Abstract:
A detector array (112) of an imaging system (100)includes a radiation sensitive detector (202/204/206) configured to detect radiation and generates a signal indicative thereof and electronics (208) in electrical communication with the radiation sensitive detector. The electronics include a current-to-frequency converter (300) configured to convert the signal into a pulse train having a frequency indicative of a charge collected during an integration period. The electronics further include a residual charge collection circuit (322) electrically coupled to current-to-frequency converter. The residual charge collection circuit is configured to store charge collected by the integrator for an end portion of the integration period that does not results in a pulse of the pulse train, utilizing much of the electronics already in the current-to-frequency converter electronics.
Abstract:
분리 형태의 듀얼 캐패시터 어레이를 가지는 연속 근사 레지스터 아날로그 디지털 변환기가 개시된다. 개시된 연속 근사 레지스터 아날로그 디지털 변환기는 n 비트 중에서, 상위 비트들을 변환하기 위한 제1 캐패시터 어레이 및 하위 비트들을 변환하기 위한 제2 캐패시터 어레이를 포함하는 듀얼 캐패시터 어레이; 상기 제1 캐패시터 어레이에서 출력된 레벨 신호 및 상기 제2 캐패시터 어레이에서 출력된 레벨 신호를 비교하는 비교기; 및 상기 비교 결과를 이용하여 아날로그 입력 전압을 상기 n 비트의 디지털 신호로 변환하는 SAR 논리 회로;를 포함하되, 상기 제1 캐패시터 어레이는 제1-1 캐패시터부 및 제1-2 캐패시터부를 포함하고, 상기 제2 캐패시터 어레이는 제2-1 캐패시터부 및 제2-2 캐패시터부를 포함하되, 상기 캐패시터부 각각은 병렬 연결된 복수의 캐패시터를 포함한다.
Abstract:
An apparatus and method of successive approximation analog-to-digital conversion for receivers comprising that during a sample mode, connecting an array of capacitors to a plurality of sampling switches coupled to a plurality of amplified input signals, and during a conversion mode, connecting in common the array of capacitors to a comparator and isolating the array of capacitors from the plurality of sampling switches. Additionally, filtering is done by the summation of samples at phase offsets.
Abstract:
Techniques are generally described herein for analog to digital conversion. Some example ADC converters include a unit capacitor array coupled to a reference voltage, where the capacitor array includes multiple capacitors coupled to one another via multiple switches under control of a control block. A comparator, having a first input and a second input, is configured to receive a controlled voltage generated from the unit capacitor array and compare an analog voltage to the controlled voltage. The control block is configured to selectively open or close the switches, receive a comparison result from the comparator, and generate a digital output based on the comparison result. The control block is configured to control the switch timing of the unit capacitor array for reset, pre-charge, charge redistribution, and comparison phases, where a passive charge redistribution method may be utilized.
Abstract:
A capacitor array layout technique for improving capacitor array matching. A capacitor array is laid out in a geometrical configuration wherein the geometrical configuration has a centerpoint. The geometrical configuration is divided into a plurality of first sections wherein each of the plurality of first sections have a corresponding second section diagonally located from and at an approximately equal distance from the centerpoint as said first section. Each of the second sections house a capacitor set of a predetermined value wherein each of the plurality of first sections house a capacitor set of an equal value as the corresponding second section.
Abstract:
一种电容感测电路(10),包括一积分电路(12),包含有一积分输入端,耦接于接触电容(Cf),所述积分输入端具有一输入电压(Vx);以及一积分输出端,用来输出一输出电压(Vo);一比较器(Comp);一正向数模转换单元(14a);一负向数模转换单元(14b);一控制电路(16),用来控制所述正向数模转换单元(14a)以及所述负向数模转换单元(14b);以及一逻辑电路(18),用来输出一输出码(c total ),所述输出码(c total )相关于所述接触电容(Cf)的一电容值。
Abstract:
An energy-efficient capacitance-to-digital converter (CDC) is provided that utilizes a capacitance-domain successive approximation (SAR) technique. Unlike SAR analog- to-digital converters (ADCs), analysis shows that for SAR CDCs, the comparator offset voltage will result in signal-dependent and parasitic-dependent conversion errors, which necessitates an op-amp-based implementation. The inverter-based SAR CDC contemplated herein provides robust, energy-efficient, and fast operation. The inverter- based SAR CDC may include a hybrid coarse-fine programmable capacitor array. The design of example embodiments is insensitive to analog references, and thus achieves very low temperature sensitivity without the need for calibration. Moreover, this design achieves improved energy efficiency.
Abstract:
A successive approximation Analogue to Digital Converter (ADC), comprising: a sample and hold device arranged to sample and hold an input signal at the beginning of a conversion cycle; a successive approximation register that sequentially builds up a digital output from its most significant bit to its least significant bit; a digital to analogue converter that outputs a signal based on the output of the successive approximation register; a comparator that compares the output of the digital to analogue converter with an output of the sample and hold device and supplies its output to the successive approximation register; and a residual signal storage device arranged to store the residual signal at the end of a conversion cycle; and wherein the successive approximation ADC is arranged to add the stored residual signal from the residual signal storage device to the input signal stored on the sample and hold device at the start of each conversion cycle. After each ADC full conversion by the SAR, the analogue conversion of the digital output is as close to the original input signal as the resolution will allow. However there remains the residual part of the input signal that is smaller than what can be represented by the least significant bit of the digital output of the SAR. In normal operation, successive outputs of a SAR for the same input will result in the same digital value output and the same residual. By storing the residual at the end of each conversion and adding the residual onto the input signal of the next conversion the residuals are accumulated over time so that they may affect the output digital value. After a number of conversions, the accumulated residuals add up to more than the value represented by the LSB of the register and the digital value will be one higher than if a conversion had been performed on the input signal alone. In this way, the residual signal affects the output value in time and thus can be taken into account by processing the digital output in the time domain.