Embodiments include a liquid cooled electronic device including a compartment configured to enclose an electronic module therein. The compartment includes a stationary cooling plate disposed on an interior portion of the compartment, the stationary cooling plate comprising a liquid cooling system configured to remove heat from the stationary cooling plate and a plurality of electrical connectors configured to connect to the electronic module. The electronic module includes a mobile cooling plate configured to intimately fit with the stationary cooling plate when the plurality of electrical connectors are connected to the electronic device module. The heat generated by the electronic module is removed by the mobile cooling plate and the stationary cooling plate.
An electronic control apparatus includes housing members, and a circuit board. At least one of the housing members is opposed to a heat-generating region which is heated by the heat-generating electronic component. A heat radiating portion of the housing member includes a convex portion protruding from an inner wall surface at a location opposed to the heat-generating region, and a concave portion opened to an outer wall surface at a location shifted from the convex portion in a thickness direction. The convex portion is close to the heat-generating region through a clearance. The concave portion has a lateral wall formed in a tapered shape such that an opening area of the concave portion is larger than a bottom area of the concave portion. A thickness of the heat radiating portion is smaller than a thickness of a region peripheral to the heat radiating portion in the housing member.
According to one embodiment, an electronic apparatus includes a heating component, a housing, and a heat diffusing member. The housing accommodates the heating component and includes a wall. The wall includes a first region configured to receive heat from the component and a second region configured to have a lower temperature than a temperature of the first region. The heat diffusing member is attached to an inner surface of the wall and extends from the first region to the second region.
According to one embodiment, an electronic apparatus includes a housing, a heat-generating component in the housing, a first radiating portion in the housing thermally connected to the heat-generating component, a second radiating portion in the housing thermally connected to the heat-generating component, and a fan configured to blow air to the first radiating portion and the second radiating portion.
An indicia-reading module suitable for integration within a host mobile computing device that has an integrated flexible circuit is disclosed. The indicia-reading module includes a plurality of subassemblies, each supported and electrically connected by a discrete, rigid, multilayer printed-circuit-board (PCB). A unitary flexible circuit electrically connects the subassemblies and is physically integrated between two inner layers of each subassembly's discrete, rigid, multilayer printed-circuit-board. The use of the integrated flexible circuit aids in reducing module size, signal loss, and interference with the host mobile computing device.
This application relates to methods and apparatus for pneumatically separating adhesively joined components. A pneumatic release mechanism can be positioned between the adhesively joined components. The pneumatic release mechanism can be positioned adjacent to or within an adhesive joint so that when it is filled with air the pneumatic release mechanism can exert a force on the joined components sufficient to sever the adhesive bond. In some embodiments, the joined components can be housing components. In other embodiments, the joined components can be a battery cell and a housing component.
A link mechanism which links a main body and a display part of an information apparatus with a display part which can be opened and closed with respect to a main body is made a four-section articulated link mechanism which arranges first and second joints on the main body and arranges third and fourth joints on the display part. The first joint is fixed in position, the second joint is made slidable with respect to the first joint, and the third and fourth joints are positioned at two ends of a slide block which can slide on the display part. Due to this, the four-section articulated link mechanism can make the display part simultaneously slide and tilt with respect to the main body from the closed position.
Method for producing a substrate comprising at least one getter material arranged on the walls of at least one blind hole, comprising at least the steps of: etching the blind hole through a first face of the substrate, depositing a continuous layer of getter material on the whole of the first face of the substrate and at least on the side walls of the blind hole, etching part of the layer of getter material located on the first face of the substrate such that said first face of the substrate is no longer covered by the getter material, in which the step of etching part of the layer of getter material comprises the implementation of an etching by ion beam machining, or chemical-mechanical planarization or polishing.
An array of composite polymer-metal contact members adapted to form solder free electrical connections with a first circuit member. The contact members include a resilient polymeric base layer and an array of metalized traces printed on selected portions of the base layer. Conductive plating is applied to the metalized layer to create an array of conductive paths. The resilient polymeric base layer, the metalized layer, and the conductive plating have an aggregate spring constant sufficient to maintain distal portions of the contact members in a cantilevered configuration and to form a stable electrical connection between the distal portions and the first circuit member solely by compressive engagement.
Example multi-layer printed circuit boards (‘PCBs’) are described as well as methods of manufacturing a PCB. Embodiments include depositing upon layers of laminate printed circuit traces and joining the layers of laminate. Embodiments also include drilling at least one via hole through the layers of laminate and placing in the via hole a via conductor comprising a used portion and an unused portion, the via conductor comprising copper coated with a second metal having a conductivity lower than the conductivity of copper.
A method of fabricating a capacitance touch panel module includes forming a plurality of first conductive patterns on a substrate comprising a touching area and a peripheral area along a first orientation, a plurality of second conductive patterns along a second orientation, and a plurality of connecting portions in the touching area; forming a plurality of insulated protrusions, in which each insulated protrusion covering one connecting portion, and forming an insulated frame on the peripheral area; and forming a bridging member on each insulated protrusion.
A method of making an imprinted micro-wire structure includes providing a substrate having an edge area and a central area separate from the edge area and providing first, second, and third different stamps. A curable bottom, connecting layer, and top layer are formed on the substrate. A bottom-layer micro-channel is imprinted in the bottom layer in the central area and the edge area, a connecting-layer micro-channel is imprinted in the connecting layer in the edge area over the bottom-layer micro-channel, an edge micro-channel is imprinted in the top layer in the edge area over the connecting-layer micro-channel, and top-layer micro-channels are imprinted in the top layer over the central area. Micro-wires are formed in each micro-channel. The bottom-layer micro-wire in the central area is electrically connected to the edge micro-wire in the edge area and is electrically isolated from the top-layer micro-wire.
A rosin composition includes a gum rosin, an emulsifier, and a randomizing additive. The rosin composition may be applied to circuit cards for protection of the circuit card during storage. The rosin composition is solderable and is also easily removed for the soldering of components.
A method and system for powering gas-filled lamps using radio and/or microwave frequencies is disclosed. The method and system may include a gas-filled lamp, an antenna positioned proximal to the gas-filled lamp, a conductive element surrounding the gas-filled lamp, and a power source connector coupled to the antenna.
A dimming system and a dimming converter and load dimming method thereof are provided. In the dimming converter, a cutting phase determination unit is connected with an input terminal and configured to determine phase angle information of a power supply signal of an output of a load terminal in a dimmer; an output unit is configured to output a dimming signal corresponding to the phase angle information determined by the cutting phase determination unit from a dimming output terminal to a load of the dimming system according to a correspondence relationship between the phase angle information and the dimming signal stored in a storage unit and to output a phase-cut power source signal from a supply output terminal to the load. The dimming system can be compatible with a large number of loads with different dimming requirements to thereby improve the dimming efficiency of the loads.
In accordance with embodiments of the present disclosure, a system and method for providing compatibility between a load having a reactive impedance during steady-state operation and a secondary winding of an electronic transformer driven by a leading-edge dimmer may include a first circuit and a second circuit. The first circuit may cause the load to have a substantially non-reactive impedance when the first circuit is enabled. The second circuit may enable the first circuit to cause the load to have the substantially non-reactive impedance during a duration of time following start-up of the electronic transformer and disable the first circuit after the duration such that the load has the reactive impedance during steady-state operation of the load.
A system and method for operating one or more light emitting devices is disclosed. In one example, the intensity of light provided by the one or more light emitting devices is adjusted responsive to current feedback from the one or more light emitting devices.
A light emitting layer-forming solid material including at least one host material and at least one light-emitting material, wherein the light emitting layer-forming solid material is used for forming a white light emitting layer having a single layer structure by an evaporation method.
The general field of the invention is that of devices for controlling luminance of lighting devices comprising light-emitting diodes. The control device is driven by a cyclic input signal of determined period, each period comprising an activation time representative of a determined luminance level. The control device comprises analog electronic means generating a second control signal for the intensity of the electric current passing through the light-emitting diodes, the amplitude of the second control signal being an increasing function of the activation time in such a way that the combination of the cyclic input signal and of the second signal applied to the light-emitting diodes gives a greater luminance range than the range of the cyclic input signal.
The purpose of the present invention is to provide an LED drive circuit that is capable of ameliorating insufficient lighting and improving power utilization efficiency. This LED drive circuit is an LED drive circuit wherein the number of LEDs that are turned on varies in accordance with the voltage of a commercial alternating-current power supply, the LED drive circuit being characterized by having an LED row in which multiple LEDs are connected in series, a current detection resistor for detecting a current that flows in the LED row, a bypass circuit that is connected to an intermediate connection part of the LED row, and a current-limiting circuit that is connected to an end of the LED row, wherein the bypass circuit includes a first current-limiting component, the current-limiting circuit includes a second current-limiting component, the first current-limiting component is controlled on the basis of a voltage across the ends of the current detection resistor or a voltage that is obtained by dividing the voltage across the ends of the current detection resistor, and the second current-limiting component is controlled by the divided voltage that is obtained by dividing the current detection resistor.
A switching converter detects when a dimmer circuit supplying power to the switching converter changes from a conducting state to a nonconducting state or from a nonconducting state to a conducting state; an equivalent input resistance of the switching converter is changed to a first, higher value when the dimmer circuit is in the conducting state and to a second, lower value when the dimmer circuit is in the nonconducting state, thereby drawing a minimum current from the dimmer circuit while the dimmer circuit is in the nonconducting state.
Home base station nodes (110) that support multi-carrier operation are disclosed. In some embodiments, two carrier signals are transmitted on different frequencies to one or more user devices that support multi-carrier operation, and different global cell identifiers are broadcast on the two carrier signals. Control messages are sent and received for both of the two carrier signals over a single control-plane interface between the home base station (110) and either a core network node (170) or a home base station gateway (120).
A new set of random-access preamble signatures are introduced to differentiate new-release UEs from UEs compliant only with earlier releases. Additional new features of a random-access procedure are also disclosed, including an ability to deploy multiple transmission-time-intervals TTIs) in a given area. An example mobile terminal, according to some embodiments of the present invention, selects a TTI from two or more possible TTIs. The mobile terminal then selects a preamble signature from a group of one or more preamble signatures associated with enhanced-uplink resources and associated with the selected TTI, and transmits a random-access channel (RACH) preamble, using the selected preamble signature. In some embodiments, the mobile terminal selects between a 2-millisecond TTI and a 10-millisecond TTI.
Various embodiments are disclosed of a method and apparatus for fast communication recovery in wireless mobile devices arranged to perform dual network radio resource management. In one embodiment, a wireless mobile device includes a transceiver configured to communicate with each of first and second networks. After establishing and maintaining a link with the first network, the wireless mobile device may tune a transceiver to the second network to monitor for traffic, subsequently tuning back to the first network. After turning the transceiver back to the first network, the wireless mobile device may perform one or more attempts to restore the link to the first network. The number of attempts to restore the link is dependent upon an amount of time the transceiver is tuned to the second network.
A communication apparatus (101) includes: receiving means for receiving a communication parameter, which is necessary for communication, from another communication apparatus; storage means (103, 212) for storing the communication parameter; first detecting means for detecting a connection instruction for connection to a network; and connecting means which, if the connection instruction (S401) has been detected by the first detecting means, is for executing processing for connecting to the network using a communication parameter already stored in the storage means (212), or processing for connecting to the network after a communication parameter is received from another communication apparatus by the receiving means, in accordance with the type of communication parameter already stored in the storage means (212).
After an increase in the number of wireless devices or traffic load by an amount greater than a value, a base station transmits a message. The message comprises an updated subframe allocation bitmap indicating a second plurality of subframes including an updated plurality of almost blank subframes. The updated plurality of almost blank subframes includes a smaller number of almost blank subframes than an initial plurality of almost blank subframes.
The number of communication channels necessary for communication with a terminal is calculated by using type and volume of data to be transmitted. When calculated number of communication channels is one, a single communication channel is allocated based on quality information of a communication line to the terminal and, when calculated number of communication channels is more than one, then more than one communication channels are allocated based on the quality information. Allocation information used for notifying of allocated communication channels is generated based on virtual channels, which are defined in advance as channel units having a combination of a plurality of consecutive communication channels, and the allocation information is transmitted to the terminal.
The present invention relates to demodulation of radio signals from a base station having collocated transmit antennas, and more particularly to signaling allocation information from a base station to a mobile terminal. The allocation information may include timeslot and code information of allocation to other mobile terminals. Some embodiments of the present invention facilitate a mobile terminal's ability to receive and demodulate a signal containing multiple interfering signals by communicating codes allocated to other mobile terminals.
A method and device for performing a hybrid automatic repeat request in a wireless access system that supports collaborative transmission. The method includes: receiving, by the first wireless device, an allocation of a secondary carrier from a base station through a primary carrier. The primary carrier is used for data transmission and reception with the base station and the secondary carrier is used for data transmission and reception with a second wireless device. The method also includes: receiving configuration information of the secondary carrier from the base station; transmitting data to the second wireless device on an uplink subframe of the secondary carrier based on the received configuration information; and receiving acknowledgement or non-acknowledgement with respect to the transmitted data on a downlink subframe of the secondary carrier linked with the uplink subframe.
A method of allocating user plane nodes to a connection being established across a packet core network is described. The method comprises maintaining at a Domain Name System (DNS) server one or more DNS resource records for each available user plane node in the packet core network, wherein the one or more DNS resource records comprises a fully qualified domain name (FQDN) for each area identity, each area identity represents a group of user plane nodes, associated with a user plane node in the packet core network; processing a connection establishment request originating from a user equipment (UE) to a core network node within the packet core network; sending a DNS query to a DNS server, the query containing at least one criterion for selecting a user plane node; receiving the query at the DNS server and, on the basis of the or each criterion, identifying one or more DNS resource records satisfying the criteria/criterion, and returning the identified DNS resource record(s) to said core network node; and receiving the DNS resource record(s) at the core network node, and using the fully qualified domain names (FQDNs) representing each area identity associated with a user plane node in the packet core network that are contained in the or each DNS resource record(s) when allocating a user plane node to said connection. A core network node arranged to allocate user plane nodes to a connection being established across a packet core network, and an apparatus configured to operate as a Domain Name System (DNS) server are also described.
A single receiver is operable to utilize full spectrum capture to capture signals over a wide spectrum comprising a plurality of WiFi frequency bands, extract one or more WiFi channels from said captured signals and aggregate a plurality of blocks of said WiFi channels to create one or more aggregated WiFi channels. The WiFi frequency bands include 2.4 GHz and 5 GHz WiFi frequency bands. A plurality of blocks of the WiFi channels may be aggregated from contiguous blocks of spectrum and/or non-contiguous blocks of spectrum in one or more of said plurality of WiFi frequency bands. One or more non-WiFi channels may be filtered out from the captured signals. One or more aggregated WiFi channels may be assigned to one or more WiFi enabled communication devices. At least a portion of the one or more aggregated WiFi channels may be dynamically assigned to one or more other WiFi enabled communication devices.
A call processing module includes a first network interface configured to communicate over a packet-switched network and a second network interface configured to communicate with a local subscriber over a broadband access network employing RF modulation. A call manager is provided which includes a database associating a local subscriber telephone number with an address of a client device associated with the local subscriber for a plurality of subscribers authorized to receive telephony service. A frequency handler is provided for allocating to the client device a receive frequency and a transmit frequency to be used by the client device over the broadband access network during a telephony call. The call processing module also includes a session manager configured to generate and receive signaling messages for establishing the telephony call between the local subscriber and a remote subscriber over the broadband access network and the packet-switched network as well as over the broadband access network, the packet-switched network and a circuit-switched network in communication with the packet-switched network.
The present invention relates to a communication system and methods of use thereof. The system includes sets of complementary radios for transmitting and receiving signals to achieve high reliability and reduced costs. The sets of complementary radios are in wireless communication with each other. A new connection is made by selecting from amongst the complementary radios. Switching between complementary radios during a connection is also permitted. Optimized protocols and hardware for implementing the system are disclosed.
Embodiments contemplate devices and techniques for receiving unicast and multicast transmissions over a downlink (DL) shared channel in parallel, for example an LTE DL shared channel (SCH). For example, one or more hybrid automatic repeat request (HARQ) entities may be configured to perform retransmissions of the multicast and/or unicast messages. Common and/or dedicated (e.g., separate) HARQ entities may be utilized for retransmission. The multicast downlink shared channels may be activated and/or deactivated on demand. The activation and/or deactivation may be performed using radio resource control (RRC) signaling and/or Medium Access Control (MAC) signaling. The multicast and/or unicast downlink shared channel data may include scalable video coding (SVC) data of varying priority. Embodiments also contemplate the use of simultaneous (e.g. parallel) multicast/unicast for scalable video coding transmission over WiFi/802.11 protocol signals.
At least one example embodiment discloses a method for allocating downlink transmissions to a plurality of user equipments (UEs) from a base station. The method includes allocating downlink transmission air-time of the base station to a plurality of groups, associating each of the plurality of UEs to the plurality of groups, a throughput of each associated UE in a same group being affected by the remaining UEs in the same group and determining a resource sharing mode associated with each of the plurality of groups, the resource sharing mode being one of a first mode and a second mode, the base station allocating the same throughput to each associated UE in the associated group in the first mode and the base station allocating the same transmission time to each associated UE in the associated group in the second mode.
In an embodiment, a client device associated with a first user performing a registration procedure with an Internet Protocol (IP) Multimedia Subsystem (IMS) network to register the client device to a first user for IMS service. The client device communicates (e.g., via GRUUs) with one or more other client devices that are also registered to the first user for the IMS service to obtain rich communication suite (RCS) capability information for the one or more other client devices. The client device receives a request (e.g., a SIP OPTIONS message) to report the client device's RCS capability information, and then transmits, in response to the received request, a message (e.g., a SIP 200 OK message) that indicates both (i) the client device's RCS capability information and (ii) the RCS capability information for the one or more other client devices.
A main processor of mobile phone changes from power saving state to active state for changing display in response to a sub processor for sensors, the main processor returning to the power saving state after changing the display. The main processor changes from power saving state to active state for storing information from the sub processor, the main processor returning to the power saving state after the storing function. The main processor selects the stored display data on the basis of the information from the sub processor to change display. The main processor receives and stores information from the sub processor in the boot up process or before finishing the operation. The sub processor is in the active state so as to control the sensor even in a case where the main processor is in the power saving state.
There is provided methods, devices and computer program products for distributing a plurality of virtual IEEE 802.11 wireless networks through a heterogeneous infrastructure. A terminal sends a service provider request to an access point. The service provider request is forwarded to a master server which searches for available service providers. Acknowledgement information relating to available service providers capable of operatively connecting the terminal to the data communications network via the access point is sent by the master server to the access point. The access point forwards this information to the terminal. The access point may thus distribute a plurality of virtual IEEE 802.11 wireless networks, their number only constrained by the number of distinct identifiable service providers and the memory of the master server. A data connection may be established in the absence of a direct service agreement between the service provider of the terminal and the operator of the access point.
A system and method of locating a wireless connection among a plurality of possible wireless connections. More particularly, a system and method of locating a user preferred wireless connection among a plurality of possible wireless connections. The method includes scanning for available networks and determining whether the available networks satisfy one or more user preferences. The method further includes establishing a secondary network connection with one of the available networks based on one or more user preferences being satisfied.
Disclosed herein are a maritime communication apparatus and method. The maritime communication apparatus includes a land-based network communication unit, a maritime network communication unit, and a communication control unit. The land-based network communication unit communicates with a land-based communication network. The maritime network communication unit communicates with a maritime communication network. The communication control unit links the communication of the land-based network communication unit with the communication of the maritime network communication unit in accordance with a destination address of data provided by any one of the land-based network communication unit and the maritime network communication unit.
A wireless communication system includes a serving base station, a mobile station, and peripheral base stations. The mobile station communicates with the serving base station. The serving base station includes a sending unit. The sending unit in the serving base station sends, to the mobile station, a signal indicating that communication is going to be performed in cooperation with the peripheral base stations. The mobile station includes a sending unit. The sending unit in the mobile station broadcasts a predetermined request signal to the peripheral base stations in accordance with the reception of the signal. The peripheral base stations, which have received the predetermined request signal, each include a notifying unit. The notifying units individually notify the serving base station of selection information that is information on the peripheral base station that is going to communicate with the mobile station in cooperation with the serving base station.
A method for reporting in a wireless system, according to one embodiment, is provided. The method comprises: receiving a measurement setting from a serving cell, wherein the measurement setting comprises a system information report indicator for indicating a system information report of a cell to which a measurement result is reported; deciding whether a report condition is satisfied based on the measurement setting; and transmitting to the serving cell a measurement report message comprising the measurement result of the cell to which the result is reported, which satisfied the report condition. The measurement report message further comprises system information of the cell to which the report is made.
A method of load balancing for a first network in a wireless communication system is disclosed. The method comprises receiving a radio resource control (RRC) connection request message from a mobile device, wherein the RRC message includes a specific cause; and not redirecting the mobile device to a second network according to the CS establishment cause.
