Abstract:
A power semiconductor device (1) is provided comprising, in the following order: - a collector electrode (1), - a collector layer (2) of a second conductivity type, - a drift layer (3) of a first conductivity type, - a base layer (4) of the second conductivity type, - a first insulating layer (8) having an opening (82), - an emitter layer (5) of the first conductivity type, wherein the emitter layer (5) is in contact with the base layer (4) and separated from the drift layer (3) at least by one of the first insulating layer (8) or the base layer (4), - a body layer (6) of the second conductivity type arranged laterally to the emitter layer (5) and separated from the base layer (4) by the first insulating layer (8) and the emitter layer (5), - a source region (7) of the first conductivity type separated from the emitter layer (5) by the body layer (6), - an emitter electrode (15) contacted by the source region (7). The device further comprises a first layer (65) of the second conductivity type in contact with the emitter electrode (15) and separated from the base layer (4), and a second layer (55) of the first conductivity type arranged between the first layer (65) and the base layer (4) and separated from the emitter layer (5) and the source region (7). A planar MIS gate electrode (9) is arranged laterally from the emitter electrode (15), a corresponding MIS channel being formable between the source region (7), the body layer (6) and the emitter layer (5). A thyristor current path (120) extends between the emitter layer (5), the base layer (4) and the drift layer (3) through the opening (82), and a turn-off MIS channel (110) is formable below the planar MIS gate electrode (9) from the first layer (65), the second layer (55), the base layer (4) to the drift layer (3).
Abstract:
A power semiconductor device (1) of the emitter switched thyristor (EST) type comprising an emitter electrode (2) and a collector electrode (25) on opposite sides (22, 27) of a wafer (10), wherein a gate electrode (7) arranged on the emitter side (22) comprises a conductive gate layer (72) and an insulating layer (74), wherein layers are arranged in the following order between the collector and emitter sides (27, 22): a p doped collector layer (6), an n- doped drift layer (5), an n doped enhancement layer (52), a p doped base layer (4) with first and second base regions (42, 44), and n+ doped first and second emitter layers (3, 35), wherein the emitter electrode (2) contacts the first emitter layer (3) and the first base region (42), wherein the second emitter layer (35) is insulated from the emitter electrode (2) by the insulating layer (74) and wherein the second emitter layer (35) is separated from the first emitter layer (3) by the base layer (4), wherein the enhancement layer (52) is arranged between the first base region (42) and the drift layer (5), separates the first base region (42) from the second base region (44) and the drift layer (5) and contacts the second emitter layer (35), wherein an IGBT channel (100) is formable from the first emitter layer (3) via the first base region (42) to the drift layer (5), wherein a thyristor channel (120) is formable from the second emitter layer (35) via the second base region (44) to the drift layer (5), wherein a MOS channel (140) is formable from first emitter layer (3) via the first base region (42) to the second emitter layer (35).
Abstract:
Described herein is a power device (10) having a first current-conduction terminal (A) , a second current-conduction terminal (K) , a control terminal (G) receiving, in use, a control voltage (VGATE) of the power device (10), and a thyristor device (12) and a first insulated-gate switch device (14) connected in series between the first and the second conduction terminals; the first insulated-gate switch device (14) has a gate terminal connected to the control terminal (G), and the thyristor device (12) has a base terminal (16) . The power device (10) is further provided with: a second insulated-gate switch device (18), connected between the first current-conduction terminal (A) and the base terminal (16) of the thyristor device (12) , and having a respective gate terminal connected to the control terminal (G) ; and a Zener diode (19) , connected between the base terminal (16) of the thyristor device (12) and the second current-conduction terminal (K) so as to enable extraction of current from the base terminal (16) in a given operating condition.
Abstract:
A trench MOS-gated device (200) comprises a doped monocrystalline semiconductor substrate (201) that includes an upper layer (201a) and is of a first conductivity type. An extended trench (202) in the substrate in the upper layer comprises two segments (203,204) having differing widths relative to one another: a bottom segment (204) of lesser width filled with a dielectric material (209), and an upper (203) segment of greater width lined with a dielectric material (205,206) and substantially filled with a conductive material (207), the filled upper segment of the trench forming a gate region (208). An extended doped zone (215) of a second opposite conductivity type extends from an upper surface (212) into the upper layer (210a) of the substrate only on one side of the trench (202), and a doped well region (210) of the second conductivity type overlying a drain zone (211) of the first conductivity type is disposed in the upper layer (201a) on the opposite side of the trench.
Abstract:
The invention concerns an anode voltage sensor of a vertical power component selected from the group consisting of components called thyristor, MOS, IGBT, PMCT, EST, BRT transistor, MOS thyristor, turn-off MOS thyristor, formed by a lightly doped N-type substrate (1) whereof the rear surface (2) having a metallizing coat corresponds to the component anode. Said sensor comprises, on the front surface side, a substrate zone (12) surrounded at least partly by a P-type region with low potential in front of an anode potential, said zone (12) being coated with a metallizing coat (M) in ohmic contact with it, whereon is provided an image of the anode voltage.
