SINGLE-PHOTON OPTICAL DEVICE
    2.
    发明申请

    公开(公告)号:WO2021123264A1

    公开(公告)日:2021-06-24

    申请号:PCT/EP2020/087164

    申请日:2020-12-18

    摘要: This disclosure relates to an optical device comprising: a first filter waveguide section having an input for receiving a pump signal, the first filter waveguide section further having an output; an emitter waveguide section having an input coupled to the output of the first filter waveguide section to receive a transmitted pump signal therefrom, the emitter waveguide section supporting at least a first guided lower-order optical mode and a second guided higher-order optical mode, the emitter waveguide section comprising a photon emitter coupled to the first guided mode to emit radiation into the first guided mode and coupled to the second guided mode to allow optical pumping of the photon emitter by pump signal power carried in the second guided mode, the emitter waveguide section further having an output for outputting radiation emitted from the photon emitter; a second filter waveguide section having an input coupled to the output of the emitter waveguide section and having an output, the second filter waveguide section being configured to transmit radiation emitted into the first guided mode with lower loss than radiation emitted into modes other than the first guided mode; the first filter waveguide section being configured to couple pump signal power predominantly into the second guided mode of the emitter section.

    PHOTODETECTOR APPARATUS AND METHOD OF DETECTING LIGHT

    公开(公告)号:WO2022238320A1

    公开(公告)日:2022-11-17

    申请号:PCT/EP2022/062468

    申请日:2022-05-09

    摘要: A photodetector apparatus (100), being configured for detecting light in the visible or infrared spectrum, comprises a substrate (30), a waveguide (20), a detector section (10), a first contact section (50) and a second contact section (52). The substrate (30) has a substrate surface (32) and a cladding layer (40). The waveguide (20) is arranged above the substrate surface (32) in the cladding layer (40) and is adapted for guiding light. The detector section (10) comprises a p-doped region (12, 14) and an ndoped region (16, 18), and the detector section (10') is arranged for producing charge carriers by the (10) light guided in the waveguide (20). The first contact section (50) is connected to the p-doped region (12, 14) and the second contact section (52) is connected to the n-doped region (16, 18), the first and second contact sections (50, 52) being connectable to a measuring device for measuring an electrical signal based on the charge carriers produced by the light. The waveguide (20) and the detector section (10) are spaced apart by a portion of the cladding layer (40) with a mutual distance such that optical power of the light guided in the waveguide( 20) can be gradually transferred from the waveguide (20) to the detector section (10). Furthermore, a method of detecting light in the visible or infrared spectrum is described.