System and method of radio-awareness of mobile device for sending server-side control signals using a wireless network optimized transport protocol are disclosed. One embodiment includes a method of sending a message over an alternate channel to a mobile device in the presence of an open TCP connection with a mobile device, including sending the message over the alternate channel to the mobile device, without utilizing the open TCP connection, responsive to determining that a timing criteria has been met. The alternate channel utilized need not cause a radio of the mobile device to switch on.
The present invention relates to a wireless communication system. A method for a terminal to transmit channel state information to a plurality of transmission points in a wireless communication system comprises the steps of: receiving a configuration for reporting the channel state information; and selecting at least one subband for reporting the channel state information to each of a first transmission point and a second transmission point in accordance with the configuration for reporting the channel state information, wherein the configuration for reporting the channel state information comprises information on whether or not to select the subband for the first transmission point same to be the subband for the second transmission point.
Methods (400, 500) and apparatus (16, 24) are disclosed for reporting and processing MBMS counting results. According to one exemplary embodiment, a base station counting request received from a MCE includes an update time, and identifiers for one or more MBMS services (402, 502). The base station includes the update time with its reported counting results (410). The MCE uses the update time to identify the transmitted counting request (506), and ignores counting data for services not identified in the request (516). In the same or another embodiment, if the base station has not received MBMS counting results from its supported UEs for one or more of the identified services within a defined reporting window (406), the base station transmits an empty list of service identifiers to the MCE (408). The MCE correspondingly determines that the base station has not yet received MBMS counting results for one or more of the identified services based on receiving the empty list (508, 510).
A wireless end-user device has a wireless wide-area network (WWAN) modem and supports multiple wireless network types. A network service activity control policy set has a policy element that associates one or more Internet activity access controls with at least one end-user application. One or more processors determine whether to apply the Internet activity access controls to an Internet access request by or on behalf of the end-user application, based at least on which of the wireless network types is configured to support Internet service activity. The determination may further be based on whether or not the application is interacting with a user. When the controls are to be applied, network activity for the Internet access request is delayed until it can be associated with network activity for one or more other requests not associated with the application.
Aspects of the methods and apparatus include determining that a time-to-trigger (TTT) timer has expired, and determining that a serving radio access technology (RAT) received signal characteristic is less than a signal characteristic threshold when the TTT timer has expired. Further, the aspects include determining, in response to the serving RAT received signal characteristic being less than the signal characteristic threshold, that a target RAT frequency measurement associated with a Measurement Report Message (MRM) for performing an inter-RAT (IRAT) handover cannot be completed within a time limit according to a current measurement gap configuration. Also, the aspects include calculating a measurement gap duration sufficient to complete the target RAT frequency measurement associated with the MRM for performing the IRAT handover, and configuring a new measurement gap prior to the time limit, wherein the new measurement gap comprises the calculated measurement gap duration.
Methods of identifying a user plane identifier of a user device by a monitoring probe in communication with a network device, the monitoring probe, and the system using the same are disclosed. In an embodiment, the monitoring probe includes a monitor, a comparator and a user plane identifier output. The monitor monitors a network device for receipt of a first control plane message comprising a first control plane identifier and a user device identifier, and monitors the network device for receipt of a second control plane message comprising a second control plane identifier and a user plane identifier. The comparator compares the first with the second control plane identifier to determine whether the control plane identifiers correspond. The user plane identifier output outputs the user plane identifier being identified as that of the user device, when the control plane identifiers correspond.
Aspects described herein relate to a base station for providing air-to-ground wireless communication over various altitudes. The base station includes a first antenna array comprising one or more antennas configured to form a first cell coverage area extending substantially from a horizon up to a first elevation angle away from the first antenna array to a predetermined distance from the first antenna array. The base station further includes a second antenna array configured at an uptilt elevation angle to form a second cell coverage area extending at least from the first elevation angle to a second elevation away from the second antenna array, wherein the first cell coverage area and the second cell coverage area are concentric to define the ATG cell at least to the predetermined distance and up to a predetermined elevation.
Some demonstrative embodiments include devices, systems and/or methods of indicating station-specific information within a wireless communication. For example, a device may include a wireless communication unit to transmit a wireless communication frame to a plurality of stations using a respective plurality of beamforming configurations, wherein the wireless communication unit is to transmit to the stations beamforming configuration information including station-specific information corresponding to the plurality of beamforming configurations, respectively.
Embodiments of the disclosure provide methods and apparatuses for scheduling radio resources in a communication system. According to the method, in response to receiving a request for accessing a target frequency band utilized by a Macro BS and a LPN from a frequency-shared system, a first notification is transmitted to the Macro BS, such that the Macro BS deactivates the target frequency band, and a second notification is transmitted to the LPN, such that the LPN extends its coverage. Then, information on the extended coverage is received from the LPN.
A device implements multiple protocols that share overlapping resources. In some cases, a first operation, such as a scan, may have a resource conflict with a second operation associated with a different protocol. In some cases, determining grant normal priority level requests associated with the first operation over those at the normal priority level associated with the second operation may lead to operator-noticeable degradation in device performance. A protocol controller may request a selected portion of the first operation at a low priority level. Requesting the selected portion at the low priority level may allow the second operation to selectively override the portion of the first operation. The selective overriding of the first operation may allow for execution of the first and second operations without operator-noticeable performance degradation.
A wireless communication system 1 performs inter-cell coordination control that coordinates a pico base station 100 and a macro base station 200 with each other and transmits a signal to a mobile station 10 of a picocell. The pico base station 100 includes a controller 100a and a communication unit 100b. The controller 100a interleaves resources of an E-PDCCH of the picocell corresponding to a predetermined resource unit based on a coordinated area ID that is an identifier common to the pico base station 100 and the macro base station 200. The communication unit 100b transmits a control signal to the mobile station 10 of the picocell using a first resource of the E-PDCCH of the picocell that corresponds to at least a part of the predetermined resource unit and is to be decoded by the mobile station 10 of the picocell.
A spectrum sensing method for cognitive radio to detect spectrum holes in an environment of bandwidth scarcity. The method comprises first receiving a wireless signal at a cognitive radio user, and then discovering the frequency edges of allocated frequency bands by using wavelet transform coefficients to detect discontinuities in the power spectral density of the received signal. After determining the allocated frequency bands, the method determines frequency band availability by detecting the in band energy using a bi-threshold energy detector, where the energy detector makes hard decisions and soft decisions. Finally, a fusion center combines hard and soft decisions collected from a cooperative spectrum sensing network of cognitive radio users and makes a final decision using a hybrid of data fusion and decision fusion to determine the final decision regarding spectrum availability.
A user equipment (UE) configured for signaling UE capability is described. The UE includes a processor and instructions stored in memory that is in electronic communication with the processor. The UE sends an indicator regarding whether the UE can support different time division duplex (TDD) configurations on different bands for a band combination. The UE also sends an indicator regarding whether the UE can support concurrent transmission and reception on different bands for the band combination. The UE additionally sends an indicator regarding whether the UE can support different uplink timing adjustments for the band combination.
A method and an apparatus for managing User Equipment (UE) history information are provided. The method for managing user equipment history information in a wireless communication network includes determining if a recording event occurs when the user equipment enters into an idle mode; recording information about the recording event in idle mode user equipment history information when the recording event occurs; and transmitting the recorded idle mode user equipment history information to a base station when the user equipment accesses the base station.
Techniques are disclosed relating to facilitating transactions via mobile devices. In one embodiment, an account that is linked to a mobile telephone number of a mobile device is established at a computer system. In such an embodiment, the account permits a user to make and receive payments, and is not accessible without using the mobile device. In some embodiments, the account is established without setting up a username and password. In one embodiment, a request is sent from a payment application of the mobile device to the computer system. In some embodiments, the payment application is made active on the mobile device in response to a user input within a different application running on the mobile device. After the payment application is active, a purchase is confirmed within the payment application such that the request is sent responsive to the confirming and without authenticating the user within the payment application.
A wireless communication device in a wireless communication network system that includes a plurality of wireless communication devices, the inside of the system being divided into zones each having a predetermined geographic area, includes a processing unit that, upon receiving a disaster warning message including predicted position information on an occurrence source of a disaster and disaster-influencing information indicating an area to be influenced by the disaster, calculates a disaster-stricken zone including the occurrence source based on the predicted position information, and an affected zone to be influenced by the disaster based on the disaster-influencing information, and performs any one of a process to transfer data that the own device has and a process to change a transfer route from the own device to a destination device, according to the relationship between a zone in which the own device is positioned, and the disaster-stricken zone and the affected zone.
Methods and nodes for coordinating communication sessions are described herein. A method includes providing, by a control system, a signaling anchor point at a domain transfer function in a visited multimedia subsystem for an access signaling leg and a remote access signaling leg for a communication session between a user element and a public service access point and coordinating call signaling for the communication session via the access signaling leg and the remote signaling leg.
The invention relates to an apparatus, method and a computer program product for establishing a request for a session by an application server, determining by an emergency related local service function that the session includes an emergency session, wherein the emergency related local service function is co-located at the application server, and, transmitting the request for the session to an emergency call state control function of the internet protocol multimedia subsystem based on the determination.
A mobile communication terminal for controlling call termination based on a user's gaze includes a call answer and decline judging unit configured to compare a user's gaze movement frequency with preset call answer and call decline frequencies and judge a call answer or a call decline according to frequencies coinciding with each other; and a call termination control processing unit configured to perform a call mode or a call refusal mode according to the judgment of the call answer and decline judging unit.
Message forwarding by communication devices is conditionally and/or automatically controlled. A network message management component and/or handset message management component can monitor messages (e.g., short message service (SMS) messages) communicated between user equipment (UE) in a communication network, identify and/or intercept a message for which one or more forwarding conditions have been specified by the message originator, target, or forward target, and conditionally and/or automatically route the message to the target and/or forward target in accordance with predefined message routing rules based at least in part on the conditions specified by the originator, target, or forward target. The predefined message routing rules can be implemented by the network and/or the UEs, and can relate to the UE identifiers, time, priority, cost, operation state, size, desired automatic response messages, or other desired factors, associated with the message.
The invention relates to an electronic short messaging and advertising method where minimal initiative is required from the consumer. Some embodiments of the invention may also be applied to an electronic sales method. The invention may also be applied for normal short messaging. The electronic short messaging method for collect calling may send transmissions to at least one subscriber terminal via the Internet and/or the telephony network. The method may include sending a first transmission to a recipient subscriber terminal for display, wherein the first transmission defines one or more active alternatives including at least one of initiating a collect call and deleting the first transmission. The method may also include calculating costs associated with at least one of the first transmission and the one or more active alternatives.
Methods, systems and devices are provided for managing press-to-transmit (PTX) communications on a PTX device, including include receiving at a recipient PTX device a first indication that a floor grant has been granted to an originating PTX device. Also, determining whether a PTX message segment from the originating PTX device should be buffered for delayed playback by the recipient PTX device. Further, transmitting a buffer signal based on determining the PTX message segment should buffered, the buffer signal indicating one of a request to buffer the PTX message segment and a recipient storage indication signifying the PTX message segment will be stored in a memory of the recipient PTX device. Further still, transmitting a ready signal indicating the recipient PTX device is ready to output PTX message segments.
A reporting server receives reports on content items being accessed by a plurality of UE devices through a first multicast/broadcast single frequency network (MBSFN). The reporting server determines, for each content item being accessed, which of the UE devices is accessing the content item. The UE devices are then grouped by the accessed content items such that at least one content item is accessed by a first group of UE devices and not accessed by a second group of UE devices. The reporting server then sends data representing the first and second groups to a broadcast video provisioning system (BVPS) with a recommendation to split the MBSFN into second and third MBSFNs. In another implementation, the reporting server receives reports from fourth and fifth MBSFNs and recommends joining the fourth and fifth MBSFNs to form a sixth MBSFN if broadcast bandwidth requirements are met.
A method and apparatus for generating and using location information is provided to a user of a mobile device. The method involves obtaining and processing a location history of the mobile device to determine locations of significance; automatically generating potential location identifiers associated with the locations of significance; and prompting, at a determined appropriate time, for user input for refining the set of one or more potential location identifiers into a customized location identifier.
In an embodiment, a method provides for receiving commands within a mobile communications application running on a mobile communication device. The method includes monitoring text entered into a text input region of a touchscreen keyboard module within a user interface on the mobile communication device for an interrupt code, and detecting an interrupt code. The method also includes determining a command from a plurality of commands, based on user inputs following the interrupt code, identifying an action from a plurality of actions corresponding to the plurality of commands, and initiating the action corresponding to the command.
The exemplary embodiments provide a computer implemented method, apparatus, and computer usable program code for managing location-based services provided via a wireless access point. A signal is received from a client device by at least one wireless access point. A distance the signal has traveled to the at least one wireless access point is determined. A determination as to whether the client device is within an allowed range of the at least one wireless access point is made based on the determined distance. Responsive to a determination that the client device is within an allowed range, a location of the client device is determined. Location-based service information is sent to the client device based on the determined location of the client device.
Embodiments of the invention provide for a wireless computing device that comprises a set of one or more radio components to transmit and receive wireless communications on the device. Additionally, the wireless computing device includes processing and memory resources that individually or in combination provide multiple wireless applications, a radio object, and an arbitration component. The multiple wireless applications are each capable of generating a user-interface for enabling user-input in connection with wireless activities performed with that wireless application. The radio object interfaces the multiple applications with the set of one or more radio components. The arbitration component is configured to arbitrate at least one of (i) requests made by each of the wireless applications to the radio object for access to one or more of the radio components in the set, or (ii) responses from the radio object to requests made by each of the wireless applications.
The quality of a multicast broadcast that is being received by a mobile device may be determined. In one implementation, a method may include receiving a radio signal corresponding to a multicast broadcast of content; measuring a strength of the received signal; determining a minimum signal strength to receive the content associated with the multicast broadcast; determining a signal quality metric, associated with the multicast broadcast, the signal quality metric being based on a difference between the measured strength of the signal and the determined minimum signal strength; and providing a visual indication of the signal quality metric.
A loudspeaker arrangement includes a loudspeaker and a trigger circuit for electrically triggering the loudspeaker. The loudspeaker has a loudspeaker diaphragm for generating an acoustic signal. A digital pulse test signal is applied to the loudspeaker via the trigger circuit during a respective test sequence, the digital pulse test signal having a duty cycle that is predetermined to change such that the duty cycle increases over a plurality of periods of the test sequence at the beginning of the test sequence, and the duty cycle decreases over a plurality of periods of the test sequence at the end of the test sequence. During the respective test sequence, a measurement variable, representative of a voltage drop on a reference circuit connected in series to the loudspeaker, is detected, and the loudspeaker arrangement is classified as functional on the basis of a comparison of the measurement variable and a predetermined reference value.
In a sound output system including: an information processing apparatus; a first output device; and a second output device, the information processing apparatus generates, based on predetermined information processing, a first sound signal to be outputted to the first output device, and a second sound signal that is a sound signal to be outputted to the second output device and has a content different from that of the first sound signal. When headphones are connected to the second output device, the second sound signal is generated such that at least a part of a first sound which is not outputted as a second sound when no headphones are connected, is contained in the second sound, and the second sound is outputted from the headphones.
The present idea refers to an apparatus for generating an adapted audio file. The apparatus comprises an identification unit (51) for supporting identification of a frequency range (fr) associated with an auditory disorder of a user of the apparatus, and an adaptation unit (52) for adapting a frequency characteristic of an audio file (af) representing a track of music which adaptation is subject to the identified frequency range (fr). An audio player (6) is provided for playing the adapted audio file (aaf).
A wearable computing device is authenticated using bone conduction. When a user wears the device, a bone conduction speaker and a bone conduction microphone on the device contact the user's head at positions proximate the user's skull. A calibration process is performed by transmitting a signal from the speaker through the skull and receiving a calibration signal at the microphone. An authentication process is subsequently performed by transmitting another signal from the speaker through the skull and an authentication signal is received at the microphone. In the event that frequency response characteristics of the authentication signal match the frequency response characteristics of the calibration signal, the user is authenticated and the device is enabled for user interaction without requiring the user to input any additional data.
Techniques for testing a wireless communications device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a system and method for testing a wireless communications device. The method may comprise generating an audio test signal. The audio test signal may be transmitted to a wireless communication device through a wireless base station simulator via a VoIP application. The method may also comprise receiving an output signal, where the output signal may be generated by the wireless communication device and transmitted to a telecoil probe. The method may further comprise processing the output signal by comparing the output signal with the audio test signal.
A handheld condenser microphone is provided with a condenser microphone unit having two unidirectional condenser elements. A conductive fabric 221 is put between a lock ring 213 and the second condenser element 10b, when an acoustic-electric transducer 220 is fixed inside a unit case 210 by fastening force of the lock ring 213.
An inner magnetic transducer with multiple magnetic gaps and multiple coils, and a preparation method thereof. The inner magnetic transducer with multiple magnetic gaps and multiple coils includes a non-magnetic material frame and a non-magnetic material bearer frame. The inner magnetic transducer with multiple magnetic gaps and multiple coils includes two or more coaxial annular magnetic gaps with the same diameter value, two suits of symmetric magnetic paths, and a symmetric coil. In the transducer, enwinding direction, connection mode and parameters of coils are decided, in order to ensure that the value of the inductance of coils and the opposing electromotive force obtained during the process of moving to and fro are counteracted by each other. The inner magnetic transducer with multiple magnetic gaps and multiple coils has resistance load character or approximately has a resistance load character, simultaneously, has high sensitivity, high analytic capability, and high fidelity.
A method and an apparatus for reducing current consumption in a mobile terminal are provided. The mobile terminal includes a power supply unit for outputting a paging power signal that repeats power on and off states and a microphone bias according to a paging period previously set by a network, a connection unit for connecting the peripheral device and for outputting a connection detecting signal when connection of the peripheral device is detected, a determination unit for receiving the paging power signal and the connection detecting signal as an input signal and for generating and outputting a microphone bias apply signal when a power on state of the paging power signal is detected, and a controller for controlling application of the microphone bias apply signal to the connection unit when the controller receives the microphone bias apply signal.
A method for controlling a loudspeaker arrangement in a vehicle. The loudspeaker arrangement can be adjusted to at least an inoperative position, a projecting position, and an operating position. An operating state of the vehicle is detected and the loudspeaker arrangement is automatically adjusted between the inoperative position and the projecting position depending on the operating state of the vehicle. An operating state of an audio apparatus of the vehicle is detected and the loudspeaker arrangement is automatically adjusted between the projecting position and the operating position depending on the operating state of the audio apparatus.
Broadly speaking, the embodiments described herein relate to a media apparatus that can be used in conjunction with a host device to provide an end user a pleasurable listening experience especially during periods of physical activity. In the described embodiments, the host device can take the form of a portable media player. In particular, the media apparatus can include a listening device.
An object of the present invention is to provide a suspension for a sound transducer which has a central portion serving as a center diaphragm and which has a cover layer and a copper pattern partially removed to prevent a decrease in sound pressure from being caused by an increase in weight of a vibration system. According to the present invention, there is provided a suspension for a sound transducer which includes a central portion, a peripheral portion, and a support portion for connecting the central portion to the peripheral portion, the suspension comprising: a base film, a conductive film attached on the base film by means of an adhesive, and a cover layer attached on the conductive film by an adhesive, wherein at least part of the cover layer disposed on the central portion is removed.
A packet switch that scales gracefully from a capacity of a fraction of a terabit per second to thousands of terabits per second is disclosed. The packet switch comprises edge nodes interconnected by independent switch units. The switch units are arranged in a matrix having multiple rows and multiple columns and may comprise instantaneous or latent space switches. Each edge node has a channel to a switch unit in each column and a channel from each switch unit in a selected column. A simple path traversing only one of the switch units may be established from each edge node to each other edge node. Where needed, a compound path comprising at most two simple paths may be established for any edge-node pair. In a preferred configuration, the switch units connect at input to orthogonal sets of edge nodes. A distributed control system expedites connection-request processing.
A passive connectivity optical module (“PassCOM”) is disclosed. A PassCOM is a passive device without a switching functionality. A PassCOM connects links between a plurality of nodes using replaceable plugs. The device can be used for an internal inter-node switching system, where each node is capable of sending data to a destination using a specific link. A source node sends data through a particular link that is connected to a link from a destination node in the PassCOM. Data is first sent from a source node through a link connecting the source node and the PassCOM, then the data is transmitted, through a plug, to the destination node using a link connecting the PassCOM and the destination.
An energy storage system having a number of trays with each tray having a number of battery cells in which power is controllably stored and discharged. A first Battery Management System (BMS) is electrically coupled to a tray contained in a rack of trays. A second BMS is electrically coupled to and controls the first BMS. The first BMS includes a control unit electrically coupled to and controlling the battery cells. It further includes a switch unit electrically coupled to the control unit and selectively applying driving power according to a control signal from the second BMS.
