Abstract:
A technique for ion beam angle spread control is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for ion beam angle spread control. The method may comprise directing one or more ion beams at a substrate surface at two or more different incident angles, thereby exposing the substrate surface to a controlled spread of ion beam incident angles.
Abstract:
We disclose a gas injection system having at least one crucible, each crucible holding at least one deposition constituent; at least one transfer tube, the number of transfer tubes corresponding to the number of crucibles, each transfer tube being connected to a corresponding crucible. There is at least one metering valve, the number of metering valves corresponding to the number of transfer tubes, each metering valve being connected to a corresponding transfer tube so that the metering valve can measure and adjust vapor flow in the corresponding transfer tube. A sensor is provided capable of sensing reactions between deposition constituents and a focused ion beam A computer is connected to receive the output of the sensor; the computer is also connected to each metering valve to control the operation of the valve, and the computer is programmed to send control signals to each metering valve to control the operation of the valve; the control signals being computed responsive to feedback from the output of the sensor.
Abstract:
The invention relates to a method and device for ion beam processing of surfaces, whereby the substrate is positioned facing an ion beam and a new technologically-defined pattern of properties is established. According to said method, the current geometrical effect pattern of the ion beam on the surface (15) of the substrate (8) is adjusted depending on the known pattern of properties and the new technologically-defined pattern of properties and depending on the progress of the processing, by modifying the beam characteristic and/or by pulsing the ion beam. Said device comprises a substrate support, for holding at least one substrate (8), which can be moved along an Y-axis (4) and an X-axis (6) and an ion beam source (1), for generating an ion beam which is perpendicular to the surface (15) to be processed of the substrate (8) in the Z-axis (11) or which may be arranged in an axis, inclined in relation to the Z-axis. The distance between the ion beam source (1) and the surface (15) to be processed of the substrate (8) may be fixed or variable.
Abstract:
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Ionenstrahlbearbeitung von Oberflächen, bei denen das Substrat gegenüber einem Ionenstrahl positioniert und ein neues technologisch definiertes Eigenschaftsmuster ausgebildet wird. Verfahrensgemäß wird das aktuelle geometrische Wirkungsmuster des Ionenstrahls auf der Oberfläche (15) des Substrates (8) in Abhängigkeit des bekannten Eigenschaftsmusters und des neuen technologisch definierten Eigenschaftsmusters sowie in Abhängigkeit des Verfahrensfortschrittes durch Veränderung der Strahlcharakteristik und/oder durch Pulsung des Ionenstrahles eingestellt. Die Vorrichtung umfasst einen Substratträger zur Halterung mindestens eines Substrates (8), der in einer Y-Achse (4) und einer X-Achse (6) bewegt werden kann sowie eine Ionenstrahlquelle (1) zur Erzeugung eines Ionenstrahls, der senkrecht zur zu bearbeitenden Oberfläche (15) des Substrates (8) in der Z-Achse (11) steht oder in einem zur Z-Achse geneigten Achse angeordnet werden kann. Der Abstand der Ionenstrahlquelle (1) von der zu bearbeiten Oberfläche (15) des Substrates (8) kann fest oder veränderlich sein.
Abstract:
The invention provides a cross section evaluating apparatus capable of analyzing the cross sectional structure in a state where the temperature of the specimen is regulated. There is disclosed an information acquisition apparatus comprising a stage for placing the specimen, temperature regulation means for regulating the temperature of the specimen, exposure means for exposing a surface, of which information is desired, of the specimen, and information acquisition means for acquiring information relating to the surface exposed by the exposure means.
Abstract:
An electron beam writing system includes an electron beam patterning machine operable to emit an electron beam to form a pattern on a substrate. A computer control system, coupled to the electron beam patterning machine, has a plurality of pre-computed distortion maps. Each distortion map describes expected distortions of the substrate caused by bulk heating resulting from exposure to the electron beam. The computer control system controls the electron beam patterning machine using the distortion maps in order to adjust for the expected distortions.
Abstract:
A glitch duration threshold is determined based on an allowable dose uniformity, a number of passes of a workpiece through an ion beam, a translation velocity, and a beam size. A beam dropout checking routine repeatedly measures beam current during implantation. A beam dropout counter is reset each time beam current is sufficient. On a first observation of beam dropout, a counter is incremented and a position of the workpiece is recorded. On each succeeding measurement, the counter is incremented if beam dropout continues, or reset if beam is sufficient. Thus, the counter indicates a length of each dropout in a unit associated with the measurement interval. The implant routine stops only when the counter exceeds the glitch duration threshold and a repair routine is performed, comprising recalculating the glitch duration threshold based on one fewer translations of the workpiece through the beam, and performing the implant routine starting at the stored position.
Abstract:
An ion implantation method and system for providing greater throughput is disclosed. An ion beam (112) is scanned across the surface of a workpiece at a first scan rate (V slowScan ) when a cross-sectional area of the ion beam is entirely impingent on the surface of the workpiece; and the first scan rate is increased to a second rate (V FastScan ) at a location (214) where a portion of the cross sectional area of the beam extends beyond the outer edge (140) of the workpiece. Some embodiments use a scan pattern where beam flux measurements are taken off-workpiece during actual implantation, and where the implantation routine can be changed in real-time to account for changes in beam flux.