Abstract:
The Mini 3D orientation sensor (801) (901) device has convex spherical body structure in a mechanical sensor coupled to logic to manage the reverse touchscreen (605) (613) component, alarm and other functions for the sensor. The spherical housing sensor is comprises a plurality of layers analogous to a touchscreen (605) (613) complete with conducting probes, an unconstrained surface compressing ball dynamic inside the spherical grid position structure that closes a electric circuit upon depressing the inside surface of the sphere housing. The sphere depressed coordinates are mapped to its 3D orientation upon output.
Abstract:
A precessional device (8) with housings (10) and (12) featuring a pair of axles each containing at least one flywheel forming a pair of rotors. The pair of axles are each mounted on circular track assemblies in which they rotate and generate a precessional torque that provides variable resistance along a first axis and a balancing of the precessional torque along a second axis.
Abstract:
The geographical position of a moving body in degrees of earth co-ordinates is obtained by measuring the precession of the gyroscope which the geographical latitude and of is in relation with the speed of the body.
Abstract:
본 발명은 자이로스코프의 원리를 이용하는 해상 운송수단용 관성안정기 및 이의 제어방법에 관한 것이다. 본 발명은 회전축(220)을 중심으로 회전하여 관성모멘트를 발생시키는 플라이 휠(200)과, 상기 회전축(220)에 동력전달수단(240)을 통해 연결되는 모터축(320)을 이용하여 상기 플라이 휠(200)을 회전시키는 구동모터(300)와, 상기 회전축(220)과 모터축(320)이 서로 평행하도록 내부에 상기 플라이 휠(200) 및 구동모터(300)를 고정하고, 상기 회전축(220)과 수직한 방향에 짐벌축(410)이 형성되는 짐벌(400)과, 상기 짐벌축(410)을 회전 가능하게 고정시켜 상기 짐벌(400)이 회전 가능하게 지지되도록 하는 짐벌 지지수단(100)과, 일측은 상기 짐벌 지지수단(100)과 연결되고, 타측은 상기 짐벌(400)과 연결되어 회전하는 짐벌(400)에 완충력을 제공하는 댐핑수단(500)과, 상기 짐벌(400)의 일측에 구비되어 세차 운동에 따른 각속도 변화를 감지하기 위한 각속도센서(600)를 포함하며, 상기 댐핑수단(500)은 상기 각속도센서(600)를 통해 감지되는 짐벌(400)의 각속도 감지정보에 따라 감쇠력이 조절되는 것을 특징으로 한다. 이에 의하면, 짐벌의 세차운동에 따른 각속도를 감지하고 각속도에 따라 댐핑수단에 구비되는 유량제어밸브를 이용하여 감쇠력을 가변 제어할 수 있다.
Abstract:
Изобретение относится к области машиностроения, а именно, к движителям транспортных средств различного назначения, опорная гироскопическая система, обеспечивает возможность создания опорных моментов в пространстве, состоящая из качающегося в ограниченном с одной стороны упором секторе коромысла с закрепленными на его концах двумя несвободными гироскопами, представляющими собой вращающиеся маховики, с разными гироскопическими моментами. При этом входные оси гироскопов установлены вдоль геометрической продольной оси коромысла. Рама гироскопа с меньшим гироскопическим моментом закреплена неподвижно, а рама гироскопа с большим гироскопическим моментом закреплена с возможностью вращения вокруг своей входной оси. Ось качания расположена по центру коромысла и перпендикулярна к нему и к оси вращения маховика гироскопа, закрепленного неподвижно, и упора, ограничивающего угол поворота коромысла. Технический результат заключается в обеспечении универсальности, повышении КПД и улучшении эксплуатационных качеств.
Abstract:
A navigation device (16) for surveying and directing a borehole (15) comprises: a first gyro (2) including a first sensitive axis (5) and a second sensitive axis (6); a second gyro (4) including at least a third sensitive axis (7); and a driving unit (9) configured to orient the second gyro (4) in a first mode in a first position in which an earth acceleration (g) dependent error on the second gyro (4) is insignificant and to orient the second gyro (4) in a second mode in a second position in which the third sensitive axis (7) is perpendicular to the first sensitive axis (5) and perpendicular to the second sensitive axis (6).
Abstract:
A propulsion system includes an engine and a rotating member rotatably engaging the engine. The rotating member comprises a plurality of drive members positioned around the circumference of the rotating member. Each of the drive members has an unlocked state in which the drive members apply substantially no torque to the rotating member, and a locked state, in which the drive members apply substantially a torque to the rotating member. At a selected time, a first set of the drive members are in the unlocked state and a second set of the drive members are in the locked state to provide a propulsive force.
Abstract:
The subject matter disclosed herein relates to the control and utilization of multiple sensors within a device. For an example, motion of a device may be detected in response to receipt of a signal from a first sensor disposed in the device, and a power state of a second sensor also disposed in the device may be changed in response to detected motion.
Abstract:
Methods and apparatuses are disclosed for determining a characteristic of a device's object detection sensor oriented in a first direction. An example device may include one or more processors. The device may further include a memory coupled to the one or more processors, the memory including one or more instructions that when executed by the one or more processors cause the device to determine a direction of travel for the device, compare the direction of travel to the first direction to determine a magnitude of difference, and determine a characteristic of the object detection sensor based on the magnitude of difference.
Abstract:
A gyroscope is driven at a drive frequency and senses a Coriolis force caused by rotation of the gyroscope. The response of the gyroscope to a given Coriolis force may change due to changes in the gyroscope over time. A plurality of test frequencies are applied to the gyroscope, and the response of the gyroscope to those test frequencies is analyzed in order to track changes in the response of the gyroscope. Operational parameters of the gyroscope may be altered in order to compensate for those changes.