A metering device may be configured to communicate with other devices on a plurality of metering communication networks. To enable such communications across various networks, the metering communication device may use an active utility identifier corresponding to the metering network in which it is actively communicating. The active utility identifier may be changed to a valid utility identifier corresponding to another metering network and which may be associated with the metering communication device itself. The metering communication device may use the changed active utility identifier to communicate with other devices on the other metering network having the valid utility identifier. For example, the metering communication device may change the active utility identifier to enable communication a test network from a production network, a production network to a test network, or a first test network to a second test network.
A method for operating an image display apparatus includes displaying a timeline indicating past, current and future time regions based on a current time, displaying first information about a past broadcast program in the past time region, displaying second information about a current broadcast program in the current time region, displaying third information about a future broadcast program in the future time region. Items included in the first information may be displayed in a list type format and items included in the second information and the third information may be displayed in a thumbnail type format. Therefore, since visually differentiated content is displayed along the timeline, it is possible to support various functions and to increase user convenience.
A content synchronization apparatus is provided. The content synchronization apparatus includes a communication unit configured to communicate with a device that the content synchronization apparatus can synchronize content with, a control unit configured to, in response to a synchronization command to share current content being played by the device being received, share the current content by acquiring the current content and state information corresponding to the current content through the communication unit, synchronize the current content with the device using the current content and the state information, and configure a display screen based on the results of the synchronization of the current content with the device, and an output unit configured to display the configured display screen.
An antenna for broadcast television programming includes a tuner and demodulator located with the antenna to generate a demodulated television program stream. A network interface is connected to the tuner and demodulator to provide the television program stream to a network, preferably a wireless network. A television set located remotely from the antenna receives the television program stream via the network and displays the program. A portable control device may be connected to the network. Reception of the broadcast programming is improved by controlling the directionality of the antenna in response to the demodulated signal. A service provider may poll the wireless network antenna to determine which broadcast programs are received and may provide extended programming television programs to the user by an internet connection to the user's network.
An image processing apparatus includes an acquisition unit configured to acquire information about field of view associated with a plurality of video data, and an extraction unit configured to extract, from video data with a wide field of view which includes an area indicated by information about the field of view of the video data displayed in timing at which an instruction for setting frame video data extracted from video data is input and is associated with the information about the field of view indicating an area wider than the area among the plurality of the video data, the frame image data corresponding to the timing.
The method and system for TV user profile data prediction and modeling allows accurate and narrowly focused behavioral clustering. A client-side system classifies television consumers into representative user profiles. The profiles target individual user advertising and program preference category groups. A contextual behavioral profiling system determines the user's monitor behavior and content preferences, and the system may be continually updated with user information. A behavioral model database is queried by various system modules. The programming, including targeted advertising for television and interactive television is based on the profile data prediction, modeling and preference determination. The system is enabled to present a complete program sequence to the viewer based on the preference determination and stored programming. The latter is referred to as automatic program sequence (virtual channel) creation and the virtual channel can be presented as a separate channel in an electronic programming guide (EPG).
An information processing apparatus which communicates with an image capturing apparatus and reproduces video data obtained by the image capturing apparatus, comprises a unit which requests a segment list in which information of segments of video data is written; a unit which acquires the requested segment list; a unit which decides which segment, from the segments in the acquired segment list to request; a unit which requests the decided segment from the image capturing apparatus; and a unit which acquires the requested segment, in the case where a number of segments in the acquired segment list is greater than a first threshold, a predetermined segment from the segments in the segment list is requested and the predetermined segment is neither the latest segment nor the earliest segment in the segment list.
A method and apparatus for securely and remotely enabling the playing of a media program encrypted by a content encryption key over the Internet is disclosed. A license encryption key and a content decryption key are separately and securely transmitted to the receiver. The license encryption key is stored in the CAM and later used to decrypt the content encryption key so that the media program may be recovered.
Systems and methods are disclosed for providing correlated programming information for broadcast media content and streaming media content. In one implementation, a processing device receives first programming information, the first programming information including scheduling information for media content originating at a first source. The processing device generates, based on media content originating at a second source, second programming information, the second programming information including scheduling information for the media content originating at the second source. The processing device correlates the second programming information with the first programming information. The processing device provides, at an interface, (a) the first programming information and (b) the second programming information as correlated with the first programming information.
An affinity mapping service system allowing a video service provider to perform one or more automatic actions related to a video content item (e.g., automatically recording the video content item, recommending similar video content, automatically tuning to a channel airing the video content item, providing a notification when the video content item is airing, etc.) based on an affinity selection made by a user for a content object related to the video content item is provided. The user is enabled to selectively pair a social networking service identifier (e.g., username, handle, etc.) with a video service account. An affinity selection made by the user via a social networking service in association with a video content item is communicated to the video service provider and mapped to an automatic action for the video service provider to take based on action preferences selected by the user.
There is provided a node for facilitating time distribution in communication networks, and more specifically for time synchronization in digital television (DTV) distribution network. The node comprises an interface, a clock for establishing a local time, and a time-locked loop. The interface is configured for interconnecting the node to at least one neighboring node over an isochronous transport link for transmission and reception of repetitive frames comprising time information. The time-locked loop is configured for, based on remote time information received via the interface and local time information from the clock, synchronizing the clock to the clock of one of the at least one neighboring node. This facilitates that the node, or a corresponding synchronous network comprising nodes according to the inventive concept, is rather insensitive to network delays. In this way the requirements on the network infrastructure are reduced. In particular, there is no need for dedicated networks. Further, a synchronous network, a method for the node and a method for a synchronous network is provided.
A system, method, and computer program product are provided for receiving device instructions from one user to be overlaid on an image or video of the device for another user. In use, at least one of an image and video of a device is received from a first user via a network. Additionally, at least one instruction for the device is received from a second user, in response to the receipt of the at least one of the image and video of the device. Furthermore, the at least one instruction is provided to the first user for display as an overlay to the at least one of the image and video of the device.
The invention relates to a method for deblocking filtering a macroblock (M1) on the basis of a coding standard for image information which is stored in macroblocks (M1, M2) which are arranged adjacent to one another horizontally in macroblock rows and adjacent to one another vertically in macroblock columns, wherein each macroblock (M1, M2) is formed from blocks (B) which are arranged adjacent to one another horizontally in block rows M and adjacent to one another vertically in block columns n and form block elements Mmn, where m=1 to 4 and n=1 to 4, of a first matrix M, wherein the blocks (B) have vertical edges (14, 15) and horizontal edges (18, 19), which each provide external boundaries for the blocks (B), and, starting with the block element MII, the vertical edges (14, 15) and the horizontal edges (18, 19) of the blocks (B) of a macroblock (M1, M2) are filtered, in which a context region (K1) comprising the blocks (B) of a first macroblock (M1) to be filtered is stipulated which is formed from blocks (B) which are arranged adjacent to one another horizontally in block rows o and adjacent to one another vertically in block columns p and form block elements Kop, where o=1 to 7 and p=1 to 7, of a second matrix K, wherein the block elements K1-S, where r=3 to 6 and s=3 to 6, correspond to the block elements Mmn, where m=1 to 4 and n=1 to 4, of the first matrix M. Next, the vertical edges (1, 3) and horizontal edges (2, 10) of the blocks (B) of the context region (K1) are filtered, starting with the block element KII of the second matrix K, on the basis of the coding standard for image information.
A method and apparatus for decoding a video signal are disclosed. A method for decoding a video signal includes obtaining block type information of a current block, confirming a prediction mode of the current block based on the block type information, obtaining, if the prediction mode of the current block is an intra prediction mode according to the prediction mode, at least one correlation parameter information using at least one neighboring pixel of the current block, obtaining an intra prediction value of the current block using the correlation parameter information, and reconstructing the current block using the intra prediction value of the current block.
There are provided methods and apparatus for in-loop artifact filtering. An apparatus includes an encoder for encoding an image region. The encoder has at least two filters for successively performing in-loop filtering to respectively reduce at least a first and a second type of quantization artifact.
A moving image encoding and decoding system reduces compressed moving picture data amounts by producing a prediction signal suitable for moving pictures including dynamic textures. The system includes a moving picture encoding device 1 that includes a block divider 102 receiving a target pixel signal, a prediction signal generator 103 producing a prediction signal, a subtractor 105 producing a differential signal, and a transformer 106 and quantizer 107 producing an encoded differential signal. The encoding device 1 also includes an inverse quantizer 108 and inverse transformer 109 producing a decoded differential signal, an adder 110 producing a reproduction signal, a frame memory 104 storing the reproduction signal as a reference image, and a reference image generator 113. The reference image generator 113 may obtain an observation matrix C by using a pre-existing reference image. The encoding system 1 produces a new reference image y″t+5 based on the observation matrix C and a state vector xt+5, and stores the new reference image in the frame memory 104. The prediction signal generator 103 produces the prediction signal by using at least the new reference image y″t+5.
A temporary prediction mode determining unit temporarily determines a prediction mode used to code a coding target pixel, based on a relation between the decoded value of a locally decoded pixel neighboring at least one line above the coding target pixel and the decoded values of locally decoded pixels surrounding the neighboring pixel, and then sets a temporary prediction mode index. A final prediction mode determining unit finally determines a prediction mode used to code the coding target pixel, based on the temporary prediction mode index of the coding target pixel and the relation between the decoded value of a locally decoded pixel located at least to the left of the coding target pixel and the decoded values of locally decoded pixels surrounding the pixel located to the left.
Methods and apparatus are provided for DC intra prediction mode for video encoding and decoding. An apparatus includes a video encoder for encoding image data for at least a portion of an input picture by deriving a direct current prediction value from a pre-determined constant and using the derived direct current prediction value for a direct current intra prediction mode. The portion is encoded using the direct current intra prediction mode.
An object of the embodiments is to achieve an improved reference picture handling. That is achieved by taking into account whether the reference pictures in the decoded picture buffer are long-term reference pictures or short-term reference pictures when determining how they should be marked when the information of the reference picture set is received. The reference pictures are marked as “used for short-term reference” or “used for long-term reference” in the Decoded Picture Buffer (DPB) depending on whether they are included as short-term pictures or long-term pictures in the RPS of a current picture.
A method for realizing adaptive quantization in image encoding and dequantization in image decoding is disclosed. In the adaptive quantization method, an image to be encoded is divided into one or more blocks, and each block is transformed to obtain one or more transform coefficients, the method comprising: acquiring parameter information of neighbor blocks of a current block; determining a quantization mode for the current block according to the parameter information of the neighbor blocks; and quantizing transform coefficients of the current block in the determined quantization mode. The quantization mode includes at least one of quantization matrix, quantization parameter and quantization step.
Provided is a pattern position detection method that allows detecting positions of patterns used for alignment with high accuracy. According to the pattern position detection method of the present invention, patterns are displayed on a liquid crystal panel (2) and captured by a camera (3). A black image is displayed on the liquid crystal panel (2) and captured by the camera (3) using a shutter speed or an f-number used when capturing the patterns. Based on a difference between a captured image of the patterns and a captured image of the black image, positions of images of the patterns on an imaging surface of the camera (3) are detected.
A method and system that assesses video quality of transmitted video packet signals suffering from packet loss and delay. This packet loss and delay can create freeze events, which are observed as a jerkiness while viewing the video. The system and method compares the frames in a video transmission to determine freeze events; extracts a set of features from the locations of the freeze events and decoded video frames; and maps the set of features into a video quality score using a neural network. The video quality score provides an assessment of the effects of irregular frame freezes due to packet loss or delay on the quality of the video.
An image processing method according to the present invention acquires a first image and second image that are picked up through a single image-taking optical system, that are images after a pupil division, and that have a parallax to each other, and then performs a filtering process for each pixel of the first and second images, using first and second transform filters that correspond to the parallax for the pixel and that are of first and second transform filter groups to be respectively applied to the first and second images for the transform into third and fourth images in which the parallax amount and blur amount of the first and second images have been altered.
A recording apparatus of moving image data generates first moving image data and second moving image data having less number of pixels than the first moving image data, outputs the generated moving image data by using a plurality of output channels which conform with a predetermined format, determines the number of the second moving image data to be generated on the basis of an output state of the moving image data which is output by using the output channels in the case where the first moving image data is output in accordance with the predetermined format, and generates the second moving image data of the determined number in parallel with the outputting of the first moving image data.
This disclosure provides pixel arrays made up of a clear pixel and a color pixel. The color pixel includes a first photo-detecting element and a color pixel access transistor to selectively couple the first photo-detecting element to a first charge-storage node. The clear pixel includes a second photo-detecting element and a clear pixel access transistor to selectively couple the second photo-detecting element to a second charge-storage node. The color pixel access transistor transfers a first charge per unit time between the first photo-detecting element and the first charge-storage node. The clear pixel access transistor transfers a second charge per unit time between the clear pixel access transistor and the second charge-storage node. The first charge per unit time is less than the second charge per unit time to mitigate blooming. In other embodiments, the clear pixel includes an excess-charge transfer path that couples the clear pixel to a DC supply node to mitigate blooming.
Systems, methods and devices for monitoring an electric vehicle charging station (EVCS) are disclosed. A security system is disclosed for monitoring an EVCS having an electrical connector for electrically coupling to an electric vehicle. The security system includes a camera for recording images of a surrounding area of the EVCS. A sensor detects objects near the EVCS and/or detects removal of the electrical connector from the EVCS. A controller, which is operatively coupled to the camera and the sensor, is configured to: receive sensor signals output from the sensor; responsive to the sensor signals indicating that an object is near the EVCS or the electrical connector is removed from the EVCS: direct the camera to record images of the surrounding area of the EVCS; output to a user the images of the surrounding area of the EVCS; and, receive user command signals to control the EVCS and/or the security system.
A function of being controlled by a second monitor camera controller is added to a first monitor camera controller which controls a plurality of monitor cameras. The second monitor camera controller is caused to recognize the first monitor camera controller as a monitor camera. The first monitor camera controller synthesizes videos from the monitor cameras as one video, and transmits the synthetic video to the second monitor camera controller. Control of the monitor cameras or acquisition of videos is conducted by controlling the first monitor camera controller recognized as a monitor camera by use of a control function of a part or all of pan, tilt and zoom.
A method of initiating a cycle of operation based on a consumable includes providing a consumable reader having a software architecture configured to image data, communicate over a network, and identify functionalities of appliances based on a unique identifier associated with each instance of a functionality, imaging data about the consumable using the consumable reader; retrieving cycle data associated with the consumable based on the imaged data; ascertaining in the software architecture at least one functionality associated with the cycle data; selecting from the plurality of appliances an appliance having the at least one functionality using the unique identifier associated with an instance of the at least one functionality; and communicating the cycle data to the selected appliance over the network of appliances wherein the selected appliance can conduct a cycle of operation associated with the consumable using the cycle data.
A media service presentation method, communication system and related device are provided, in which the media service presentation method comprises: obtaining the media presentation information; presenting media services to a user according to the service presentation information. By obtaining the media service presentation information, the media services are presented to the user according to the service presentation information. In this way, the scene SVG-based description is not necessarily needed, which in turn simplifies the terminal's computing process, improving the terminal's performance, and improving user experience.
A method and computing system for enabling a video conference between a plurality of video conference participants. A video feed associated with the video conference is broadcast to a plurality of viewers. A plurality of interactions are received from a plurality of submitters included within the plurality of viewers. A chosen interaction is selected from the plurality of interactions. The submitter associated with the chosen interaction is invited to join the video conference.
Previously-produced motion pictures are enhanced for theatrical exhibition, at double the frame rate at which they were originally produced. New, rendered images are interpolated between each of the images of the original motion picture. These new images are generated by computer software that analyzes the actual horizontal and vertical displacement of each pixel of every image of the original motion picture, so the interpolated images accurately depict the exact image that would have been captured, if the original motion picture had originally been produced at double the actual frame rate of production. This enhancement technique can be used for an entire motion picture, or selectively for certain scenes or sequences. For image components containing complex motion, those components are selected for treatment to correct for such complexity. The entire process can be executed automatically. In the preferred embodiment, the pictures are projected through digital means at 48 frames-per-second.
A technique capable of preventing an increase in the load of a system and a IP-based network that perform both a process of transmitting information in real time and a process of storing and searching history information and of improving the scalability of the system. A video surveillance system includes: plural cameras that capture images; a monitoring apparatus that displays the images captured by the cameras; an information generating apparatus that generates information for searching the images captured by the cameras; and a search apparatus that searches the images captured by the cameras. The information generating apparatus acquires the images captured by the cameras, generates retrieval data from the acquired images, and transmits the generated retrieval data to the search apparatus. The search apparatus stores the retrieval data received from the information generating apparatus in a storage device, and notifies the monitoring apparatus that the retrieval data has been stored.
A display apparatus and a display method are provided. The display apparatus includes: a receiver configured to receive a plurality of contents; a signal processor configured to obtain image frames by processing the received plurality of contents; a display configured to output a plurality of content views including a first content view and a second content view by sequentially outputting the obtained image frames; a remote control signal receiver configured to receive a control command from a remote control apparatus; and a controller configured to, when the received control command is to control the first content view, determine whether the received control command is a control command that has an influence on the second content view.
This invention relates generally to a content integration and delivery system and a method of using the same. In particular, the present invention relates to a system that integrates digital video content with object-oriented script (hotspots) to provide object specific marketing, including potential channels of distribution, such as internet shopping. The system includes the process of identifying and marking the relative location of specific objects within digital media and providing an outlay for the users to locate the object over the global system of interconnected computer networks (e.g. Internet). By using the disclosed interactive platform, a user can easily view, display, select and purchase any featured product in the video through Internet.
An image sensor includes a plurality of pixels, a plurality of sense circuits, and a count circuit. Each sense circuit is configured to read out electrical signals from at least one pixel associated with the sense circuit in order to generate data representing whether or not photons have been received by the sense circuit. The count circuit is in communication with a sense circuit selected from the plurality of sense circuits. The count circuit is configured to provide integration results for the pixels associated with the sense circuits based on the data received from the sense circuits.
Provided is an image pickup device that includes: pixels each including a photoelectric conversion element and one or more switching elements; control lines provided to perform open/close control of at least one first switching element; a buffer circuit provided for each control line, and configured to output a voltage to each control line; second switching elements each provided between corresponding one of the control lines and a power source of the corresponding buffer circuit; and a switch control circuit that is, upon image pickup driving, configured to control one of the second switching elements, provided between a defect holding line that includes an electrically short-circuited part in the plurality of control lines and the power source of the buffer circuit of the defect holding line, to be in an open state, and configured to control another one of the second switching elements to be in a closed state.
A method, system and computer program product for improving the perceptual quality and naturalness of an image captured by an image acquisition device (e.g., digital camera). Statistical features of a scene being imaged by the image acquisition device are derived from models of natural images. These statistical features are measured and mapped onto the control parameters (e.g., exposure, ISO) of the digital acquisition device. By mapping these statistical features onto the control parameters, the perceptual quality and naturalness of the scene being imaged may be based on the values of these control parameters. As a result, these control parameters are modified to maximize the perceptual quality and naturalness of the scene being imaged. After modification of these control parameters, the image is captured by the image acquisition device. In this manner, the perceptual quality and naturalness of the image captured by the image acquisition device is improved.
A system and method for estimating an ambient light condition is using an image sensor of a digital camera. An array of pixels is obtained using the image sensor. A matrix of grid elements is defined. Each grid element comprises multiple adjacent pixels of the array of pixels. A first measurement value is generated for a grid element of the matrix of grid elements based on the pixels associated with the grid element. A set of grid elements are identified having a first measurement value that satisfies a brightness criteria. A second measurement is generated using the identified set of grid elements. A simulated-light-sensor array is generated using the second measurement value. An estimate of the ambient light condition is calculated using the simulated-light-sensor array.
An infrared thermal imaging system includes a focal plane array (FPA) of infrared detectors, read out integrated circuitry (ROIC) operatively coupled to the FPA, and a microcontroller having at least one video display interface operatively coupled to the ROIC. The FPA is configured to generate an output signal in response to infrared radiation impinging upon the infrared detectors. The microcontroller is configured to send data to the ROIC via the at least one video display interface, the data including non-uniformity correction terms for correcting non-uniformities of the FPA.
An image detection assembly includes a light source that is configured to generate at least one pulsed light beam. A modulator is configured to direct the pulsed light beam onto a device via a plurality of light patterns such that a plurality of electrical signals are generated by the device. Each electrical signal corresponds to a different light pattern. A signal processing apparatus is coupled to the device and the signal processing apparatus is configured to receive the electrical signals and to digitize each electrical signal to record a plurality of signal vectors such that each signal vector corresponds to a different electrical signal. The signal processing apparatus is also configured to generate at least one image output based, at least in part, on the recorded signal vectors and the light patterns such that the image output enables a determination of at least one transient effect on the device.
An imaging apparatus includes an imaging unit, a first display unit, a second display unit, and a controller. The imaging unit is configured to obtain an image of an object. The first display unit is configured to be observed through an ocular lens. The second display unit includes a touchpanel. The controller is configured to cause the first display to display a live view which is based on the image obtained by the imaging unit and temporarily store the image in a first state. The controller is configured to cause the second display unit to display the image temporarily stored and obtain information concerning image processing based on an output from the touchpanel in a second state.