Abstract:
An SiC substrate (2) having a plane orientation of almost (11-20) and being of a 4H type polytype or 15R type polytype, and a buffer layer (4) formed on the SiC substrate (2) and made of SiC are provided.
Abstract:
A power semiconductor device comprises a multiple-cellular insulated-gate field-effect transistor structure with each cell (100) present at a corresponding opening (110) in a mesh-shaped gate electrode (11). The cells (100) and the openings (110) are of elongate shape having longitudinal sides (X) at which the channel areas (1) are present under a gate insulating layer (12) under longitudinal parts (11x) of the gate electrode (11). The channel areas (1) are absent at ends (Z) of the elongate cells (100). Preferably, the longitudinal parts (11x) of the gate electrode (11) are interconnected beyond the ends (Z) of the elongate cells (100) by interconnection parts (11z) of the gate electrode (11) which are located on a thicker insulating layer (13) than the gate insulating layer (12). This thicker insulating layer (13) is present at least between facing ends (Z) of neigbouring elongate cells (100) where the channel areas (11) are absent.
Abstract:
A field controlled semiconductor device of SiC comprising superimposed in the order mentioned a drain (15), a highly doped substrate layer (1), a highly doped n-type buffer layer (2) and a low doped n-type drift layer (3). It also has a highly doped n-type source region layer (7) and a source (14) connected thereto, a vertical trench (9) from above, a low doped n-type channel region layer (6) extending vertically along a wall (11) of said trench and connecting said source region layer to said drift layer and through which a current is intended to flow when the device is in an on-state. A gate electrode (12) is arranged in said trench at least along said wall and to, upon applying a voltage thereto, influence the charge carrier distribution of said channel region layer and by that the conductivity thereof. The device comprises further a p-type base layer (4) arranged laterally next to said channel region layer at the opposite side thereof with respect to the gate electrode for forming a vertical conducting channel in said channel region layer at a distance from said trench wall.
Abstract:
본 발명의 개념에 따른 모스 구동 사이리스터 소자는 마주하는 제1 면 및 제2 면을 포함하는 기판, 상기 제1 면 상에 배치되는 게이트 패턴들, 상기 게이트 패턴들을 덮는 캐소드 전극, 및 상기 제2 면 상에 배치되는 애노드 전극을 포함한다. 상기 기판은 제1 도전형을 가지는 하부 에미터 층, 상기 하부 에미터 층 상에 제2 도전형을 가지는 하부 베이스 층, 상기 하부 베이스 층의 상부에 제공되고, 제1 도전형을 가지는 상부 베이스 영역, 상기 상부 베이스 영역은 상기 하부 베이스 층의 상면 일부를 노출시키고, 상기 상부 베이스 영역의 상부에 제공되는 제2 도전형을 가지는 상부 에미터 영역, 상기 상부 에미터 영역의 상부에 제공되고, 제1 도전형을 가지는 제1 도핑 영역 및 상기 제1 도핑 영역으로부터 둘러싸이는 제2 도전형을 가지는 제2 도핑 영역, 및 상기 상부 에미터 영역의 상부의 일측면에 제공되는 제1 도전형을 가지는 제1 도핑 패턴을 포함한다.상기 제1 도핑 패턴은 기판의 상면에 평행한 제1 방향을 따라서 상기 상부 베이스 영역 및 상기 제1 도핑 영역 사이에 개재된다. 상기 제1 도핑 패턴은 상기 상부 에미터 영역의 상부의 타 측면에서 상기 상부 에미터 영역의 상면을 노출시킨다. 상기 게이트 패턴들의 각각은 상기 노출된 하부 베이스 층의 상면, 상기 노출된 상부 베이스 영역의 상면, 상기 노출된 상부 에미터 영역의 상면, 상기 제1 도핑 패턴, 및 상기 제1 도핑 영역의 일부를 덮는다. 상기 캐소드 전극은 상기 게이트 패턴의 상면 및 측면, 상기 제2 도핑 영역의 상면과 상기 제1 도핑 영역의 상면의 일부를 덮는다. 상기 제1 도전형과 상기 제2 도전형은 서로 다르다.
Abstract:
A power control switch assembly. The assembly may include a thyristor device, where the thyristor device includes a first device terminal, a second device terminal, and a gate terminal> The assembly may include a negative temperature coefficient (NTC) device, electrically coupled to the gate terminal of the thyristor device on a first end, and electrically coupled to the first device terminal of the thyristor device on a second end, wherein the NTC device is thermally coupled to the thyristor device.