therapeutic use of such a modified protein. Further disclosed herein is a method of treating a mammal afflicted with a lysosomal storage disease.In particular, the present disclosure relates to a method of preparing a modified lysosomal protein, said method comprising reacting a glycosylated lysosomal protein with an alkali metal periodate and reacting said lysosomal protein with an alkali metal borohydride for a time period of no more than 2 h, thereby modifying glycan moieties of the lysosomal protein and reducing the activity of the lysosomal protein with respect to glycan recognition receptors.
Abstract:
The present invention provides, among other things, compositions and methods for CNS delivery of lysosomal enzymes for effective treatment of lysosomal storage diseases. In some embodiments, the present invention includes a stable formulation for direct CNS intrathecal administration comprising a heparan N-sulfatase (HNS) protein, salt, and a polysorbate surfactant for the treatment of Sanfilippo Syndrome Type A.
Abstract:
Provided herein are methods and compositions for treating a subject suffering from an enzyme deficiency in the central nervous system (CNS). The bifunctional fusion antibodies provided herein comprise an antibody to an endogenous blood brain barrier (BBB) receptor and an enzyme deficient in mucopolysaccharidosis III (MPS-III). The fusion antibodies provided herein comprise N- sulfoglucosamine sulfohydrolase (SGSH), alpha-N-acetylgulcosaminidase (NAGLU), heparin-alpha- glucosaminide N-acetyltransferase (HGSNAT), or N-acetylglucosamine-6-sulfatase (GNS). The methods of treating an enzyme deficiency in the CNS comprise systemic administration of a fusion antibody provided herein.
Abstract:
This disclosure relates to intranasal administration of conjugates comprising guanidinylated aminoglycosides ("guanidinoglycosides") and a polypeptide (e.g., an enzyme, antibody, or polypeptide growth factor). For example, such administration methods are useful for delivering a polypeptide to the brain and/or cerebrospinal fluid. Such methods are useful for treating a lysosomal storage disease through intranasal administration of a conjugate comprising one or more guanidinoglycosides and an enzyme useful for treating a lysosomal storage disease.
Abstract:
The invention refers to nucleotide sequence encoding for a chimeric sulfatase, viral vectors expressing such sequences for gene therapy and pharmaceutical uses of the chimeric expressed protein. The invention is particularly applied in the therapy of mucopolysaccharidosis, preferably type IIIA.