A single user input element in an image capture device is used for both photo and video capture. Based on a first user interface activity, a timing reference is engaged at a first reference time. In a first case, photo capture is performed. In the first case, a second reference time is based on a second user interface activity, and the timing reference indicates a passage of time between the two reference times is shorter than a particular time interval. In a second case, video capture is performed. In the second case, the timing reference indicates a passage of time since the first reference time is equal to or longer than the particular time interval. Video capture is stopped based on a subsequent user interface activity. The user interface activities may comprise detecting actions based on the same type of physical manipulation of the single user input.
An imaging device includes an imaging unit that receives light coming from a subject and thus generates electronic image data; a display unit that displays an image corresponding to the image data; an angle-of-view setting unit that an angle of view to be changed for the image displayed by the display unit according to a first signal input from the outside; and a control unit that starts control of change to a predetermined angle of view set by the angle-of-view setting unit according to a second signal different from the first signal.
An image pickup apparatus includes an image pickup unit including a plurality of photoelectric conversion elements provided correspondingly to each of microlenses arranged two-dimensionally, reads out a first signal through addition from the photoelectric conversion elements corresponding to the microlense, reads out a second signal from one of the photoelectric conversion elements corresponding to the microlense, and sets one of a first and second read-out modes to read signals from the image pickup unit in accordance with a photographing condition, wherein the first and second read-out modes differ in read-out density of the second signal in a read-out area in accordance with one of a thinning-out rate and an addition rate of a area from which the second signal is read out being different as compared to a area from which the first signal is read out.
Disclosed is a camera module. The camera module according to one embodiment includes a lens barrel disposed in a housing to receive a lens; a driving unit moving the lens barrel relative to the housing; and a circuit board electrically connected to the driving unit. The driving unit includes a first driving unit in the lens barrel; and a second driving unit in the housing. A portion of the second driving unit directly makes contact with the circuit board.
A camera apparatus includes: a camera main body having a single plate type imaging section; and a handle mounting section for mounting a handle on an upper portion of the camera main body, wherein a lens for a three-plate type imaging section can be mounted on a lens mount section of a front portion of the camera main body via a mount adapter, and the handle mounting section mounts the handle on the upper portion of the camera main body so as to be able to move in a front-back direction.
An image pickup lens includes: a first lens group having positive refractive power; a second lens group having negative refractive power; a third lens group having positive refractive power; and a fourth lens group having negative refractive power, arranged in order from an object side to an image side, the fourth lens group being configured to travel along an optical axis through focusing operation. In the image pickup lens, following conditional expression (1) is satisfied, f/f4<−0.35 (1) where f is a total focal length of the image pickup lens, and f4 is a focal length of the fourth lens group.
In one embodiment, a self-leveling camera head may include an eccentric leveling weight assembly that is supported inside an outer housing for free rotation about an axis. The leveling weight assembly may be removably coupled to a separate camera module assembly supported inside the outer housing for rotation about the axis so that its images will be “upright,” i.e. earth normal.
Information corresponding to the degree of compression of lossy-compressed image data to be printed is acquired. Furthermore, based on the acquired information, a providing method of a recording agent when the image data to be printed is expanded and an image based on the expanded image data is printed, is determined.
Common portions of applications are extracted as common system service. A platform is formed by the common system service and a general purpose OS. A printer application, a copy application, and various applications are mounted on the platform. As a result, each software (application) corresponding to a printer, a copier, a facsimile device, and so on can be developed efficiently and the productivity of the apparatus as a whole can be improved.
A method for routing a confirmation of receipt of a facsimile or portion thereof according to one embodiment of the present invention includes analyzing text of a facsimile; detecting at least one document feature of the facsimile based on the analysis; comparing one or more detected document features to a plurality of document features, each of the plurality of document features corresponding to one or more known document types; and routing the confirmation to one or more destinations based on at least one of the comparison and the analysis.Systems and computer program products are also presented.
An image forming apparatus into which applications are installable includes an operation panel and a resolution comparing circuit. The operation panel has a display resolution. The resolution comparing circuit compares the display resolution with resolution of an application screen that an installed application displays. If the resolution comparing circuit determines that the display resolution is higher than the application screen resolution, the image forming apparatus displays the application screen as a screen provided with a frame.
An image forming apparatus, having an SSD as an auxiliary storage device, which is capable of preventing loss of data in the auxiliary storage device caused by lapse of a retention period in a power save state or a power off state. In a case where the auxiliary storage device is determined to be an SSD based on type information that is acquired when the image forming apparatus is activated, a predicted retention period is calculated, and is set in a part of the apparatus that operates in the power save state. The part of the apparatus that operates in the power save state causes the image forming apparatus to transit from the power save state to a normal state based on the set predicted retention period.
A scanner identifies a document size on the basis of the intensity of light outputted in a photometric condition different from a first photometric condition, by photometric units provided to a position subject to determination that is a position excluding a position where light of an intensity not less than a first threshold value is received in the first photometric condition, among a plurality of positions to which the photometric units are provided. The first photometric condition is a condition where a document cover is open and a light-emitting unit is not emitting light.
Systems, apparatuses and methods are provided to allow a multi-functional apparatus to control a mixed mode scan job build. Different types of sheets of documents with various configurations can be combined into a single output document with the various configurations intact.
A method and apparatus is presented for enabling an agent to assume the identity or persona of a called party and process calls directed to the called party. In one embodiment, methods, which enable an agent to assume the identity or persona of a called party, and process calls directed to the called party are considered a call center functions and may be implemented in a call center. A call is initiated to a called party. Initiating the call generates called party information. Using the called party information a server retrieves information associated with the called party and then forward the information associated with the called party to an agent. The call is then forwarded to the agent. As a result, the agent may use the information associated with the called party to assume the identity or persona of the called party when responding to the call.
Method and system for recognizing a numeric or alphanumeric sequence of characters in a document, the sequence conforming to predetermined rules and representing user identifiers for identifying users in a communication system include identifying a country of origin of the document, recalling rules relating to the format of the sequence associated with the determined country of origin, searching the document to identify any sequence in the document satisfying the format and returning any such sequence.
Multi-mode communication devices capable of multiple wireless and/or wired network communication modes can be configured to communicate for backend services (e.g. Web Services, database, events) via a network gateway to operate in response to available modes. For example, for some activities, the devices are configured to communicate in any available mode while for other activities (e.g. high bandwidth communications), they are restricted to certain mode(s). Component applications for execution by the devices can specify message delivery properties to indicate the mode(s) to be used. The network gateway comprises at least one communication subsystem for communicating with the multi-mode device in accordance with selectable modes of communication; a message processor for processing messages for sending to the multi-mode communication device; and a mode selector for selecting a mode for sending a particular message in response to delivery mode properties received from the multi-mode communication device.
Methods and systems related to guided workflows for establishing a web presence include a customer user interface with a guided workflow layer based on a knowledge base about the customer, wherein the customer interface allows a customer to manage a customer's web presence based on operation of a logic engine that accesses information about what a customer has done and who the customer is (e.g. type of business), wherein the user interface presents a guided workflow of tasks associated with a recommended area of improvement for the customer.
A method and system for correlating events with social media is provided. The method includes retrieving from a social network, social network data associated with users of the social network. The social network data is associated with event data associated with a user of the users. Temporary actions associated with a social network account of the user are enabled and a notification is transmitted to a group of users. In response, confirmation data associated with enabling the temporary actions is received from the group of users and permanent actions associated with the temporary actions are enabled.
In a communication system in which a server apparatus on the Internet is connected to at least one client apparatus on an intranet via a firewall, the client apparatus comprises: acquisition means for acquiring, from the server apparatus, information associated with a transmission interval at which notifications are periodically transmitted to maintain the connection to the server; and management means for maintaining the connection by periodically transmitting the notifications based on the information associated with the acquired transmission interval, and the server apparatus comprises: decision means for deciding an interval, in which the connection in the push communication can be maintained in non-communication, based on the communication status information; and notification means for notifying the client apparatus of the decided interval as information associated with the transmission interval used to maintain the connection in the push communication.
There is provided a method for establishing a communication session between a client device of a caller and a client device of a callee, comprising: iteratively attempting to establish a communication session, via a communication interface of a client device of a caller, to a communication address of a client device of one of a plurality of callees represented as contact members stored in an electronic address-book, wherein each respective iterative attempt includes; detecting failure of the establishment of the communication session; applying a set-of-rules associated with the respective contact member and stored in a set-of-rules repository, to attempt to establish a subsequent communication session via the communication interface; and attempting to establishing further communication sessions defined by a sequence of the set-of-rules when previous attempts at establishing communication sessions have failed; wherein each respective communication session allows human language based communication between the caller and the callee.
Various exemplary embodiments relate to a method and related network node including: receiving, at the network device, a traffic message including an IP address; identifying the traffic message as belonging to a new session; generating a request message based on identifying the traffic message as belonging to a new session, wherein the request message includes the IP address; transmitting the request message to a policy server; and receiving, from the policy server, a policy message including a policy. Various exemplary embodiments relate to a method and related network node including: receiving, at the policy server, a request message from a network device, the request message including a subscriber IP and a network device identifier; identifying a subscriber session associated with the IP address; recording the network device identifier in association with the subscriber session; retrieving a policy associated with the subscriber session; and transmitting the policy to the network device.
Some demonstrative embodiments include apparatuses, systems and/or methods of setting up an Application Service Platform (ASP) Peer-to-Peer (P2P) persistent group. For example, an apparatus may include a first ASP to communicate with a second ASP to setup one or more ASP-P2P groups over a wireless communication link, the first ASP is to form each ASP-P2P group only as an ASP-P2P persistent group extendable over a plurality of distinct sessions, the first ASP is to store credentials of the ASP-P2P persistent group for use during the sessions.
In individualized data communication of a data entity (200) between peers of a group, the data entity (200) includes at least one common data piece (210) and at least one non-common data piece (220). The at least one common data piece (210) is shared by all peers of the group, whereas the at least one non-common data piece (220) is shared by a subgroup of the group. A non-common data identifier (600) is used to identify the at least one non-common data piece (220). By receiving the non-common data identifier (600), one peer of the group may determine whether another peer of the group is sharing the same non-common data piece (220).
Systems and methods for providing a user with virtual computing services are disclosed. In one embodiment, a method for providing virtual computing services to a specific user, may comprising: detecting a request generated from a user device of the specific user to access data; in which the data is not accessible by applications installed on the user device; identifying a file type of the data; and providing the specific user access to a remote application or a virtual desktop, in which the remote application or the virtual desktop is configured to allow the specific user to open, execute, edit, and/or access the data.
According to one example of the present invention, there is provided a system for providing a service. The service is accessible from a client application and is provided through a service application using a set of service provider resources. The system comprises a mapping module for generating mapping data, the mapping data being generated in part from an enterprise architecture definition, in part from a vocabulary definition; and in part from a client context definition. The system additionally comprises a communication module for receiving a communication request, transforming the communication request using the generated mapping data, and processing the transformed communication request.
Method of controlling playback of Internet web page video on remote or high quality video displays using a remote control device, such as a smart phone. The method runs a first client browser on the remote control device, which in turn sends commands to a proxy browser with a data buffer. In response to user commands from the remote control device, the proxy browser retrieves and buffers video and non-video web page data from Internet servers, and sends this data to the remote control device. Upon user command, the proxy browser also sends selected buffered data to a second client browser that is connected to the remote or high quality video display. Media player playback commands on the remote control are echoed to a second media player on the second client browser, resulting in good synchronization between devices. Various compression, IP address adjustment, and public key methods are also discussed.
A buffer model in an HTTP streaming client may include receiving a first content fragment of a first content stream in response to a first HTTP request. It may also include receiving a second content fragment of a second content stream in response to a second HTTP request. The buffer model may further include storing the first and second content fragments in first and second buffers of a plurality of configurable buffers. The first and second content fragments may be multiplexed into a third buffer of the plurality of buffers. The multiplexed first and second content fragments may be stored in a fourth buffer of the plurality of buffers for playback. The buffer model may be implemented by an application. The buffers may be designed based on one or more constraints.
Techniques are described for managing execution of programs, such as for distributed execution of a program on multiple computing nodes. In some situations, the techniques include selecting a cluster of computing nodes to use for executing a program based at least in part on data to be used during the program execution. For example, the computing node selection for a particular program may be performed so as to attempt to identify and use computing nodes that already locally store some or all of the input data that will be used by those computing nodes as part of the executing of that program on those nodes. Such techniques may provide benefits in a variety of situations, including when the size of input datasets to be used by a program are large, and the transferring of data to and/or from computing nodes may impose large delays and/or monetary costs.
A determination unit of a transmission apparatus determines a transmission timing of notice data (SR) for informing a reception apparatus that the event data has been transmitted according to a transmission state of the event data. An transmission unit transmits the SR at the timing determined by the determination unit.
A method performed by a conversation manager in a communications network includes establishing a multimedia conversation between a first device associated with a first user and at least one endpoint associated with at least one other user, the multimedia conversation comprising at least two different media types according to respective and different protocol types. The method further includes receiving an instruction to transfer the conversation from the first device of the first user to a second device, adding the second device to the multimedia conversation by establishing connections for the at least two different media types to the second device, and removing the first device from the multimedia conversation by removing connections for the at least two media types to the first device.
Real-time media optimization may be provided. First, a remote session may be established with a remote computing device. Then, during the remote session, non-real-time media data may be exchanged with the remote computing device over a server path. Moreover, real-time media data may be exchanged with the remote computing device over a media path during the remote session.
A system and method for selecting an initial bandwidth setting. A determination is made that a client is initiating a communication session. Network conditions for the client are determined. A bandwidth setting for the client is selected utilizing the network conditions and a previous bandwidth setting saved in a memory. The communication session for the client is initiated utilizing the bandwidth seating.
Methods and systems are provided for adapting security settings of a communication station based on security relevant events. The communication station may be associated with an identification module. A security registry in the identification module may be updated according to an identified security related event occurring in the communication station, and a security level of the communication station may be adapted and/or enforced according to the security registry (e.g., as updated according to the identified even) of the identification module. The security relevant event may be identified and stored in an event registry, in one or both of the communication station and the identification module. The communication station may comprise a workstation and a mobile terminal that includes the identification module.
Technology for policies with reduced associated costs is disclosed. A policy may include an ordered rule set. When evaluated, the highest priority rule in the order that does not skip may control the policy outcome. Rules within a policy may have associated costs, such as data fetch and evaluation costs. In some contexts, it may be less important to evaluate every rule than to evaluate the policy quickly. Reduced policies that have one or more rules removed or that skip evaluation of some rules may be created for these contexts. When a rule of a policy is skipped, it may result in a possibility of a false allow or false deny. In some cases, rules may be duplicative. Removal or skipping of duplicative rules does not increase the possibility of a false allow or false deny. By using reduced policies in identified contexts, policy evaluation costs may be reduced.
Systems, apparatuses and methods are provided for managing information technology devices in an information technology environment in which at least some of the devices are connected to a network, and access of each user in the information technology environment is customized in a convenient manner.
A method for detecting a phishing website includes extracting a domain name from a target URL of a web page under investigation, and querying PageRank and/or Alexa ranking of the domain name; extracting a title character string from the title of the web page and matching the character string to phishing sensitive words; using the title of web page as a keyword to search on a search engine; querying whether Target URL and the web page in the search result with a same title as the web page under investigation have the same domain name server NS and server IP address to determine whether the website is a phishing website. The disclosed method utilizes common features of phishing websites and public resources on the Internet, and overcomes the difficulty in collecting phishing website samples, and is well adapted to detecting phishing aimed at new target websites.
A method of automated security testing includes recording a macro. The recorded macro is played and a web request is intercepted while playing the macro. The web request may be attacked and sent to a web server. A response from the web server based on the web request is received, and the response of the web server is processed to determine any vulnerabilities.
A disclosed computer-implemented method includes receiving and indexing the raw data. Indexing includes dividing the raw data into time stamped searchable events that include information relating to computer or network security. Store the indexed data in an indexed data store and extract values from a field in the indexed data using a schema. Search the extracted field values for the security information. Determine a group of security events using the security information. Each security event includes a field value specified by a criteria. Present a graphical interface (GI) including a summary of the group of security events, other summaries of security events, and a remove element (associated with the summary). Receive input corresponding to an interaction of the remove element. Interacting with the remove element causes the summary to be removed from the GI. Update the GI to remove the summary from the GI.
Embodiments of the present invention are directed to a tethering enforcement device controller and methods thereof. The tethering enforcement device controller (TEDC) is installed on a primary device, or otherwise known as the tethered device. The TEDC is configured to detect, control and block unauthorized or inappropriate tethering with a secondary device, or otherwise known as the tethering device, via either a native or a third-party tethering application, by retrieving a configuration file from a server associated with a wireless carrier. The configuration file typically includes customer profile and currently blacklisted package names of third-party tethering applications. The customer profile typically includes subscription information, including use of tethering services. If the customer is trying to tether and tethering is not allowed, then the TEDC will prevent the secondary device from tethering with the primary device. In some embodiments, the TEDC is an untethering application installed on the primary device.
Methods, systems, and devices for determining a time-expiry algorithm based on a cached and verified security token, a disposition of the security token, and a cache table, where the disposition of the security token is based on whether the received security token is a single-use token or a multiple-use token and where the cache table is selected from two separate cache tables.
A security service determines whether to grant a user access to a resource. The service receives from the user a security term in an obscured form derived from a revealed form of the security term according to a predefined padding scheme known to the user and to the security service. The service applies the padding scheme to the received term to result in a de-padded security term and confirms that the de-padded security term matches the retrieved revealed security term. Additionally, the service confirms that the received term has not been previously employed within a predetermined frame of reference. Accordingly, if the received obscured security term is purloined and re-used within the predetermined frame of reference, the security service denies access to the resource.
A server in a communications network establishes a communication channel between a user's device and another device having a display. Particularly, the server generates a Quick Response (QR) code utilizing one or more parameters, and sends it to a device for display to a user. Using his or her device, the user captures an image of the displayed QR code and extracts the parameters using an image analysis technique. The device then sends the extracted parameters back to the server, which then utilizes them to authenticate the user and establish the communications session.
An example system causes a computer of an information processing device including a restriction unit for restricting use of functions and a handwritten input receiving unit to carry out functions of requesting an input of a handwritten signature, sending, to a server, a result of a handwritten input which has been input in response to the request of the signature input, and receiving the input of authorization information which has been issued by the server that has received the handwritten input result and which shows that the use of the functions is authorized, and moreover cancelling the restriction by the restriction unit when the input of the authorization information is received.
Disclosed are various embodiments for facilitating the anonymization of unique entity information when transmitting data to services. A content server may store entity identifiers that respectively represent entities associated with the content server. The content server may send anonymized responses to requests for data from multiple services, the data being associated with entity identifiers. The anonymized responses may comprise the data requested in association with anonymous entity identifiers as opposed to the entity identifiers. The requesting services may each receive a different anonymous identifier representing a single entity.
In one embodiment, the methods and apparatuses to assign a routing address to a wireless computer that is in a different logical network from the routing addresses of other wireless computers within the same physical wireless network; and to prevent a wireless computer from learning the routing address of another wireless computer within the same physical wireless network.
Some embodiments of the invention provide a novel method for specifying firewall rules. In some embodiments, the method provides the ability to specify for a particular firewall rule, a set of network nodes (also called a set of enforcement points below) at which the particular firewall should be enforced. To provide this ability, the method of some embodiments adds an extra tuple (referred to below as the AppliedTo tuple) to a firewall rule. This added AppliedTo tuple lists the set of enforcement points at which the firewall rule has to be applied (i.e., enforced).
A recursive DNS nameserver system and related domain name resolution techniques are disclosed. The DNS nameservers utilize a local cache having previously retrieved domain name resolution to avoid recursive resolution processes and the attendant DNS requests. If a matching record is found with a valid (not expired) TTL field, the nameserver returns the cached domain name information to the client. If the TTL for the record in the cache has expired and the nameserver is unable to resolve the domain name information using DNS requests to authoritative servers, the recursive DNS nameserver returns to the cache and accesses the resource record having an expired TTL. The nameserver generates a DNS response to the client device that includes the domain name information from the cached resource record. In various embodiments, subscriber information is utilized to resolve the requested domain name information in accordance with user-defined preferences.
A system and method for provisioning a web service for enabling communication between networks running different Internet Protocol (IP) versions includes a processor-implemented communication module and a processor-implemented provisioning module. The processor-implemented communication module is configured to receive provisioning information from a content provider. The provisioning information includes a fully qualified domain name and an Internet Protocol (IP) address of a first IP version associated with the fully qualified domain name. The processor-implemented provisioning module is configured to provision the web service. The web service causes a request by a client device running a second IP version to access a content provider registered to the IP address to be redirected to a proxy server. The web service further causes the proxy server to retrieve the content from the content provider and to provide the content to the client device.
