Abstract:
In vapour deposition applications, especially OLED mass production, where it is necessary to measure and/or control the deposition rate of evaporation sources within specific tolerances, a measurement system is adapted to use robust and accurate optical thickness measurement methods at high and low rate sources, so that the thickness of a layer deposited on a substrate can be measured and controlled. A first evaporation source (11) deposits a layer of material on a substrate (20). A mobile element (41) is provided, On which a film is deposited from a second evaporation source (12b) in a deposition location (D1). Subsequently the mobile element is conveyed to a measurement location (D2) where the thickness of the film is measured by a thickness detector (45).The measurement apparatus is arranged to control the deposition of the first evaporation source in dependence on the thickness of the film deposited on the mobile element.
Abstract:
A method and system for producing a thin film with highly uniform (or highly accurate custom graded) thickness on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source with controlled (and generally, time-varying) velocity. In preferred embodiments, the method includes the steps of measuring the source flux distribution (using a test piece that is held stationary while exposed to the source), calculating a set of predicted film thickness profiles, each film thickness profile assuming the measured flux distribution and a different one of a set of sweep velocity modulation recipes, and determining from the predicted film thickness profiles a sweep velocity modulation recipe which is adequate to achieve a predetermined thickness profile. Aspects of the invention include a practical method of accurately measuring source flux distribution, and a computer-implemented method employing a graphical user interface to facilitate convenient selection of an optimal or nearly optimal sweep velocity modulation recipe to achieve a desired thickness profile on a substrate. Preferably, the computer implements an algorithm in which many sweep velocity function parameters (for example, the speed at which each substrate spins about its center as it sweeps across the source) can be varied or set to zero.
Abstract:
Methods and systems are disclosed for monitoring vapor in a vacuum reactor apparatus. An system has (a) a vacuum chamber, (b) a vapor source housed in the vacuum chamber, wherein the vapor source is configured to generate a vapor, (c) a reaction vessel housed in the vacuum chamber and coupled to the vapor source, where the reaction vessel has an outlet to the vacuum chamber, and where the reaction vessel is configured to receive the vapor from the vapor source and to emit a portion of the received vapor into the vacuum chamber through the outlet, and (d) one or more sensors housed in the vacuum chamber, where the one or more sensors are configured to detect the vapor emitted through the outlet.
Abstract:
Disclosed are a vaporization apparatus and a control method for the same. The vaporization apparatus includes a vaporization crucible adapted to receive a raw material; a vaporization heating unit adapted to vaporize the raw material by heating the vaporization crucible; a temperature measuring unit adapted to measure temperature of the vaporization crucible; a power measuring unit adapted to measure an applied power of the vaporization heating unit; and a control unit adapted to control a vaporization quantity of the raw material based on any one of a temperature variation value of the temperature measuring unit and a power variation value of the power measuring unit. The vaporization apparatus uses a non-contact/electronic method which measures a vaporization quantity through a temperature variation value and a power variation value during vaporization of a raw material. Therefore, since, differently from a contact method, a vaporization quantity measuring unit does not directly contact a raw material gas, various raw materials can be supplied and large quantity raw material supply or long time raw material supply can be achieved without deterioration of the function. In addition, preciseness of the raw material supply may be enhanced since the electronic method is capable of precise measurement of the vaporization quantity.
Abstract:
El objeto principal de la presente invención es un sistema para alinear dos o más patrones en un sustrato utilizando litografía por esténcil en vacío, de modo que se consigue una precisión de alineación óptima. Más particularmente, se trata de un sistema de alineación de patrones basado en disponer un sensor de masa capaz de detectar el material emitido en una posición conocida detrás del esténcil, de modo que se conoce la posición de este último en función de la señal emitida por el sensor.
Abstract:
A method and system for producing a thin film with highly uniform (or highly accurate custom graded) thickness on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source with controlled (and generally, time-varying) velocity. In preferred embodiments, the method includes the steps of measuring the source flux distribution (using a test piece that is held stationary while exposed to the source), calculating a set of predicted film thickness profiles, each film thickness profile assuming the measured flux distribution and a different one of a set of sweep velocity modulation recipes, and determining from the predicted film thickness profiles a sweep velocity modulation recipe which is adequate to achieve a predetermined thickness profile. Aspects of the invention include a practical method of accurately measuring source flux distribution, and a computer-implemented method employing a graphical user interface to facilitate convenient selection of an optimal or nearly optimal sweep velocity modulation recipe to achieve a desired thickness profile on a substrate. Preferably, the computer implements an algorithm in which many sweep velocity function parameters (for example, the speed at which each substrate spins about its center as it sweeps across the source) can be varied or set to zero.
Abstract:
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Erzeugen eines mit einem Trägergas (G) transportierten Dampfstroms (V) eines Stoffes, wobei der Stoff mit einer Fördereinrichtung (2), deren Förderleistung einstellbar ist, als Massenfluss eines Pulvers oder einer Flüssigkeit zu einem Aerosolerzeuger (7) gefördert wird, mit dem das Pulver oder die Flüssigkeit als Aerosolpartikel dem Trägergas (G) beigemischt wird und das so erzeugte Aerosol (A) einem Verdampfer (10) zugeführt wird, wo die Aerosolpartikel durch Wärmezufuhr verdampft werden, wobei mit zumindest die einem Sensorelement (22, 24, 26, 27) ein Messwert der mit dem Trägergas (G) transportierten Massenflusses des Stoffes verknüpft ist, ermittelt wird. Das Sensorelement (22, 24, 26, 27) ist derart ausgebildet und angeordnet ist, dass damit der Aerosolpartikeleintrag in den Verdampfer (10) ermittelt wird. Der Sensor ist bevorzugt zwischen Aerosolerzeuger (7) und einem Verdampfungskörper (11) des Verdampfers (10) angeordnet. Er kann auch ein Temperatursensor (22) sein, mit dem die Temperatur des Verdampfungskörpers (11) gemessen wird.
Abstract:
An electron-beam evaporation apparatus having a source material feeder, for feeding a source material; an electron-beam evaporation source, for evaporating a said source material; means for generating an emission current between the electron-beam evaporation source and the said source material, an actuator for moving the source material feeder in a linear direction, and a controller operable to control the deposition of the source material relative to characteristics of the electron beam and measurements of the emission current.