Abstract:
The present, invention provides a process for characterizing a glatiramer acetate related drug substance (GARDS) or a glatiramer acetate related drug product (GARDP) comprising separating a batch of a GARDS or GARDP according to hydrophobicity and determining the molar mass of the separated material, thereby characterizing the GARDS or GARDP by molar mass as a function of hydrophobicity.
Abstract:
The present invention relates in one aspect to a ballast water analysis system comprising fluorometer and light scattering meter. The fluorometer comprises a first light source (116) arranged to illuminate a first ballast water sample for obtaining with a first photodetector (111) a first fluorescence measurement on a first ballast water sample. The light scattering meter comprises a second light source (115) arranged to illuminate a second ballast water sample with a second light beam and second (112) and third photodetectors (113, 114) arranged to receive light at respective angles relative to a direction of the second light beam. The second (112) and third (113, 114) photodetectors are configured to receive scattered light resulting from interaction between light from the second light source (115) and matter, such as viable or non-viable microorganisms and other particles, in the second ballast water sample.
Abstract:
The present invention is directed to a method and an apparatus for detecting micro-colonies growing on a membrane (1) or an agarose medium of a sample (5) in a closed device (3). According to the invention the sample (5) is irradiated with a light incident at an angle (β) with respect to the normal to the membrane (1) or the surface of the agarose medium from outside the device (3). An incident area (7) of the light on the membrane (1) or the surface of the agarose medium is imaged by means of a light receiving element (9) using an imaging angle (α) different from angle (β) with respect to the normal to the membrane (1) or the surface of the agarose medium from outside the device (3). The light reflected, scattered and/ or diffused from the membrane or the surface of the agarose medium and/or the micro-colonies on the membrane and/or the micro-colonies on the agarose medium is detected.
Abstract:
Procédé de caractérisation d'une surface diffractante (SD) présentant une structure en grains cristallins, comportant les étapes consistant à : a) éclairer successivement ladite surface avec une pluralité de faisceaux lumineux (Fi) ayant des directions de propagation inclinées d'un même angle Θ, par rapport à la normale à la surface et dont les projections sur la surface forment des angles azimutaux ψί différents par rapport une direction de référence; b) acquérir une image de ladite surface en correspondance de chaque dit faisceau lumineux; et c) traiter numériquement lesdites images pour obtenir au moins une information sur au moins une propriété de ladite surface choisie parmi : sa structure de grains, sa texture et son taux d'ordonnancement. Tête optique (TO) et appareil pour la mise en œuvre d'un tel procédé.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren und eine Anordnung zur Streulichtmessung. Hierzu wird eine Probe (17) mit Licht mindestens einer Lichtquelle (1, 2, 3) beleuchtet und ein an der Probe (17) gestreuter Anteil des Lichts als Messsignal von mindestens einem Detektor (18) unter einem Streuwinkel erfasst. Das auf die Probe (17) aufkommende Licht umfasst zwei Lichtkomponenten, welche sich in mindestens einem Parameter unterscheiden und welche mit unterschiedlichen Modulationssignalen moduliert werden. Ein Ausgangssignal des Detektors (18) wird durch Herausfiltern von zeitlich mit den verschiedenen Modulationssignalen korrelierten Anteilen des Ausgangssignals in mehrere Signalkanäle aufgeteilt, sodass jeder der genannten Lichtkomponenten mindestens einer der Signalkanäle eindeutig zugeordnet ist. Hierdurch wird es möglich, Streulichtmessungen mit einer hohen Dynamik und einem niedrigen Übersprechverhalten zwischen den einzelnen Signalkanälen durchzuführen.
Abstract:
A method for diagnostic analyses, in particular to identify pathogens, such as viruses, bacteria or other micro-organisms present in a biological sample, comprises a first step of measuring and continuously monitoring the turbidity and/or the concentration of the pathogens, by means of an instrumental reading technique, of a liquid culture medium into which the sample to be analyzed has been inoculated and in which the replication of the pathogens possibly present occurs, said measuring and monitoring being carried out dynamically during the replication of the pathogens growing in the culture medium; and a second step of identifying the pathogens, carried out by taking at least an aliquot of the liquid culture medium containing the biological sample directly obtained from the first step, which has reached a desired value of turbidity according to a standardized value scale, such as the McFarland turbidity scale, and/or of concentration of the pathogens, and using said aliquot directly in mass spectrophotometric identification means (15) in order to identify the pathogens, which means are calibrated in their functioning depending on the measurement results of the first step. The desired values of turbidity and/or of concentration of the pathogens are preliminarily selected, during the first step, on the basis of the specific needs which, on each occasion, are identified in order to carry out the second identification step
Abstract:
Apparatus to analyze a biological sample (11) contained in a container (12), comprising an examining device (16) able to perform an optical measurement on the biological sample, based on light-scattering technology, at least of the bacterial growth in the biological sample. The examining device is provided with emitter means (20) able to emit a first light beam (BO) toward the container (12) of the biological sample and sensor means (22, 24) able to detect at least a light beam diffused from the container (12) of the biological sample and to transmit a relative signal, correlated to the light beam diffused, to a control unit (18) which is able to process, directly or indirectly, the signal in order to verify at least the possible bacterial growth in the biological sample (11). The container (12) is disposed along a determinate lying plane (P) and comprises at least a containing micro-element (14) able to contain at least a part of the biological sample and inside which a liquid culture ground is provided so as to allow bacterial growth in the biological sample. The emitter means (20) and sensor means (22, 24) are able to be located on each occasion in correspondence with the containing micro-element (14). The sensor means (22, 24) comprise first sensor means (22) disposed on the same side of the emitter means (20) with respect to the lying plane (P), and second sensor means (24) disposed on the opposite side of the emitter means (20) with respect to the lying plane (P). The first sensor means (22) are able to detect a back-scattering radiation coming from the determinate containing micro-element (14). The second sensor means (24) are able to detect a forward-scattering radiation coming from the determinate containing micro-element (14), from which back-scattering radiation (B2) and forward-scattering radiation (B4) derive respective first and second signals transmitted to the control unit.