A method for link fault detection and recovery based on Address Resolution Protocol (ARP) interaction, including: configuring an IP address and a mask code, a strategy routing or static routing module and an ARP module for network devices of a home terminal and an opposite terminal; the strategy routing or static routing module regularly inquiring whether an ARP entry to which a next hop corresponds exists, if the ARP entry exists, a link being available, otherwise, notifying the ARP module to perform keepalive on the next hop; and the ARP module performing a process of keepalive on the next hop, and after performing keepalive on the next hop, notifying the strategy routing or static routing module to judge whether the link is available. Further, a device for link fault detection and recovery based on ARP interaction.
A non-transitory machine readable medium storing a program that configures first and second managed forwarding elements to perform logical L2 switching and L3 routing is described. The program generates a first set of flow entries for configuring the first managed forwarding element to perform (1) a first logical L2 processing for a first logical L2 domain, (2) a logical L3 processing, and (3) a second logical L2 processing for a second logical L2 domain. The program generates a second set of flow entries for configuring the second managed forwarding element to determine whether the first managed forwarding element has performed the first logical L2 processing, the logical L3 processing, and the second logical L2 processing.
Embodiments of social media listening, analytics, and engagement systems and method are described herein where a system user may listen to and analyze social media content based on one or more key terms. The system may expand the key terms and listen to additional social media content based on the expanded terms. The system may also enable a user to engage social media participants related to the social media content via multiple campaigns. Other embodiments may be described and claimed.
The present invention aims at offering a mobile communication device allowing the user to identify the sender when the user selects or opens a mail in a mail list by outputting an image and music that have been registered to the address book. Accordingly, when a mail is selected in the mail list of the mail box 401, or when a mail is opened and the mail message is displayed, the received mail display control unit 140 searches a mail address of the sender of the received mail in the address book 301. If the image/music data ID information 303(?) that has been registered in association with the sender of the mail address is present in the address book 301, the received mail display control unit 140 reads image data or music data from the image/music information 302 of the information storage unit 100 based on the image-music data ID information 303. After the brightness of the image is raised so that the image has enhanced contrast, the image is displayed on the display unit 120 as a background image of a mail list or a mail message while the music is output by the audio processing unit 104.
A mobile terminal collects information items identified by a user of the mobile terminal, the collected information items having different formats of data that are to be rendered by different applications at the mobile terminal. The mobile terminal synchronizes itself with the remote server so that the user can access the plurality of information items stored at the remote server from another terminal. Next, the mobile terminal displays some information items in a chronological order. In response to detecting a user selection of one information item, the mobile terminal determines whether data associated with the information item is in the mobile terminal or not. If the data is present in the mobile terminal, the mobile terminal then renders the data on the mobile terminal. Otherwise, the mobile terminal first downloads the data from the remote server and then renders the data on the mobile terminal.
Mechanisms are provided, in a data processing system comprising a host system and a network adapter, for processing received frames of data over a network connection. The mechanisms receive, in the host system from the network adapter, a plurality of frames of data. The mechanisms record, by the host system, for each frame in the plurality of frames, a header size associated with the frame over a current predetermined interval. The mechanisms determine, by the host system, a receive buffer address offset for receive buffers in the host system for a next predetermined interval based on the recorded header sizes of the plurality of frames over the current predetermined interval. In addition, the mechanisms configure, by the host system, the network adapter to utilize the receive buffer address offset to perform data transfers with the host system.
In one example, a controller device for a software defined network (SDN) includes one or more network interfaces configured to communicate with network devices of the SDN, and one or more processors configured to obtain data representative of the network devices in the SDN, instantiate software-based controller objects for controllers of the network devices, instantiate software-based switch description objects for switches of the network devices, wherein the software-based switch description objects each comprise data representative of a respective primary controller corresponding to a controller of the one or more controllers, a respective switch identifier, a respective switch media access control (MAC) address, a respective Internet protocol (IP) address, and a respective array of port description objects for each physical port on the respective switch, and managing, via the network interfaces, at least some of the switches using the switch description objects and the controller objects.
A system, method or computer readable medium to provide efficient congestion notification is described herein. In various embodiments, a packet is received at an intermediate node of one or more data center networks. A current queue length at the intermediate node is determined. A threshold value for the current queue length is tuned by dynamically computing an upper bound and a lower bound based at least in part on the network. The packet is marked to indicate possible congestion in the one or more data center networks when the current queue length exceeds the threshold value. In some embodiments, the packet is marked when it is being de-queued. In a further embodiment, Flexible Initial Packet Size (FIPS) may be utilized to improve the efficiency of the tuning.
Information about the transmission of packets or other information can be inferred based at least in part upon the state of one or more queues used to transmit that information. In a networking example, a hook can be added to a free buffer API call from a queue of a NIC driver. When a packet is transmitted and a buffer freed, the hook can cause information for that packet to be transmitted to an appropriate location, such as a network traffic control component or control plane component, whereby that information can be compared with packet, source, and other such information to infer which packets have been transmitted, which packets are pending, and other such information. This information can be used for various purposes, such as to dynamically adjust the allocation of a resource (e.g., a NIC) to various sources based at least in part upon the monitored behavior.
A wireless data access system is provided to ameliorate bursty traffic occurring in a radio communications link such as a WiFi, WiMAX, 3G or cellular telephone link to a wireless network access device. A data traffic event is detected relating to traffic in the link. The traffic event may be a traffic burst exceeding a predetermined threshold. Based on detecting the data traffic event, a free-space optical communications link is established to the network access device to handle the traffic burst. The established radio link may be used to set-up and coordinate the free-space optical link.
A network processor includes an arbitration device, a processing device, and a pipeline. The arbitration device receives a first packet and a second packet. The second packet includes a first control message. The pipeline includes access devices, where the access devices include first and second access devices. The pipeline, based on a clock signal, forwards the first and second packets between successive ones of the access devices. The arbitration device: sets a timer based on at least one of (i) an amount of time for data to travel between the first and second access devices, or (ii) a number of pipeline stages between the first and second access devices; adjusts a variable based on (i) the clock signal, and (ii) transmission of the first packet from the arbitration device to the pipeline; and based on the timer and the variable, schedules transmission of the second packet through the pipeline.
In accordance with disclosed embodiments, there are provided methods, systems, and apparatuses for implementing a slipstream bandwidth management algorithm including, for example, means for executing an application a computing device, in which the application is to communicate with a remote computing device over a public Internet; means for approximating outgoing bandwidth for communications from the computing device to the remote computing device; means for approximating incoming bandwidth for communications received at the computing device from the remote computing device; means for allocating multiple simultaneous Transmission Control Protocol (TCP) connections in support of the application based at least in part on the approximated outgoing bandwidth and based further on the approximated incoming bandwidth; and means for iteratively adjusting bandwidth communicated for the application between the computing device and the remote computing device based at least in part on latency between the computing device and the remote computing device. Other related embodiments are disclosed.
Provided is a packet processing device for an information-centric network. The packet processing device includes a packet transceiver configured to transmit and receive packets, and a packet processing unit configured to process a transmitted or received packet including a forwarding identifier that identifies information present in the ICN and corresponds to an IP address of a network node holding the information, and at least one sub-identifier that identifies child information of the information, in which the forwarding identifier is used to forward packets.
Included are systems and methods for providing a ReNAT virtual private network (VPN). Accordingly, some embodiments include receiving, at a network operations center (NOC), external packets from a client workstation on a private network and providing source addressing for the external packets to identify the private network from where the external packets were received. Similarly, some embodiments include receiving data from the external packets from a ReNAT twin NAT, where the ReNAT twin NAT includes both a destination public address and a public source address for the data and decrypting the data and forwarding the data with the public source address to the ReNAT twin NAT. In some embodiments the NOC provides a virtual private network within the NOC for facilitating communication of the data between a remote computing device across a wide area network and the client workstation in the private network.
A packet processor provides for rule matching of packets in a network architecture. The packet processor includes a lookup cluster complex having a number of lookup engines and respective on-chip memory units. The on-chip memory stores rules for matching against packet data. A lookup front-end receives lookup requests from a host, and processes these lookup requests to generate key requests for forwarding to the lookup engines. Based on information in the packet, the lookup front-end can optimize start times for sending key requests as a continuous stream with minimal delay. As a result of the rule matching, the lookup engine returns a response message indicating whether a match is found.
In one embodiment, a method comprises receiving, by an apparatus, a Media Access Control (MAC) frame destined for a destination device; dividing, by the apparatus, the MAC frame into frame fragments; coding the frame fragments into encoded cells; and causing, by the apparatus, transmission of selected subsets of the encoded cells, as distinct flows of the encoded cells, by respective optical physical layer transmitter devices reachable by the destination device.
Methods and apparatus are provided with improved routing techniques for bifurcated flows. Routing methods and apparatus are provided that obtain a fractional flow from a set of nodes to a given destination having a maximum load, L, on any link between a node in the set and the given destination; and generate a bifurcated flow between the set of nodes and the given destination from the fractional flow such that the maximum load on any link in the bifurcated flow does not exceed 2L, wherein the bifurcated flow allows a flow from a given node to be sent on at most two outgoing links. The fractional flow can be, for example, a fractional single-sink multicommodity flow.
Methods and apparatus for providing a device for forwarding packets in a network are disclosed. A first router and a second router having a shared set of interfaces are provided, enabling the first router and the second router to share forwarding data for forwarding packets on the shared set of interfaces.
Computer-readable media, methods and network information computer systems are provided for obtaining network topology information about a relationship between a configuration item and a network of configuration items based upon a property of the selected configuration item, and displaying the network topology information as a topological map.
Presented is a method of determining network topology. A determination is made whether a remote port on a first network device for establishing a layer 2 connection is an aggregate port. If the remote port is an aggregate port, identify the aggregate port and a coupled second network device based on Management Information Base (MIB) attributes. Identify a base port of the second network device from the aggregate port on the first network device, and a local interface index number corresponding to the identified base port from a mapping between local interface index numbers and corresponding base ports of the second network device.
A node residing within a wireless mesh network is configured to transmit a state transition message to a downstream node also residing within the wireless mesh network. The state transition message indicates a new operating state for the downstream node. Upon receipt of the state transition message, the downstream node may transition to the new operating state and then transmit an acknowledgement message back to the node that sent the state transition message. Alternatively, the downstream node may transmit the acknowledgement message back to the node that sent the state transition message first, and then transition to the new operating state.
Methods for automatically generating a report in response to detecting performance and/or availability issues that occur throughout multiple layers of a networked computing environment based on a role of a target recipient of the report are described. In some embodiments, a failure graph may be generated by a root cause identification tool that aggregates data from a plurality of performance management tools monitoring the networked computing environment. The root cause identification tool may acquire a plurality of report templates, determine a first report template of the plurality of report templates based on the role associated with the target recipient, identify a set of variables or an ontology associated with the first report template, assign values to the set of variables using the failure graph, generate a first report based on the first report template, and output the first report to the target recipient.
Systems, methods, and apparatus for use with at least one first virtual agent executing on a first device. In some embodiments, the at least one first virtual agent is programmed to: share information with at least one second virtual agent executing on at least one second device different from the first device, wherein the at least one first virtual agent is associated with a first user and the at least one second virtual agent is associate with a second user; and use the information shared between the at least one first virtual agent and the at least one second virtual agent to make a joint recommendation for the first and second users.
Phase rotation for preambles within multiple user, multiple access, and/or MIMO wireless communications. An appropriately designed phase rotation vector and/or appropriately designed cyclic shift delays (CSDs) are applied to respective sub-band components of the preamble. With appropriately designed CSDs, certain fields within the preamble are not modified. For example, a legacy short training field (L-STF) of the preamble is not changed when using appropriately designed CSDs. The respective CSDs may be implemented as integer multiples of a common CSD (e.g., 0×CSD, 1×CSD, 2×CSD, etc. such that one of the values of such a CSD vector may be zero [0], another may be the common CSD itself, etc.). Also, by employing an appropriately designed phase rotation vector and integer multiples of a CSD to a preamble, the respective peak to average power ratio (PAPR) between different respective fields within the preamble may be minimized.
Techniques for sending signaling messages with beacon signals in a wireless communication network are described. In one design, a transmitter station may map a signaling message (e.g., a reduce interference request) to multiple code symbols. The transmitter station may select multiple resource elements from among a plurality of resource elements based on the multiple code symbols. In one design, each code symbol may be sent across frequency by selecting one of multiple subcarriers in one symbol period. In another design, each code symbol may be sent across time by selecting one of multiple symbol periods on one subcarrier. The transmitter station may generate a beacon signal having transmit power on the selected resource elements and no transmit power on remaining resource elements. The transmitter station may send the beacon signal to at least one receiver station.
Methods and systems for amplitude estimation and gain adjustment using noise as a reference are described. An example receiver can include an antenna and a front end amplifier coupled to the antenna. The receiver can also include a detector circuit coupled to the front end amplifier. The receiver can be configured to determine a power of a received signal at the antenna based on a gain of the receiver. The gain of the receiver can be determined based on a noise figure of the front end amplifier and a noise amplitude.
In a receiver, there is a precursor iterative canceller (“PIC”) having first and second paths. A postcursor decision block is coupled to the PIC to provide a decision signal thereto. The PIC includes: comparators for receiving an input signal and corresponding threshold inputs for precursor ISI speculation; and select circuits for selecting a first speculative input for the first path and a second speculative input for the second path, respectively associated with a negative precursor contribution and a positive precursor contribution. The first path and the second path in combination include at least a first stage and a second stage for processing the first speculative input and the second speculative input. The decision signal is provided to the first stage and to the select circuits. The select circuits are coupled to receive the decision signal for selection of the first speculative input and the second speculative input.
An exemplary receiver equalizer includes a first decision feedback equalizer (DFE) sampler coupled to a summer, the first DFE to latch an equalized output of the summer. The first branch includes a second DFE sampler coupled to the first DFE sampler, the second DFE to latch an output of the first DFE sampler. The first branch includes a third DFE sampler coupled to the second DFE sampler, the third DFE to latch an output of the second DFE sampler. The summer coupled to the first, second, and third DFE samplers of the first branch, the summer to integrate the output of said DFE samplers, the received signal, and equalized outputs from one or more other branches, wherein the integrating occurs over a plurality of unit intervals (UIs).
A method for calibrating signal swing and a trip reference voltage. The signal swing of a system can be calibrated in a symmetric or asymmetric technique through adjustment of a drive parameter such as a supply voltage for a transmitter or a drive termination. The trip reference voltage of the system can also be calibrated in a symmetric or asymmetric technique through sampling of a data pattern to determine an ideal level of the trip reference voltage.
A system that can deliver a tailored message based upon characteristics surrounding an incoming communication. In one aspect, the system is a targeted voice-mail system that has the capability to provide a unique voice-mail depending upon the communication characteristics which include the identity of caller or the initiator of the call, whether a specific identity or within a group, the identity for which the call is targeted, and the intent of the caller. Additionally, other contextual factors can be considered in generating, locating and/or rendering a tailored response message.
A method of managing a network including a plurality of nodes. The nodes are displayed, in a pictorial display, relative to a current geographic location of the nodes. The method includes modifying, via the display and via the network, one or more capabilities of one of the nodes. The node is an ad-hoc node. This method can improve network management flexibility, asset utilization, resource sharing, and load leveling.
A method and apparatus for transmitting and receiving data. The method and apparatus previously determines a validity of a data transmission path for transmitting a stream from a source device to a sink device. The validity of the transmission path is verified by checking and securing the data transmission path, thereby executing a streaming service based on the validity.
A network connecting device includes: a wired LAN connection detection section that detects connecting of a LAN cable; a profile management section that manages a profile; a profile selection section that selects in sequence at least one profile that indicates wired LAN connection; a network configuration section that sets a network configuration based on the selected profile; a network identification information acquisition section that acquires network identification information; a network determination section that determines whether or not a wired LAN with which a connection is formed by the LAN cable and a network indicated by the profile match each other; and a network connection section that applies the profile when it is determined as a match.
A wireless access node receives a first frame from a station through a first communication network such as an IEEE 802.11 network. The first frame comprises a source address identifying the station. The wireless access node applies a function to the source address to derive a destination address identifying an access controller coupled to the wireless access node through a second communication network such as an IEEE 802.3 network. The first frame is encapsulated in a second frame that comprises the destination address identifying the access controller and a source address identifying the wireless access node, respectively. The wireless access node sends the second frame to the access controller having the destination address through the second communication network. The access controller owns association and authentication state of the station, and shares the association and authentication state of the station with the wireless access node when needed to support desired service.
According to embodiments of the invention, a first ring node is arranged to protect against loops in an Ethernet ring by performing Ethernet ring protection (ERP) according to an Ethernet ring protection protocol (ERP) standard. The first ring node is located directly adjacent to at least one second ring node in the Ethernet ring which is not configured to perform ERP according to the same ERP protocol standard. The first ring node is configured to, upon detection of a link failure or recovery event in the Ethernet ring resulting in a flush operation of the filtering database (FDB) in the first ring node in accordance with the ERP protocol standard, send a message to the at least one second ring node which is operable to cause said at least one second ring node to perform a flush operation of its filtering database (FDB). Embodiments of the invention also include an Ethernet ring, a broadband communications network and methods for use in the first ring node and in the Ethernet ring.
Display calibration systems and related methods are disclosed that use photo-sensitivity of LEDs to correct for variations between LEDs during initial production and over lifetime for display systems. The display devices include arrays of LEDs and use photo-sensitivity of the LEDs to correct for variations between LEDs. Such LED arrays can produce images directly as in LED billboards and sports arena scoreboards, and smaller Organic LED (OLED) displays, or can produce the backlight for LCD screens for instance. Variations in LED brightness and color can be compensated for in order for such a display to have uniform color and brightness. This compensation is performed in the embodiments disclosed by measuring the signal induced on each LED by uniform incident light as a measurement of the photo-sensitivity of the LEDs.
A controller area network (CAN) node comprises an internal high differential bus line (CANH) and an internal low differential bus line (CANL). The CAN node further comprises a receiver (RXD) comparator coupled to both the internal CANH and the internal CANL that outputs an internal RXD signal. The CAN node further comprises an RXD dominant time out (DTO) circuit. The RXD DTO circuit includes: a) an RXD dominant transition detector coupled to an output of the RXD comparator; b) a timer triggered by the RXD dominant transition detector detecting a dominant RXD transition; c) an RXD dominant timer comparator that is coupled to an output of the timer which compares an output of the timer to a selected value; d) an internal RXD dominant signal is changed to an RXD DTO recessive signal after a selected time interval has lapsed and can include a fault output to signal this fault condition.
A bus-based control system comprises a plurality of bus subscribers which are connected to one another by means of a communication medium. The bus subscribers are assigned logical subscriber addresses. Next, the assigned subscriber addresses are verified. For this purpose, the bus subscribers use a defined mathematical operation to calculate a common first check value which is compared with a second check value. The mathematical operation begins with a defined starting value and comprises a number of operation steps which use a number of defined operands. Each of the subscriber addresses to be verified forms a different operand, and each bus subscriber executes at least one operation step.
Techniques for analyzing and repairing documents are described, including evaluating a document at a first location using a first application, the document comprising one or more parameters and being formatted using a document standard, identifying a problem associated with the document by comparing the one or more parameters to the document standard, presenting a status associated with the document, wherein the status is associated with the one or more parameters, and repairing the problem a second location using a second application by modifying at least one of the one or more parameters associated with the document.
A method performed by one or more processing devices includes transmitting, to a first client device, content items, wherein one of the content items is selected by a user of the first client device; receiving, from a second client device, information indicative of a selection, by a user of the second client device, of a reference in a social networking system to a resource associated with the selected content item; wherein the user of the first client device has a social connection in the social networking system to the user of the second client device; and generating, based on the information received, one or more viral metrics for the selected content item.
Systems and methods are presented for distributed validation of a digitally signed electronic document. A computing device accesses both a representation of the electronic document and a digital signature for the electronic document that includes a digest generated by the digital signature's creator by applying a one-way function to the electronic document. The computing device applies the same one-way function to the accessed representation of the electronic document to generate a new digest, and includes both the digital signature and the new digest in a request sent to a separate validation server. The request does not include the electronic document. The validation server generates validation results that depend on comparing the digest from the digital signature with the new digest, and that do not depend on having the electronic document available to the validation server. The computing device receives the validation results from the separate validation server.
Disclosed is a cell phone data encryption method, which comprises the steps of obtaining a PIN code which is input by a user, obtaining a SIM card code from a SIM card according to the PIN code, and combining the PIN code with the SIM card code to form a password string; and encryption source data using the password string, so as to obtain encrypted data. Also provided is a cell phone data encryption method. Through the manner mentioned above, the technical solution provided in the present invention can protect cell phone data.
In a wildcard-applicable anonymous hierarchical identity-based encryption system, it is aimed to make the number of pairing operations a fixed number. A user identifier ID and a pattern P are used. The user identifier ID includes k number of hierarchy identifiers. The pattern P includes either of a hierarchy identifier, a wildcard value and a blank value for each hierarchy. An encryption device 400 extracts a key value H corresponding to a hierarchy of the wildcard value and a key value H corresponding to a hierarchy of a pattern value from a public key PK, calculates a cipher value C1 and a cipher value C3, and outputs ciphertext data CT including plaintext cipher value C0, the cipher value C1, and the cipher value C3. A decryption device 300 extracts the hierarchy identifier of the hierarchy corresponding to the wildcard value from the user identifier ID, decrypts the plaintext cipher value C0 included in the ciphertext data CT using the extracted hierarchy identifier, the cipher value C1 and the cipher value C3 which are included in the ciphertext data CT, and outputs plaintext data M.
