Abstract:
The present invention relates to a method for fabricating large-area, monolayer sheets of a multi-elemental two-dimensional material having the general formula M m X n .
Abstract translation:本发明涉及一种用于制造具有通式M m N X n的多元二维材料的大面积单层片材的方法 子> p>
Abstract:
Novel cyclic amides containing tin or lead are disclosed. These cyclic amides can be used for atomic layer deposition or chemical vapor deposition of tin or lead as well as their oxides, sulfides, selenides, nitrides, phosphides, carbides, silicides or borides or other compounds. Tin(TV) oxide, SnO 2 , films were deposited by reaction of a cyclic tin amide/vapor and H 2 O 2 or NO 2 as oxygen sources. The films have high purity, smoothness, transparency, electrical conductivity, density, and uniform thickness even inside very narrow holes or trenches. Deposition temperatures are low enough for thermally sensitive substrates such as plastics. Suitable applications of these films include displays, light-emitting diodes, solar cells and gas sensors. Doping SnO 2 with aluminum was used to reduce its conductivity, making material suitable as the active semiconductor layer in electron multipliers or transparent transistors. Deposition Using the same tin precursor and H 2 S deposited tin monosulfide, SnS, a material suitable for solar cells. The figure shows the preferred tin compound.
Abstract:
A deposition process to form a conformal phase change material film on the surface of a substrate to produce a memory device wafer comprises providing a substrate to a chamber of a deposition system; providing an activation region; introducing one or more precursors into the chamber upstream of the substrate; optionally introducing one or more co-reactants upstream of the substrate; activating the one or more precursors; heating the substrate; and depositing the phase change material film on the substrate from the one or more precursors by chemical vapor deposition. The deposited phase change material film comprises GexSbyTezAm in which A is a dopant selected from the group of N, C, In, Sn, and Se. In one implementation, the process is carried out to form GST films doped with carbon and nitrogen, to impart beneficial film growth and performance properties to the film.
Abstract:
A method of forming a phase change material which having germanium and tellurium therein includes depositing a germanium-containing material over a substrate. Such material includes elemental-form germanium. A gaseous tellurium-comprising precursor is flowed to the germanium-comprising material and tellurium is removed from the gaseous precursor to react with the elemental- form germanium in the germanium-comprising material to form a germanium and tellurium-comprising compound of a phase change material over the substrate. Other implementations are disclosed.
Abstract:
A PCM device has the composition GexTeyNzAm deposited onto a substrate, where x is about 40% to about 60%, y is about 30% to about 49%, and z is about 5% to about 20% and more preferably about 5% to about 40%. The component represented as A is optional and representative of an element of Sb, Sn, In, Ga, or Zn, and m is up to about 15%. The composition is in the form of a film, and the nitrogen allows for the substantially conformal deposition of the film onto the substrate. A CVD process for depositing the PCM comprises delivering a Ge-based precursor and a Te-based precursor in vapor form to a CVD chamber, heating and pressurizing the chamber, and depositing the film onto a substrate. In making a phase change device using this process, the film is annealed and polished.
Abstract:
The present invention concerns a method of forming a chalcogenide thin film for a phase-change memory. In the method of forming a chalcogenide thin film according to the present invention, a substrate with a pattern formed is loaded into a reactor, and a source gas is supplied onto the substrate. Here, the source gas includes at least one source gas selected from germanium (Ge) source gas, gallium (Ga) source gas, indium (In) source gas, selenium (Se) source gas, antimony (Sb) source gas, tellurium (Te) source gas, tin (Sn) source gas, silver (Ag) source gas, and sulfur (S) source gas. A first purge gas is supplied onto the substrate in order to purge the source gas supplied onto the substrate, a reaction gas for reducing the source gas is then supplied onto the substrate, and a second purge gas is supplied onto the substrate in order to purge the reaction gas supplied onto the substrate. At least one operation, namely changing the supply time of the first purge gas and/or adjusting the internal pressure of the reactor is performed in such a way as to ensure that the deposition rate at an inner portion of the pattern is greater than the deposition rate at an upper portion of the pattern. According to the present invention, it is possible to form a chalcogenide thin film having an excellent gap-fill property by changing the purge time of the source gas or adjusting the internal pressure of the reactor in such a way as to ensure that the film forming rate at the inner portion of the pattern is greater than the film forming rate at the upper portion of the pattern.
Abstract:
Zur Herstellung von Indiumsulfid-Dünnschichten ist das so genannte „Sprüh- ILGAR-Verfahren" bekannt, welches aus einer Verfahrensphase I (Deposition eines festen Indium-Precursors am Substrat) und einer sequenziellen Verfahrensphase Il (lonenaustausch-Reaktion des Indium-Precursors mit Schwefelwasserstoffgas) besteht und durchgängig bei Atmosphärendruck arbeitet. Erfindungsgemäß ist zur weiteren Verbesserung von Sprüh-ILGAR unter Beibehaltung von dessen Vorteilen vorgesehen, dass in der Verfahrensphase I simultan ein CVD-Schritt mit einer Überströmung des Substrats (SU) durchgeführt wird, der zur zusätzlichen Deposition von reaktionsfähigem Indium auf dem Substrat (SU) führt. Dazu wird simultan eine solche Menge von Schwefelwasserstoff (H 2 S) zum gelösten oder gasförmigen Indium enthaltenden Precursor (PR ln(g/fl) ) zugeführt, dass sich eine absolute Konzentration des Schwefelwasserstoffs (H 2 S) gleich oder weniger als 1 Vol% in einem Mischgebiet (MP)ergibt. In der Verfahrensphase I wird das Substrat (SU) auf eine Temperatur zwischen 100°C und 275°C geheizt, sodass keine störende Pulverbildung in der Gasphase auftreten kann. In speziellen Batch- oder Inline-Anordnungen werden sehr kompakte, homogene Indiumsulfid-Dünnschichten hergestellt, die besonders vorteilhaft als Pufferschichten in Solarzellen eingesetzt werden können.
Abstract:
The subject application relates to a chemical vapor (CV) deposition technique to form CuInxGa1-x(SeySi-y)2 compounds. As a copper source, solid copper can be used with a HCl transport gas and Cu3Cl3 is expected to be a major Cu-containing vapor species in this system. Liquid indium and HCl transport gas are appropriate for the indium source to provide InCl vapor species. Since selenium and sulphur are relatively highly volatile, their vapor can be carried by an inert gas without an additional transport gas, although H2Se and H2S can be used. Each source temperature can be controlled separately so as to provide a sufficient and stable vapor flux. Also provided by the subject application are CV-deposited substrates and devices, such as electronic devices or solar cells, that contain CV-deposited CuInxGaI- x(SeySi-y)2 substrates.
Abstract translation:本申请涉及形成CuInxGa1-x(SeySi-y)2化合物的化学蒸气(CV)沉积技术。 作为铜源,固体铜可以与HCl输送气体一起使用,并且预期Cu 3 Cl 3在该体系中是主要的含Cu蒸气物质。 液态铟和HCl输送气体适用于铟源提供InCl蒸气物质。 由于硒和硫的挥发性相对较高,所以尽管可以使用H2Se和H2S,但它们的蒸气可以通过惰性气体进行运输,而不需要额外的运输气体。 可以分别控制每个源温度,以便提供足够和稳定的蒸气通量。 由本申请提供的还有CV沉积的衬底和诸如电子器件或太阳能电池的器件,其包含CV沉积的CuIn x Ga 1-x(SeySi-y)2衬底。