Abstract:
Provided is a semiconductor device with a novel structure in which stored data can be retained even when power is not supplied, and which does not have a limitation on the number of writing. The semiconductor device includes both a memory circuit including a transistor including an oxide semiconductor (in a broader sense, a transistor whose off-state current is sufficiently small), and a peripheral circuit such as a driver circuit including a transistor including a material other than an oxide semiconductor (that is, a transistor capable of operating at sufficiently high speed). Further, the peripheral circuit is provided in a lower portion and the memory circuit is provided in an upper portion, so that the area and size of the semiconductor device can be decreased.
Abstract:
The invention provides circuitry for writing to and reading from an SRAM cell core (105), an SRAM cell (100), and an SRAM device. In one aspect, the circuitry includes a write circuit coupled to the SRAM cell core that includes at least one write transistor (150). The circuitry also includes a read circuit coupled to the SRAM cell core that includes at least one read transistor (185) having a gate signal in common with the gate signal of the write transistor. The read transistor and the write transistor share a common gate signal, and each have an electrical characteristic, for which the electrical characteristic of the read transistor differs from that of the write transistor.
Abstract:
An array block has at least two sub-array blocks and a first interconnect routing channel through which a first group of local interconnect lines extend. Each of the two sub-array blocks includes at least two lower-level sub-array blocks and a second interconnect routing channel through which a second group of local interconnect lines extend. The first group of local interconnect lines are configured to carry input information for accessing memory locations in which to store data or from which to retrieve data, and the second group of local interconnect lines are configured to carry a subset of the input information.
Abstract:
A memory cell comprising an inverting stage, an access transistor coupled between a data line and an input of the inverting stage, the access transistor being responsive to a control signal for selectively coupling the data line and the inverting stage input, a feedback transistor coupled to the inverting stage input and being responsive to an output of the inverting stage for latching the inerting stage in a first logic state and whereby the cell is maintained in a second logic state by a leakage current flowing through the access transistor which is greater than a current flowing through the feedback transistor.