A user key storage unit stores at least one user key corresponding to usage authorities of image data. A first encryption unit encrypts the image data using a first encryption key. A second encryption key creation unit creates a second encryption key assigned to each usage authority. A key-storage data creation unit creates a key-storage data for each usage authority by encrypting the first encryption key and authority information using the second encryption key. A user-supplementary data creation unit creates user-supplementary data for each user key. A device-supplementary data creation unit creates device-supplementary data for at least one usage authority and for at least one device key. A data output unit outputs encrypted image data with the key-storage data, the user-supplementary data and the device-supplementary data.
Cryptographic resources, such as those including PGP keys and certificates, are transformed such that they are understood by certificate repositories, such as in a format understood by the Java JAVA tools of JAVA KEYSTORE (JKS). JAVA is one example of a general-purpose computer programming language that is concurrent, class-based, object-oriented. JAVA KEYSTORE is one example of a repository of security certificates, such as authorization certificates and public key certificates, used for instance in SSL encryption. The transformation of the cryptographic resources is completed such that the necessary metadata for retrieving the original cryptographic resources, or artifacts thereof, are retained. In that way, cryptographic resources are effectively hidden within the certificate repository until needed. The security program applies an algorithm to generate keys for JKS storage such that the keys “masquerade” in a JKS canonical format until the time in which the resources are needed to be in a PGP canonical format.
Methods and systems are provided for supporting efficient and secure “Machine-to-Machine” (M2M) communications using a module, a server, and an application. A module can communicate with the server by accessing the Internet, and the module can include a sensor and/or an actuator. The module, server, and application can utilize public key infrastructure (PKI) such as public keys and private keys. The module can internally derive pairs of private/public keys using cryptographic algorithms and a first set of parameters. A server can authenticate the submission of derived public keys and an associated module identity. The server can use a first server private key and a second set of parameters to (i) send module data to the application and (ii) receive module instructions from the application. The server can use a second server private key and the first set of parameters to communicate with the module.
A method of encrypting data using a first key and multiple encryption keys at least in part based on the first key. The method includes encoding the data into a redundant representation by distributing the information content of the data among a number of groups, each group being associated with a respective encryption key of the multiple encryption keys, each encryption key being associated with at least one group, the redundant representation allowing recovery of the data in the absence of the groups associated with the at least one of the multiple encryption keys, and encrypting each group by the respective associated encryption key.
A system and a method implementing the method pertaining to securely providing a mobile device with a cryptographic key in a vehicle. The method includes generating a cryptographic key pair. The key pair may include at least a first cryptographic key and a second cryptographic key. The method may further include creating a label using a scannable image readable by a mobile device; the scannable image may be based on the second cryptographic key. And the method may include providing the label to the vehicle for displaying the scannable image.
A method and apparatus which allows dynamic TDD UL/DL configuration that is able to adapt to an instantaneous traffic situation. The values of at least one uplink/downlink configuration indication bit in a predetermined region in a received downlink time division duplex subframe of wireless data transmission are examined. A time division duplex uplink/downlink configuration for a predetermined configuration period is determined based on the examined values.
Provided is an interference avoidance-based communication apparatus and method, the apparatus including an interface to receive operating channel number information transmitted by another communication apparatus in response to an event occurring in the other communication apparatus, and a processor to verify a current use channel of the other communication apparatus based on the received operating channel information, allocate a first weighted value to a remaining channel, aside from the verified current use channel and a second weighted value to the verified current use channel, and generate channel map information for use in hop selection based on the remaining channel to which the first weighted value is allocated and the current use channel to which the second weighted value is allocated.
The present invention relates to a method for operating a network comprising a first primary station and a second primary station, wherein the first primary station serves a first cell including at least one first secondary station communicating with the first primary station and wherein the second primary station serves a second cell including at least one second secondary station communicating with the second primary station, the method comprising the steps of (a) the first primary station and the second primary station transmitting payloads in a synchronous manner on at least one set of resources, (b) the first and the second primary stations transmitting control data on the at least one set of resources respectively to the first secondary station and to the second secondary station, wherein the method further comprises (c) at least the first primary station rendering the transmission of control data to the first secondary station orthogonal to the transmission of control data from the second primary station.
Aspects of the methods and apparatus relate to exploiting the spectrum of a high power base station cell to provide higher capacity in a wireless communication system. Generally, a small cell with multi-carrier support may detect an absence of high power base station cell coverage or absence of high power base station cell users and may harness the high power base station cell carrier spectrum to provide higher data download rates and/or serve more mobility users. Specifically, aspects of the methods and apparatus include transmitting a first signal on a first carrier from a first access point and determining a current ability of a second access point on a second carrier. Thereafter, aspects of the methods and apparatus include transmitting a second signal on the second carrier from the first access point according to the determined current ability of the second access point.
To improve throughput by reducing the resource used for transmitting a parameter relating to retransmission control and decreasing overhead of retransmission control signaling. Where a retransmission control method is employed with adaptive MCS control in which the encoding rate can be changed, the scheduling section sets the MCS in accordance with CQI notified from the communication counterpart apparatus. When transmission data is encoded, the RV parameter bit-number setting section sets the number of bits used for signaling the RV parameter to decrease as the encoding rate of the first transmission is decreased and sets the RV parameter based on the number of bits. For example, in a case where the encoding rate R is R>2/3, two bits are set. In a case where the encoding rate 1/3
A wireless device, and corresponding method, having a receiver configured to receive a signal having in-phase and quadrature components; a non-linear filter demodulator configured to translate noncoherently the in-phase and quadrature components into a phase domain signal; a coherence acquisition unit configured to estimate and correct at least one coherence parameter based on the in-phase and quadrature components and the phase domain signal; and a detector configured to detect information in the phase domain signal.
Impulse and/or burst noise signal to noise ratio (SNR) aware concatenated forward error correction (FEC). Adaptive processing is performed on a signal based on one or more effects which may deleteriously modify a signal. For example, based on a modification of a signal to noise ratio (SNR) associated with one or more impulse or burst noise events, which may be estimated, different respective processing may be performed selectively to differently affected bits associated with the signal. For example, two respective SNRs may be employed: a first SNR for one or more first bits, and a second SNR for one or more second bits. For example, as an impulse or burst noise event may affect different respective bits of a codeword differently, and adaptive processing may be made such that different respective bits of the codeword may be handled differently.
A multi-mode transmission unit processes data to form an error correction code in accordance with one of a plurality of selectable processes. The data, correction code and a process identifier can be transmitted to a receiving unit which can carry out error correction of the data in accordance with the identified process.
A network evaluation apparatus that evaluates a design of an optical network, the network evaluation apparatus including: a processor that selects two nodes, between which a lightpath is to be set up, from a plurality of nodes based on a traffic volume demand values, calculates a decreased amount of cost based on numbers of the plurality of nodes and a plurality of routers for relaying a signal transmitted between the two nodes selected, calculates an increased amount of cost based on a transmission distance of the lightpath and a number of a plurality of repeaters to be inserted according to a segment distance, and determines a value of the optical network based on the decreased amount of cost and the increased amount of cost.
A control channel transmission method and an apparatus for facilitating control channel transmission in an intra-cell carrier aggregation system by applying Frequency Division Duplexing (FDD) cell's uplink control channel transmission timing for transmitting the uplink control channel corresponding to the TDD cells' downlink data are provided. The control channel transmission method and apparatus of the present disclosure are capable of transmitting/receiving data of the cells operating in the different duplexing modes simultaneously, resulting in improvement of peak data rate.
Distributed antenna systems (DASs) can include a plurality of spatially separated remote antenna units. According to at least one example, a first group of remote antenna units can simulcast downlink transmissions on a first carrier with a particular sector identity (ID). A second group of remote antenna units, including at least one different remote antenna unit from the first group, can simulcast downlink transmissions on a second carrier with the same sector ID. According to at least one other example, two or more remote antenna units which include respective coverage areas that are non-adjacent to one another can be employed to simulcast downlink transmissions.
A method for noise rise estimation in a wireless communication system comprises measuring of received total wideband power a plurality of times and computing an estimate of a noise floor measure based on a number of the measured received total wideband powers. An interference whitening is performed based on one of GRAKE, GRAKE−and chip equalizer. A useful signal power for the first user after interference whitening is determined. A first user noise floor compensation factor is derived based on combining weights for the first user used in the interference whitening. A code power to interference ratio measure for said first user is obtained. A noise rise measure is calculated, based at least on the useful signal power for the first user after interference whitening, the first user noise floor compensation factor, the code power to interference ratio measure for the first user and the noise floor measure.
Techniques are described for adaptive sampling qualification for extinction ration control. The techniques may be implemented in a laser driver assembly which includes a laser driver and a sampling loop configured to facilitate sampling of photodiode current produced by a monitor photodiode (MPD) of an optical transmitter assembly. The sampling loop comprises a low pass filter with reset, a digital-to-analog converter (DAC), and a comparator. The filter receives transmit (Tx) data provided to the laser driver and generates an output corresponding to a number of consecutive bits of a first type received in the transmit (Tx) data. The filter resets the output when a bit of a second type is received. The digital-to-analog converter (DAC) outputs a threshold signal. The comparator compares the output from the low pass filter and the threshold signal, and outputs a signal indicating when the photodiode current is to be sampled.
An optical receiver may receive input signals carried by sub-carriers, and may apply test phases to each input signal. The optical receiver may determine error values, associated with test phases, for each input signal. The optical receiver may calculate updated metric values, associated with the test phases, for a particular input signal, based on a first error value and a second error value. The first error value may be associated with a first sub-carrier, and the second error value may be associated with a second sub-carrier. The optical receiver may compare the updated metric values associated with the particular input signal, and may determine a test phase that represents an estimated phase, associated with the particular input signal, based on the comparison. The optical receiver may determine a phase estimate value based on the test phase, and may provide the phase estimate value to modify the particular input signal.
A method for detecting a submarine optical cable line includes: splitting a detection signal input to a first optical functional unit in an optical functional module of an optical cable line into a first detection signal and a second detection signal; directly coupling and looping back the first detection signal to an output end of a second optical functional unit in a direction opposite to the first optical functional unit to constitute a first loopback path, and outputting a first detection loopback signal; looping back the second detection signal passing through the first optical functional unit to the output end of the second optical functional unit to constitute a second loopback path, and outputting a second detection loopback signal; and detecting a status of the submarine optical cable line according to power of the first detection loopback signal and power of the second detection loopback signal.
The present invention relates to method for communicating in a network, said network comprising a primary station and at least one secondary station having a plurality of antennas, the method comprising the step of the primary station transmitting to a first secondary station an indication of a first receive combining matrix that the first secondary station should use to combine the signals received at its said plurality of antennas from a first subsequent transmission from the primary station.
A signal transmitter and receiver are provided. The transmitter includes: a Multiple Input Multiple Output (MIMO) precoder configured to, in response to a first input signal and a second input signal, generate a first transmission signal and a second transmission signal by performing MIMO precoding by pre-phase shifting or pre-phase shifting/hopping the second input signal, and superposition encoding the first input signal and the pre-phase shifted or pre-phase shifted/hopped second input signal; and an Orthogonal Frequency Division Multiplexing (OFDM) modulator configured to OFDM modulate the first transmission signal and the second transmission signal.
Coupling circuits for power line communication (PLC) devices are described. In an embodiment, a PLC device may comprise a processor and a coupling circuit coupled to the processor. The coupling circuit may in turn comprise a transmitter path and a receiver path. In some implementations, the transmitter path may include a first amplifier, a first capacitor coupled to the first amplifier, a first transformer coupled to the first capacitor, and a plurality of line interface coupling circuits coupled to the first transformer, where each of the line interface coupling circuits is configured to be connected to a different phase of an electrical power circuit. Meanwhile, the receiver path may include a plurality of capacitors, where each of the plurality of capacitors coupled to a corresponding one of the line interface circuits, a filter network coupled to the plurality of capacitors, and a second amplifier coupled to the filter network.
A device, system, and method for communicating with a power inverter of an array of inverters includes transmitting a relay message from an inverter array controller to a relay inverter in response to failing to receive a response from at least one power inverter of the array. The relay inverter is configured to retransmit a message from the inverter array controller to a non-responsive power inverter of the array of inverters in response to receiving the relay message. The relay inverter may subsequently retransmit a reply received from the non-responsive power inverter to the inverter array controller or to another power inverter of the array of inverters.
A multichannel communications medium may have two or more channels available for transmitting information. A first transmission signal and a second transmission signal may be prepared from a same analog signal to be transmitted on a first channel and a second channel. For example, a phase shift or amplitude shift may be performed on the first transmission signal or the second transmission signal. The first transmission signal may be transmitted via the first channel, and the second transmission signal may be transmitted via the second channel. The phase shift or amplitude shift may be performed by analog components that are less complex than digital signal processors used for digital signal diversity. The analog components may be digitally controlled. The analog signal diversity may utilize cost effective analog components to improve the performance of the communications system over single channel communications without requiring complex digital signal processing of multiple signal paths.
Systems, methods, and devices of the various embodiments provide modified frequency hopping patterns that enable synchronization of a wireless tracking device with a beacon signal that defines a predetermined area (i.e., beacon fence). In an embodiment, a beacon may transmit a beacon signal according to a modified frequency hopping pattern and a wireless tracking device may receive the beacon signal by tuning a receiver according to the frequency hopping pattern. In an embodiment, the modified frequency hopping pattern may include a reference frequency generated at a high redundancy pattern multiplexed with a pseudo random sequence of frequencies. In an embodiment, the packets of the beacon signal transmitted at the reference frequency may include an indication of the next frequency according to the modified frequency hopping pattern.
An apparatus and a system for housing a device are described. The apparatus includes a housing that is configured such that a device may be fitted within the housing and thereby be protected, such as from shocks and/or liquid. The housing may include top and bottom members that may be removably coupled together so as to form the housing. Each top and bottom member includes a perimeter portion. The perimeter is defined by proximal and distal ends as well as opposing sides. The top and bottom members may include respective clasping mechanisms that extend along the perimeter of the top and bottom members and may be configured for engaging a third clasping mechanism, such as a locking comb or wedge feature. The clasping mechanisms are configured for coupling the top and bottom members with one another thereby sealing the housing, for instance, in a shock-proof and/or water tight seal.
According to one embodiment disclosed herein, there is provided an antenna module including a self-identification mechanism that may be used by one or more wireless circuits for management purposes. The self-identification mechanism may, for example, take the form of an integrated circuit (IC) device or chip that stores a serial number that may function as a unique identifier for an antenna on which it is mounted or associated. In one embodiment, a wireless module, for example containing RF components for sending and receiving signals from the antenna, queries the serial number device, and acquires the serial number for the antenna. The wireless module can use the serial number for any number of purposes, and in particular to verify that the antenna connected is a compliant antenna that will operate within the range, within the limits, and/or with the performance specified for the radio circuits within the wireless module.
Techniques for generating a local oscillator (LO) signal are disclosed. In one design, an apparatus includes an oscillator, a divider, and a phase locked loop (PLL). The oscillator receives a control signal and provides an oscillator signal having a frequency determined by the control signal. The divider receives the oscillator signal and generates multiple divided signals of different phases. The PLL receives a reference signal and a selected divided signal and generates the control signal for the oscillator. The divider is powered on and off periodically and wakes up in one of multiple possible states, with each state being associated with a different phase of the selected divided signal. Phase continuity of the selected divided signal is ensured by using the divider in a feedback loop with the PLL. The PLL locks the selected divided signal to the reference signal, and the selected divided signal has continuous phase due to the reference signal having continuous phase.
Digital pre-distortion (DPD) systems are often used to improve the linearity of a power amplifier in transmitters. These DPD systems are typically implemented in baseband (prior to modulation). However, ever increasing signal bandwidth requirements limits the practicality of DPD systems implemented in baseband. A DPD system in the radio frequency (RF) domain (as opposed to in baseband) can solve this problem and further improve a DPD system's ability to correct for distortions. The RF domain DPD system is upstream from a digital-to-analog converter, and performs DPD after a baseband signal is up-sampled into the RF domain (after the modulation process). When compared against a baseband DPD system, the RF domain DPD system can handle significantly wider bandwidth, and has an improved ability to linearize a wide variety of distortions present in the spectrum.
A superconducting multi-bit digital mixer, designed using rapid single flux quantum (RSFQ) logic, for multiplying two independent digital streams, at least one of these comprising a plurality of parallel bit lines, wherein the output is also a similar plurality of bit lines. In a preferred embodiment, one of the digital streams represents a local oscillator signal, and the other digital stream digital radio frequency input from an analog-to-digital converter. The multi-bit mixer comprises an array of bit-slices, with the local oscillator signal generated using shift registers. This multi-bit mixer is suitable for an integrated circuit with application to a broadband digital radio frequency receiver, a digital correlation receiver, or a digital radio frequency transmitter. A synchronous pulse distribution network is used to ensure proper operation at data rates of 20 GHz or above.
A plurality of partially-decoded codewords that have been processed at least once by a first and a second error correction decoder is stored. A plurality of metrics associated with how close a corresponding partially-decoded codeword is to being successfully decoded is stored. From the plurality of partially-decoded codewords, a codeword having a metric indicating that that codeword is the closest to being successfully decoded by the first error correction decoder and the second error correction decoder is selected. The selected codeword is output to the first error correction decoder.
Described herein are techniques related to the generation of data blocks that collectively include padding appended before a first or after a last of the data blocks. This Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
A compression method is disclosed, which comprises receiving an OFDM data block comprising a plurality of complex valued data samples wherein each in-phase and quadrature sample value is represented by a first number of bits. The method also comprises calculating an average of absolute sample values of the OFDM data block and mapping the average absolute sample value to a standard deviation value. The method further comprises quantizing each of the sample values using quantization thresholds scaled by the standard deviation value to produce quantized in phase and quadrature sample value representations, each comprising a second number of bits, and mapping the standard deviation value and the quantized sample value representations to an OFDM transmission frame. Corresponding de-compression method, compressor, de-compressor and network node are also disclosed.
An analog to digital converting apparatus and an initial method thereof are provided. The analog to digital converting apparatus includes a first and a second switching capacitor units, a circuit unit, a first and a second initialization switches, a third and a fourth capacitors and a logic buffer. The first and the second switching capacitor units respectively couple first capacitors and second capacitors to a first logic voltage, a second logic voltage or a first or a second input voltage according to a first control signal, and respectively generate a first and a second voltage. The circuit unit compares the first voltage and the second voltage to generate the first control signal. The first and the second initialization switches are respectively connected in series between the first and the second voltage and a common-mode endpoint. The logic buffer outputs the first or the second logic voltage to the common-mode endpoint.
An endpoint or other communication device of a communication system includes a clock recovery module. The communication device is operative as a slave device relative to another communication device that is operative as a master device. The clock recovery module comprises a clock recovery loop configured to control a slave clock frequency of the slave device so as to synchronize the slave clock frequency with a master clock frequency of the master device. The clock recovery module further comprises a discontinuity detector configured to detect a delay discontinuity in timing messages received in the slave device from the master device, and a loop controller operative to place the clock recovery loop in a particular state responsive to the detected discontinuity. The particular state comprises a state in which a normal operating mode of the loop is interrupted and a compensating drive signal is applied to a clock source of the slave device to at least partially offset phase error accumulation associated with the detected discontinuity.
An apparatus comprising a delay circuit and a control circuit. The delay circuit may be configured to generate a plurality of intermediate signals in response to (i) a clock signal and (ii) an adjustment signal. The control circuit may be configured to generate the adjustment signal and a plurality of output signals having a quarter-cycle interval in response to (i) the plurality of intermediate signals and (ii) the clock signal.
A cross-point switch having stacked switching dies on a component die is disclosed. The cross point switch allows scalability by adding switching dies. The switching dies include ingress switches that are coupled to multiplexers to a middle stage switches. The inputs and outputs of the ingress switches are connected to the switching interface region via through silicon vias (TSVs). The outputs of the ingress switches are also coupled by TSVs to multiplexers for routing to middle stage switches on a switching die above. If the switching die is stacked on another switching die, the outputs of the ingress switches are coupled by TSVs to the multiplexers for routing to the middle stage switches of the switching die below. By adding switching dies, the switch is configurable to increase the number of ports as well as the width of the ports.
Path transistor malfunction is reduced. A path gate circuit includes transistors MP, MW, and MC. The transistor MP functions as a path transistor that connects a signal line INL to a signal line OUTL. The transistor MW connects a signal line BL for inputting a signal for setting the on or off state of the transistor MP and a node SN (gate of the transistor MP). When a high-level potential is written to the node SN, the potential of BL is set higher than a normal high-level potential if the potential of INL is high. Thus, even when the potential of the node SN is dropped in accordance with transition of INL from a high level to a low level, the potential drop does not influence the operation of the transistor MP because a high potential is written in advance.
Radio-frequency (RF) switch circuits are disclosed having transistor gate voltage compensation to provide improved switching performance. RF switch circuits include a plurality of field-effect transistors (FETs) connected in series between first and second nodes, each FET having a gate. A compensation network including a coupling circuit couples the gates of each pair of neighboring FETs.
A semiconductor device according to an embodiment is provided with a normally-off transistor which includes a first source connected to a source terminal, a first drain, and a first gate connected to a gate terminal, and a normally-on transistor which includes a second source connected to the first drain, a second drain connected to a drain terminal, and a second gate connected to the gate terminal.
A detection circuit includes a differential circuit including a pair of differential transistors configured to receive the input differential signal and a first current source, the pair of the differential transistors having a common output terminal connected to the first current source, a hold capacitor connected between the common output terminal and a reference potential for generating a hold potential, a level sensing circuit configured to sense a voltage level of the input differential signal and output a switching signal, and a switch configured to receive the switching signal and electrically connect the common output terminal and a second current source when the switching signal exceeds a threshold level being lower than the hold potential by a predetermined amount, and electrically disconnect the common output terminal and the second current source when the switching signal stays lower than the threshold level.
In one embodiment, a circuit comprises a first switching transistor and a second switching transistor. The first switching transistor and the second switching transistor are coupled in series between an input voltage and ground and having a common node therebetween to provide a switching output. A first switching circuit selective couples a gate of the first switching transistor to the input voltage and a first mid-level voltage supply. A second switching circuit selectively couples a gate of the second switching transistor to a second mid-level voltage supply and ground. A charge-recycling circuit is coupled to the gate of the first switching transistor, the gate of the second switching transistor, the first mid-level voltage supply, and the second mid-level voltage supply to selectively recycle charge between the first mid-level voltage supply and the second mid-level voltage supply.
An integrated circuit device can include at least one oscillator stage having a current mirror circuit comprising first and second mirror transistors of a first conductivity type, and configured to mirror current on two mirror paths, at least one reference transistor of a second conductivity type having a source-drain path coupled to a first of the mirror paths, and a switching circuit coupled to a second of the mirror paths and configured to generate a transition in a stage output signal in response to a stage input signal received from another oscillator stage, wherein the channel lengths of the first and second mirror transistors are larger than that of the at least one reference transistor.
In some embodiments, a micromechanical filter includes multiple subfilters, each subfilter comprising multiple piezoelectric resonators mechanically coupled in series, wherein the subfilters are mechanically coupled to each other in parallel.
A new slide-screw impedance tuner structure uses multi-segment, disc-shaped, rotating metallic probes. This ensures probes covering multiple frequency bands to be served using a single vertical control mechanism, instead of multiple axes, motors, motor control and double or triple carriages. Additional benefits are high resolution in the area where the gap between center conductor and probe is small (high GAMMA), smooth increase of proximity between probe and center conductor (basic anti-corona discharge form) and the possibility to compensate for the negative phase slope at higher GAMMA, native to traditional slide screw tuners.
A system and method is provided for converting Dynamic Range Control/Compression (DRC) gain values into a spline representation that is compatible with the current standards. The system and method may: 1) minimize the bitrate for encoding and/or 2) minimize the approximation error between reference gain and interpolation values. A strategy for bitrate minimization may be the reduction of the number of spline nodes since gain and slope information must be transmitted for each node. Accordingly, an efficient heuristics based approach is provided that reduces the number of spline nodes needed to represent a series of DRC gain values using interpolation while accounting for overshoots and other inaccuracies.
Techniques are provided for enhancing the audio component of streamed media provided by an application on a computing device, referred to collectively herein as an enhance audio mode. The mode may be configured to enhance audio by adjusting the volume gain during playback of streamed media from a specific application (e.g., Netflix or Pandora). In some cases, detection of playback from a specific media streaming application may be based on detection of a system file update, which may occur, for example, in a user space level. In some cases, the volume gain adjustment may be applied by an audio codec included with the computing device, which may occur, for example, in a kernel space level. The volume gain adjustment may be determined by analyzing the amplitude of the audio component of media streamed from a specific application relative to the speaker(s) included with the computing device.
A digital/analog conversion apparatus to convert a digital signal into an analog signal. The digital/analog conversion apparatus can generate a high-quality analog signal, even when elements configuring the digital/analog conversion apparatus have variance, with high resolution and a small circuit size. The data conversion apparatus is provided with a first data converter to reduce the number of bits of an input signal, a second data converter to convert the format of the first output signal, and a third data converter for conversion into a code which corresponds to the history of the output from the second data converter.
Embodiments include an apparatus, system, and method related to a switch circuit. Specifically, embodiments relate to a low noise amplifier (LNA) drain switch circuit that includes a first field effect transistor (FET) where the drain contact of the first FET is coupled with a gate contact of a second FET. The drain contact of the second FET may also be coupled with the gate of the second FET through a resistor. The source contact of the second FET may be coupled with a diode which may be coupled with an LNA.
An amplifier includes a coupler, a main amplifier, and an auxiliary amplifier. The main amplifier and the auxiliary amplifier are supplied with signals derived from at least one input signal and amplify these. The coupler combines output signals of the main amplifier and of the auxiliary amplifier. The main amplifier and/or the auxiliary amplifier comprises an operating point adjustable during operation.
A variable feedback impedance is presented capable of providing high linearity (e.g. as represented by IP2 and IP3) and high linear range (e.g. as represented by P1dB) when used in a feedback path of an RF amplifier in the presence of high voltage amplitudes.
A circuit comprising a peak detector configured to receive a positive voltage input, a negative voltage input and a reference current source input and to output a peak signal data value. A fast attack current source control coupled to the peak detector and configured to generate a current source control signal as a function of the peak signal data value. A slow decay control coupled to the fast attack current source control and configured to reduce the current source control signal based on a predetermined or user-selected decay rate. A variable current source coupled to the fast attack current source control and configured to generate a variable current as a function of the current source control signal. Amplifier circuitry coupled to the variable current source, the amplifier circuitry configured to receive the variable current.
In an example, the system has a mechanical isolator comprising an elastic material configured to separate the panel rail from the torque tube cause destructive interference with a natural resonant frequency of the system without the mechanical isolator to reduce a mechanical vibration of the system.
A refrigeration apparatus includes a refrigerant circuit with a compressor, a power module, a refrigerant cooler in contact with the power module, and an IPM motor which drives the compressor. A refrigerant in the refrigerant circuit flows through the refrigerant cooler, and cooling of the power module is performed by dissipating heat to the refrigerant flowing in the refrigerant cooler. A controller in the refrigeration apparatus outputs a driving signal to a drive circuit to reduce the number of switching operations of switching elements by performing overmodulation control such that there exists a carrier cycle in which no switching is performed.
An output of a generator may vary according to the speed of the engine, physical characteristics of the engine, or other factors. A profile for a generator that describes a periodic fluctuation in an operating characteristic for the generator is identified. A field current of an alternator associated with the generator is modified based on the profile for the generator in order to counter variations in the output of the generator.
An embodiment of the invention provides an AC motor that is driven by an AC voltage. The AC motor includes a motor coil, a switch circuit, a position detector and a controller. The motor coil receives the AC voltage to drive an axis of the motor. The switch circuit is coupled to the motor coil and controls a current passing through the motor coil. The position detector detects the position of a motor rotor to output a polarity signal. The controller controls the switch circuit according to the polarity signal and the AC voltage to make the current to be a first current with a first direction or a second current with a second direction.
An electromagnet within an enclosure. The enclosure is capable of elevating the electromagnet to various heights and additionally horizontally repelling the elevated electromagnet from one elevated position to the next. The heights of the elevated electromagnet may vary depending on the voltage of the base electromagnets, the polarities of the electromagnets and the desired height of the elevated electromagnet.
A method and computer program product are provided for selecting switching cells for voltage contribution in a phase arm of a multilevel converter, a cell selecting control device for a multilevel converter and a multilevel converter. The cell selecting control device and multilevel converter includes a balancing control element that obtains a reference voltage for the phase arm, obtains a measurement of the current running through the phase arm and selects cells for contributing to an AC voltage output from the multilevel converter based on the reference voltage and the magnitude of the phase arm current.
An LED light source includes a sub-circuit (24) that is connectable via terminals (12,13) to an electronic transformer and to a powered circuit including at least one LED (4). The sub-circuit (24) includes a sub-circuit rectifier (1a, 1b, 1c, 1d) that is connectable to the transformer (25), and a constant current regulator (7) and a sub-circuit capacitor (6) that are connected parallel to the sub-circuit rectifier (1a, 1b, 1c, 1d).
A power control device for dynamically adjusting frequency includes an electric transformer, a controller, a loading feedback unit, and a switching transistor. The electric transformer includes a first side induction coil connected to an input power unit, a second side induction coil connected to a loading unit to generate an output power by electromagnetic induction with the first side induction coil, and an auxiliary induction coil generating a power sensing signal by electromagnetic induction with the first side induction coil. The loading feedback unit generates a loading feedback signal. The controller determines the level of loading based on the loading feedback signal and further detects the valleys of the power sensing signal so as to change the switching signal which controls the switching transistor at the optimal one of the valleys.
Improved electrical power conversion system configured to transfer power between a DC voltage differential occurring between input DC terminals and lower DC voltage differential made up of the output differential voltages between a positive output DC terminal and a system neutral terminal and a negative output DC terminal and the system neutral terminal. The system actively controls the output differential voltages to account for variations in the electrical loading placed on the system. The system also actively controls the neutral voltage differential between the neutral terminal and Earth Ground. The output differential voltages are controlled to be maintained within an acceptable range for the types of electrical loads powered by the system (e.g. computers, servers, LED lighting) and to the extent the differentials vary, the system corrects the variances at frequencies which do not adversely affect system circuit protection or the electrical loading on the system. Similarly, control of the neutral voltage differential is performed to maintain the differential constant (preferably at about 0 volts) and corrects variances at frequencies which do not adversely affect system circuit protection or the electrical loading on the system.
A voltage converting controller is applied to a switching voltage converting circuit, in which the voltage converting controller periodically operates a high-side power switch and a low-side power switch in the switching voltage converting circuit with a high-side control signal and a low-side control signal, respectively, so as to convert an input voltage into an output voltage via an inductor. Defining an ideal duty cycle as the rating value of the output voltage divided by the value of the input voltage, when the ideal duty cycle is less than one threshold duty cycle, then the period of the high-side control signal is a constant; and when the ideal duty cycle is greater than the threshold duty cycle, the period of the high-side control signal and the period of the ideal duty cycle are positively correlated.
The present invention is directed to sufficiently reduce the level of EMI which occurs from a switching FET in a DC/DC converter and minimize deterioration in efficiency of a power supply. A DC/DC converter includes a switching circuit for driving a switching FET for increasing or decreasing voltage, and a switching circuit for driving a ringing frequency changing circuit. One end of a capacitor is connected to a drain of the switching FET for increasing or decreasing voltage, and the other end of the capacitor is connected to a drain of an FET for the ringing frequency changing circuit. A source of the FET for the ringing frequency changing circuit is connected to GND, and a control circuit is provided which makes the ringing frequency changing circuit valid so that a ringing frequency becomes low only in a ringing frequency component exerting large influence on deterioration in EMI.
A DC-to-DC converter includes one or more switching circuits, a respective energy storage inductor electrically coupled to each of the one or more switching circuits, and a controller. The controller includes a current deficit signal generator, an integration subsystem, one or more modulators, and a clamping subsystem. The current deficit signal generator is adapted to generate a current deficit signal. The integration subsystem is adapted to integrate the current deficit signal to generate a modulator control voltage. The one or more modulators are adapted to control the one or more switching circuits to transfer power from an input power source to a load, based at least in part on the modulator control voltage. The clamping subsystem is adapted to shunt a portion of the current deficit signal away from the integration subsystem, to prevent the modulator control voltage from falling below a predetermined minimum permissible value.
A system includes a multi-phase switching converter and a converter control module. The multi-phase switching converter receives an input voltage and that supplies an output voltage to a load via a plurality of phases. Each phase includes a plurality of switches, an on-time generator module that determines an on-time of the switches, and a switch control module that controls a switching frequency of the switches based on the on-time and a clock signal, and an inductance that connects the switches to the load. The converter control module varies the switching frequency without varying the on-time or varies the on-time without varying the switching frequency when current through the load varies.
A power adapter system, method and device having two feedback loops that produces an output voltage on a load with a power converter using an input power. A feedback element coupled with the power converter comprises a first feedback loop that compensates for error on the output voltage. A noise detection element coupled with the power converter comprises a second feedback loop that detects noise and produces a noise feedback voltage based on the detected noise. Based on the noise feedback voltage a controller coupled with the power converter adjusts the operation of the power converter in order to compensate for or not respond to the effects of high frequency noise such as radio frequency noise on the first feedback loop of the system.
An electric drivetrain of a device, such as a gas compression device, includes an electric machine and a system for supplying power to the electric machine, the electric machine including a rotor and a stator. The electric machine is an asynchronous electric machine, and the power supply system is suitable for supplying voltage to the stator of the electric machine, the power supply system making up a source of voltage.
A rotor includes a first rotor core, a second rotor core, a field magnet, and an adhesive. The first rotor core includes a first core base, having a first magnet fixing surface, and a plurality of first claw-poles. The second rotor core includes a second core base having a second magnet fixing surface, and a plurality of second claw-poles. The field magnet includes a first axial end face and a second axial end face. At least one of the first magnet fixing surface and the first axial end face includes a first adhesive recess that receives an adhesive. At least one of the second magnet fixing surface and the second axial end face includes a second adhesive recess that receives the adhesive.
Method and apparatus for a receiving device to wirelessly receive electric power from a transmitting device. A power capacity is configured at the receiving device, based on a default power capacity known by both the receiving device and the transmitting device. A first value of a dependent parameter is read. The dependent parameter is associated with the electric power and varies in accordance with an independent parameter adjustable by the transmitting device. A second value of the dependent parameter is then read. A maximum power capacity of the transmitting device is identified based on at least the first and second values and a predetermined threshold. The electric power is then received from the transmitting device.
A wireless charging apparatus and a wireless charging system using the same are provided. The wireless charging apparatus includes a sensing resonator that senses for an external device; a transmission resonator that transmits energy to the external device by magnetic resonance; and a transmission circuit that controls the transmission resonator in accordance with an output of the sensing resonator.
An electronic assembly includes an electronic component and a base. The electronic component and another electronic component have first and second thicknesses respectively. The first thickness is greater than the second thickness. The base includes a main body having a slot, a supporting element movably disposed at the main body, and a first elastic element connected between the main body and the supporting element. When the supporting element is at a first position, the supporting element is hidden in the main body, and the electronic component having the first thickness is adapted to be inserted into the slot. When the supporting element is moved to a second position by an elastic force of the first elastic element, at least part of the supporting element is in the slot, and the electronic component having the second thickness is adapted to be inserted into the slot and supported by the supporting element.
A system (10) for supplying energy is provided. The system (10) comprises a shelter (12) for a passenger awaiting transport. The shelter (12) has a roof portion (14) and photovoltaic cells (16) disposed on the roof portion (14). The photovoltaic cells (16) are arranged to convert solar energy into electrical energy. The system (10) also comprises an energy distribution system (18) arranged to receive electrical energy from the photovoltaic cells (16) and to provide the electrical energy to at least one electrically powered component (20, 22, 24, 26, 28, 30, 32, 34) of the system (10).
[Problem] To provide an electricity supply system that efficiently utilizes electricity. [Solution] An electricity supply system includes: a power generation unit (10) for supplying electricity; a load unit (11) for consuming at least one of the electricity supplied from the power generation unit (10) and system electricity supplied from an electricity system; and a control unit (12) for controlling operations of the power generation unit (10) and the load unit (11). The power generation unit (10) supplies electricity to the electricity system, and the control unit (12) controls the power generation unit (10) and the load unit (11) on the basis of values of a plurality of types of electricity handled by the electricity supply system.
A laser module includes a Transmitter Optical Sub-Assembly (TOSA) and a heat radiating means. The TOSA generates light by an electrical signal and transmits the generated light through an optical fiber. The heat radiating means is in contact with the TOSA to discharge heat generated by the TOSA.
A tool for crimping a cable connector (6) comprises a first, U-shaped arm (3) which defines a seat in which the connector (6) may be accommodated in the working position; a second, compression arm (1) suitable for exerting a compression force on the connector (6), comprising a compression profile (5) at one end thereof, which, in turn, comprises a number of rotation pins which project laterally outwards from the compression profile (5) and are suitable for penetrating into corresponding holes in a branch of the first arm (3), to keep the second, compression arm (1) joined to the first arm (3).
An electrosurgical system for directing energy to tissue includes a generator assembly operable to supply power having a selected phase, amplitude and frequency, and an applicator array assembly. The applicator array assembly includes a shell assembly, a plurality of energy applicators disposed within the shell assembly, and a power divider unit electrically coupled to the generator assembly. The power divider unit is operable to divide power into the applicator array assembly.
An electrical connection device provides multiple types of sockets for facilitating charging of multiple electronic devices. The device includes a housing having a front face, a rear face, and a perimeter wall extending around and between the front face and the rear face to define an interior space of the housing. An electrical plug is coupled to the housing and configured for insertion into an electrical socket. A plurality of electrical outlets is coupled to the housing. Each electrical outlet is electrically coupled to the electrical plug. A plurality of ports is also coupled to the housing. Each port is electrically coupled to the electrical plug.
A transceiver module release system is disclosed. The system may be used to release a transceiver module housed in a cage that is permanently mounted on a printed circuit board. The release system may include a bail that rotates a slide-block through a slot to urge the bail forward in a slide-block path on the transceiver module. The bail has a hook shaped structure adapted to be connected with a detachable pull tab. As the bail begins to move forward from the locked position, wedge elements at the end of a pair of slide-block arms extending rearward from the bail may contact locking tabs on the cage, forcing the locking tabs outward. As the locking tabs are forced outward, the shoulders of the transceiver module are released, and the transceiver module is free to slide-block out of the cage as the operator pulls on the bail.
A cable connector assembly includes a cable connector comprising an insulative housing and a plurality of conductive terminals mounted in the insulative housing, the conductive terminal having a connecting portion; a cable having a plurality of wires electrically connecting with the connecting portions, the wire comprising a core, an insulative layer enclosing the core, and a grounding layer enclosing the insulative layer, the core extending beyond the grounding layer; and a conductive element electrically connecting with the connecting portion of a selected conductive terminal. The conductive element electrically connects the grounding layers; and the cores of the wires electrically connect with the connecting portions of the remaining conductive terminals.
A small-caliber, high-performance broadband radiator allows two unit arms of the first and second group of dipoles to be folded inwards, an included angle of 40°-50° is formed between two unit arms of the first/second groups of dipoles and the first/second unit racks, and the unit arms of the first and second groups of dipoles are arranged linearly at interval while flexural loading sections are provided and also connected by dielectric medium. Hence, the broadband radiator allows significant reduction of the aperture of the broadband radiator, and there is a larger adjustment space for the gap of the radiator array, so the interference of low and high bands is less. This allows for improved performance, thus reducing the configuration size and manufacturing cost of antennas, and creating better industrial benefits with improved applicability.
An electromagnetic wave absorber contains cement and carbon nanotubes and has an absolute value of a complex relative permittivity in a range of from 2.0 to 10.0 in a frequency range of from 1 to 110 GHz and a minimum value of a dissipation factor of 0.35 or greater in the frequency range of from 1 to 110 GHz.
The present invention relates to a dual polarization antenna comprising a reflection plate, and a radiating module including first to fourth radiating elements having respective first to fourth radiating arms having respective bent portions. The bent portions of the first to fourth radiation arms are sequentially adjacent to each other, and sequentially form and shaped structures. The and shaped structures are located on a third quadrant, a fourth quadrant, a second quadrant, and a first quadrant, respectively. The first to fourth radiating elements have supports integrally extending from the bent portions of the first to fourth radiating arms to the reflection plate. The radiating module includes a first feeder line installed to transmit signals to the first and third radiating arms, and a second feeder line installed to transmit signals to the second and fourth radiating arms.
A multi-band antenna is to be electrically connected to a transceiving terminal of a radio frequency circuit by a feeding unit and includes a grounding section, a feed-in section electrically connected to the feeding unit, first and second radiator arms respectively disposed at opposite lateral sides of the feed-in section and electrically connected to the feed-in section, and a first coupling component. The first and second radiator arms are configured to generate first and second resonant modes, respectively. When the multi-band antenna transceives radio frequency signals, the second radiator arm and the first coupling component generate a coupling effect such that the first coupling component generates a third resonant mode. Center frequencies of the first, second, and third resonant modes are different from each other.
A central office node using beam patterns and antenna polarizations, a remote node, and a wireless communication method between the nodes. The central office node includes: a first antenna array with first polarization attributes; a second antenna array with second polarization attributes; and a transmitter unit configured to transmit data to a plurality of remote nodes using beam patterns generated during beamforming and the polarization of the first and second antenna arrays.
An antenna structure of a Radio Frequency (RF) device includes an antenna and a transmission line circuit coupled to the antenna. The transmission line circuit includes a plurality of transmission line circuit elements and a transmission line coupling circuit that couples at least one of the transmission line circuit elements together to form the transmission line circuit based on a transmission line characteristic signal.
A vehicle having a battery mounted thereon is provided. The battery includes a cell group having a plurality of cells, each of the cells including an electrolytic solution and a power-generating element within a case of cylindrical shape, and a holding member holding each of the cells in a diameter direction of the cell, wherein the cell group is placed in an area inside an edge of the holding member when viewed from a height direction of the vehicle. Each of the cells can be arranged to extend in the height direction of the vehicle. The holding member may be a heat dissipation plate allowing heat exchange between the cells.
Embodiments disclosed include automatically determining alarm threshold settings for monitored battery cells in battery systems. Battery monitoring control units are provided that are configured to initiate battery performance tests (e.g., ohmic tests) on battery cells in a battery system. Failing battery cells are identified as those battery cells having battery performance characteristics outside defined battery performance threshold settings. An initial performance alarm threshold setting is established for each battery cell because of unique performance characteristics that can substantially change during initial charging cycles before the battery cells have settled. A settled performance alarm threshold setting specific to each battery cell is then established based on battery cell performance during the defined settling time period. In this manner, more accurate performance alarm threshold settings are automatically established for monitoring each battery cell based on the individual performance characteristics of each battery cell during the settling time period.
A dynamic formation protocol for a lithium-ion battery cell. An “SEI formation end voltage” is identified, which is the voltage reached during formation at which the SEI layer is substantially formed. Charge rates are selected for the formation, with a first charge current rate to be used until the SEI formation end voltage is reached, and a second charge current rate, faster than the first charge current rate, to be used thereafter the SEI formation end voltage. These charge rates are applied to the cell for at least a first cycle of the dynamic formation process.
An electrical or electrochemical cell, including a cathode layer, an electrolyte layer, and an anode layer is disclosed. The cathode layer includes a first material providing a cathodic electric transport, charge storage or redox function. The electrolyte layer includes a polymer, a first electrolyte salt, and/or an ionic liquid, The anode layer includes a second material providing an anodic electric transport, charge storage or redox function. At least one of the cathode and anode layers includes the ionic liquid, a second electrolyte salt, and/or a transport-enhancing additive.
An object of the present invention is to provide an ambient temperature molten salt having excellent electron conductivity in addition to ion conductivity. The present invention attains the object by providing an ambient temperature molten salt including a first imidazolium salt having a cationic segment represented by the general formula (1) and an anionic segment represented by MX4 (where M is a transition metal and X is a halogen); and a second salt having a cationic segment as a monovalent cation and an anionic segment as a halogen.
A nonaqueous electrolyte rechargeable battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The positive electrode and the negative electrode occlude and discharge lithium irons. The nonaqueous electrolyte contains an additive and a polycyclic aromatic hydrocarbon. The additive includes an organic solvent having a donor number of 18 to 24. A content of the polycyclic aromatic hydrocarbon is 0% to 2.0% of a total mass of the nonaqueous electrolyte.
A self-propelled microbial fuel cell apparatus includes a microbial fuel cell with a cathode electrode and an anode electrode wherein the anode electrode is enclosed within an enclosure that has an opening in it. The microbial fuel cell is positioned within a self-propelled delivery vehicle so that the electrodes of the fuel cell are exposed to interface with a microbial environment.
The mechanical energy of an actuator is used for producing vibration alerts in a portable electronic device. The same mechanical energy is also utilized to control the flow of fuel or to mix the fuel in a fuel cell of the portable electronic device. Thus, the flow of fuel into a reaction area of a fuel cell is controlled or fuel is mixed in a fuel storage area of a fuel cell assembly. Such fuel flow control and mixing is performed passively whenever a vibration alert occurs, or is performed actively in response to monitoring the status of the fuel cell assembly.
A fuel cell system (10) with a toggle switch (32) between an ON or OFF position is provided. In the OFF position, gas is purged from the fuel cell. The fuel cell (12) may surround the fuel source (14) with the cathode side of the fuel cell facing the fuel source. Additionally, both the fuel cell (12) and the fuel source (14) may have similar form factor to maximize the available space. Preferably the form factor is substantially an oval shape. The fuel cell system may also have a pressure regulator (26).
A cathode of a solid-oxide fuel cell includes a first ionic conducting layer, a second layer deposited over the first layer and formed from a mixed ionic and electronic conductor layer including an oxygen ion conducting phase, and a third layer deposited over the second layer and formed from a mixed ionic and electronic conductor layer. A sintering aid and pore formers are added to the second layer and the third layer to establish ionic, electronic, and gas diffusion paths that are contiguous. By adjusting the microstructure of the second and the third layer, a high performance low resistance cathode is formed that bonds well to the electrolyte, is highly electro-catalytic, and has a relatively low overall resistance. By using inexpensive and readily available substances as sintering aid and as pore formers, a low-cost cathode is provided.
There are provided a battery electrode wherein an active material layer is formed on a collector surface, and the layer contains an active material and a block copolymer having a vinyl alcohol polymer block; and a lithium ion secondary battery having a laminate structure in which a pair of electrodes having an active material layer are disposed in such a manner that the active material layers face each other via a separator, and an electrolyte composition containing a lithium-containing electrolyte salt fills the gaps between the pair of electrodes and the separator, wherein at least one of the pair of electrodes is the above battery electrode. Thus, there can be provided a lithium ion secondary battery which can be easily produced and be less polarized, exhibiting excellent charge/discharge properties and cycle characteristics.
In order to provide a cell connector for the electrically conductive connection of a first cell terminal of a first electrochemical cell and a second cell terminal of a second electrochemical cell of an electrochemical device comprising a base body and a contact body, which is connected to the base body and is connected to one of the cell terminals in the assembled state of the cell connector, at which an electric potential is detectable in a particularly simple manner, it is proposed that the contact body comprises a voltage tap.
A separator including a porous substrate, and a porous coating layer formed on at least one surface of the porous substrate and including a mixture of inorganic particles and a binder polymer. A continuous or discontinuous patterned layer is formed on the surface of the porous coating layer to allow an electrolyte solution to permeate therethrough. The continuous or discontinuous patterned layer may be formed with continuous grooves to allow an electrolyte solution to permeate therethrough. Due to this structure, the wettability of the separator with an electrolyte solution is improved, shortening the time needed to impregnate the electrolyte solution into the separator.
An electrochemical cell may have a PVDF microporous membrane that may be adhesively bonded to electrodes. The adhesive may be a mixture of a solvent and non-solvent that may cause the PVDF membrane to become tacky and adhere to an electrode without collapsing. An adhesively bonded cell may be constructed using multiple layers of adhesively bonded membranes and electrodes. In some embodiments, the adhesive solution may be used as a sizing to prepare electrodes for bonding.
A battery cell arrangement having a battery cell which is in the form of a film cell and includes a flat cell body with two end faces, a flexible cell rim surrounding the cell body, and two contact sections arranged on a rim side of the battery cell. The battery cell arrangement further has a frame arrangement which includes a first frame element and a second frame element which frames the cell body on all sides on the rim. At least one vent opening is provided on a side of the frame arrangement which faces away from the end faces of the cell body, in order to allow fluid, in particular gas, to emerge from the battery cell arrangement in the event of damage.
An organic light-emitting display apparatus includes a substrate, an organic light-emitting device on the substrate, and a thin film encapsulation layer including a first inorganic film, a first organic film, and fine particles including silica with platinum particles. The fine particles are dispersed on the first organic film, and the thin film encapsulation layer is on the organic light-emitting device.
A method for fabricating an organic electroluminescence device according to the present invention includes: preparing an organic electroluminescence device having a lower electrode, an organic layer including an emitting layer, an upper electrode, and a shorted part in which the lower electrode and the upper electrode are shorted; and irradiating a part surrounding the shorted part in which the lower electrode and the upper electrode are shorted to alter a material composing the lower electrode or the upper electrode and to form a space between the lower electrode and the upper electrode in a region corresponding to a region surrounded by an altered part.
An organic light-emitting device includes: a first electrode; a second electrode; and an organic layer interposed between the first electrode and the second electrode, wherein the organic layer includes a compound of Formula 1 and a compound of Formula 2; and a flat panel display device including the organic light-emitting device. Substituents in Formulae 1 and 2 are the same as described in the specification
An arylamine compound of Formula 1 below and an organic light-emitting device including the arylamine compound are provided: Substituents in Formula 1 are as defined in the specification.
A photoelectric conversion material, which acts as an electron donor for donating an electron or an electron acceptor for accepting an electron, contains a polymer having at least one structural unit selected from graphenes represented by the following general formulae (1) to (4): wherein at least one of R1 to R6 in each of the general formulae (1) to (4) is a solubilizing group, and the polymer exhibits a higher solubility in an organic solvent with the solubilizing group than without the solubilizing group.
According to one embodiment, a storage device includes first electrodes, second electrodes, a resistance change layer provided between the first electrodes and the second electrodes, and ion metal particles that are formed in an island form between the first electrodes and the resistance change layer and that contain a metal movable inside the resistance change layer. The first electrodes and the second electrodes are formed of a material which is more unlikely to be ionized as compared to the metal, and the first electrodes are in contact with the resistance change layer in an area around the ion metal particles.
Provided are resistive random access memory (ReRAM) cells having switching layers that include hafnium, aluminum, oxygen, and nitrogen. The composition of such layers is designed to achieve desirable performance characteristics, such as low current leakage as well as low and consistent switching currents. In some embodiments, the concentration of nitrogen in a switching layer is between about 1 and 20 atomic percent or, more specifically, between about 2 and 5 atomic percent. Addition of nitrogen helps to control concentration and distribution of defects in the switching layer. Also, nitrogen as well as a combination of two metals helps with maintaining this layer in an amorphous state. Excessive amounts of nitrogen reduce defects in the layer such that switching characteristics may be completely lost. The switching layer may be deposited using various techniques, such as sputtering or atomic layer deposition (ALD).
A magnetic sensor includes a plurality of groups, each group comprising a plurality of magnetic tunnel junction (MTJ) devices having a plurality of conductors configured to couple the MTJ devices within one group in parallel and the groups in series enabling independent optimization of the material resistance area (RA) of the MTJ and setting total device resistance so that the total bridge resistance is not so high that Johnson noise becomes a signal limiting concern, and yet not so low that CMOS elements may diminish the read signal. Alternatively, the magnetic tunnel junction devices within each of at least two groups in series and the at least two groups in parallel resulting in the individual configuration of the electrical connection path and the magnetic reference direction of the reference layer, leading to independent optimization of both functions, and more freedom in device design and layout. The X and Y pitch of the sense elements are arranged such that the line segment that stabilizes, for example, the right side of one sense element; also stabilizes the left side of the adjacent sense element.
Some implementations provide a die that includes a magnetoresistive random access memory (MRAM) cell array that includes several MRAM cells. The die also includes a first ferromagnetic layer positioned above the MRAM cell array, a second ferromagnetic layer positioned below the MRAM cell array, and several vias positioned around at least one MRAM cell. The via comprising a ferromagnetic material. In some implementations, the first ferromagnetic layer, the second ferromagnetic layer and the several vias define a magnetic shield for the MRAM cell array. The MRAM cell may include a magnetic tunnel junction (MTJ). In some implementations, the several vias traverse at least a metal layer and a dielectric layer of the die. In some implementations, the vias are through substrate vias. In some implementations, the ferromagnetic material has high permeability and high B saturation.
A magnetic memory device according to embodiments includes a first reference magnetic layer on a substrate, a second reference magnetic layer on the first reference magnetic layer, a free layer between the first reference magnetic layer and the second reference magnetic layer, a first tunnel barrier layer between the first reference magnetic layer and the free layer, and a second tunnel barrier layer between the second reference magnetic layer and the free layer. The first reference magnetic, second reference magnetic and free layers each have a magnetization direction substantially perpendicular to a top surface of the substrate. A resistance-area product (RA) value of the first tunnel barrier layer is greater than that of the second tunnel barrier layer.
According to one embodiment, a magnetic random access memory includes a magnetoresistive element, a contact arranged under the magnetoresistive element and connected to the magnetoresistive element, and an insulating film continuously formed from a periphery of the contact to a side surface of the magnetoresistive element and including a protective portion covering the side surface of the magnetoresistive element.
A piezoelectric material contains a first component that is a rhombohedral crystal that is configured to have a complex oxide with a perovskite structure and Curie temperature Tc1, a second component that is a crystal other than a rhombohedral crystal that is configured to have a complex oxide with the perovskite structure and Curie temperature Tc2, and a third component that is configured to have a complex oxide with the perovskite structure in which the component is formed as the same crystal system as the second component and Curie temperature Tc3, in which Tc1 is higher than Tc2, and Tc3 is equal to or higher than Tc1.
Some embodiments provide a waste heat recovery apparatus including an exhaust tube having a cylindrical outer shell configured to contain a flow of exhaust fluid; a first heat exchanger extending through a first region of the exhaust tube, the first heat exchanger in thermal communication with the cylindrical outer shell; a second region of the exhaust tube extending through the exhaust tube, the second region having a low exhaust fluid pressure drop; an exhaust valve operatively disposed within the second region and configured to allow exhaust fluid to flow through the second region only when a flow rate of the exhaust fluid becomes great enough to result in back pressure beyond an allowable limit; and a plurality of thermoelectric elements in thermal communication with an outer surface of the outer shell.
A component including a substrate, at least one layer including a color conversion material comprising quantum dots disposed over the substrate, and a layer comprising a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material comprising quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein. In certain embodiments, a lighting device includes a component described herein.
The present application discloses a composite substrate with a protective layer for preventing metal from diffusing, comprising: a thermally and electrically conductive layer (2) having a melting point of greater than 1000° C., and a GaN mono-crystalline layer (1) located on the thermally and electrically conductive layer (2). At least the side wall of the composite substrate is cladded with a protective layer (3) for preventing metal from diffusing. The composite substrate not only takes account of the homoepitaxy required for GaN epitaxy and improves the quality of the crystals, but also can be used directly to prepare LEDs with vertical structures and significantly reduce costs. The disclosed composite substrate effectively avoids the pollution of experimental instruments by the diffusion and volatilization of a metal material during the growth of MOCVD at high temperature.
In order to improve reliability by preventing an edge breakdown in a semiconductor photodetector having a mesa structure such as a mesa APD, the semiconductor photodetector comprises a mesa structure formed on a first semiconductor layer of the first conduction type formed on a semiconductor substrate, the mesa structure including a light absorbing layer for absorbing light, an electric field buffer layer for dropping an electric field intensity, an avalanche multiplication layer for causing avalanche multiplication to occur, and a second semiconductor layer of the second conduction type, wherein the thickness of the avalanche multiplication layer at the portion in the vicinity of the side face of the mesa structure is made thinner than the thickness at the central portion of the mesa structure.
A photovoltaic cell tab including: a front contact portion having a first profile; and a back contact portion having a second profile, wherein the first profile or second profile are complex shapes that may be dissimilar to each other. A system and method for forming photovoltaic cell tabs comprising: a feeding mechanism to feed wire; a first forming tool to trim and shape the wire to tabs; and a placement tool configured to match a profile of the tabs and place and attach the tabs on photovoltaic cells. In the system and method, the tabs may be formed to have a complex profile or shape that will affect incident light and/or mechanical or other characteristics of the tabs.
A method of processing a semiconductor assembly is presented. The method includes fabricating a photovoltaic module including a semiconductor assembly. The fabrication step includes performing an efficiency enhancement treatment on the semiconductor assembly, wherein the efficiency enhancement treatment includes light soaking the semiconductor assembly, and heating the semiconductor assembly. The semiconductor assembly includes a window layer having an average thickness less than about 80 nanometers, wherein the window layer includes cadmium and sulfur. A related system is also presented.
A polyimide film which rarely undergoes the formation of bubbles, blisters or the like, even when heated to a high temperature; and a production method and a production apparatus for the polyimide film. The polyimide film production apparatus includes a support body, a cast furnace and a cure furnace, wherein the cure furnace is partitioned into multiple zones so that the temperature of a self-supporting film can be increased in a stepwise manner, and an infrared electric heater, which is disposed at a predetermined distance from the film, is arranged in a zone for heating the atmosphere of the self-supporting film to a temperature of 450° C. or higher on the upper surface side and/or the lower surface side of the self-supporting film. The polyimide production apparatus enables the production of a polyimide film which has a volatile content of 0.1 mass % or less after being heated at 450° C. for 20 minutes.
The present invention provides a dynamic quantity device which reduces stress received by a sensor due to resin packaging and reduces variation in sensor characteristics due to stress. The dynamic quantity sensor includes a semiconductor substrate including a fixing part and a flexible part and a movable part positioned on an interior side of the fixing part, and a cap component configured to cover the flexible part and the movable part, wherein the fixing part includes an interior frame configured to enclose the flexible part and the movable part and an exterior part positioned on a periphery of the interior frame, a slit configured to divide the interior frame and the exterior frame, and a linking part configured to link the interior frame and the exterior frame.
An embodiment relates to a JFET with a channel region and a gate region forming a pn junction. Between a source region and a drain region in a semiconductor portion, the pn junction extends along a vertical direction perpendicular to a first surface of the semiconductor portion. The source, channel and drain regions have a first conductivity type and are arranged along the vertical direction. The gate region and a shielding region between the gate and drain regions have a second, complementary conductivity type. An auxiliary region separates the gate and shielding regions in the semiconductor portion.
In some embodiments, a transistor includes a stack having a bottom source/drain region, a first insulative material, a conductive gate, a second insulative material, and a top source/drain region. The stack has a vertical sidewall with a bottom portion along the bottom source/drain region, a middle portion along the conductive gate, and a top portion along the top source/drain region. Third insulative material is along the middle portion of the vertical sidewall. A channel region material is along the third insulative material. The channel region material is directly against the top and bottom portions of the vertical sidewall. The channel region material has a thickness within a range of from greater than about 3 Å to less than or equal to about 10 Å; and/or has a thickness of from 1 monolayer to 7 monolayers.
A method of manufacturing a vertical memory device is disclosed. In the method, a plurality of insulation layers and a plurality of first sacrificial layers are alternately stacked on a substrate. A plurality of holes is formed through the plurality of insulation layers and first sacrificial layers. A plasma treatment process is performed to oxidize the first sacrificial layers exposed by the holes. A plurality of second sacrificial layer patterns project from sidewalls of the holes. A blocking layer pattern, a charge storage layer pattern and a tunnel insulation layer pattern are formed on the sidewall of the holes that cover the second sacrificial layer patterns. A plurality of channels is formed to fill the holes. The first sacrificial layers and the second sacrificial layer patterns are removed to form a plurality of gaps exposing a sidewall of the blocking layer pattern. A plurality of gate electrodes is formed to fill the gaps.
This invention teaches stress release metal electrodes for gate, drain and source in a field effect transistor and stress release metal electrodes for emitter, base and collector in a bipolar transistor. Due to the large difference in the thermal expansion coefficients between semiconductor materials and metal electrodes, significant strain and stresses can be induced in the devices during the fabrication and operation. The present invention provides metal electrode with stress release structures to reduce the strain and stresses in these devices.
This semiconductor device (100A) includes: a substrate (1); a gate electrode (3) and a first transparent electrode (2) which are formed on the substrate (1); a first insulating layer (4) formed over the gate electrode (3) and the first transparent electrode (2); an oxide semiconductor layer (5) formed on the first insulating layer (4); source and drain electrodes (6s, 6d) electrically connected to the oxide semiconductor layer (5); and a second transparent electrode (7) electrically connected to the drain electrode (6d). At least a portion of the first transparent electrode (2) overlaps with the second transparent electrode (7) with the first insulating layer (4) interposed between them, and the oxide semiconductor layer (5) and the second transparent electrode (7) are formed out of the same oxide film.
Disclosed herein is a thin-film transistor having a gate electrode; a source electrode and a drain electrode which form a source/drain-electrode pair; and a channel layer which is provided between the gate electrode and the source/drain-electrode pair, includes a poly-crystal oxide semiconductor material and has a film thickness smaller than the average diameter of crystal grains of the poly-crystal oxide semiconductor material.
A semiconductor device including a transistor in which an oxide semiconductor is used for a channel formation region and which has a positive threshold voltage to serve as a normally-off switching element, and the like are provided. Stable electrical characteristics are given to the semiconductor device including the transistor in which an oxide semiconductor film is used for the channel formation region, and thus the semiconductor device has high reliability. In a semiconductor device including a transistor in which an oxide semiconductor film including a channel formation region, source and drain electrode layers, a gate insulating film, and a gate electrode layer are stacked in this order over an oxide insulating film, a conductive layer overlapping with the gate electrode layer with the channel formation region provided therebetween and controlling the electrical characteristics of the transistor is provided in the oxide insulating film including an oxygen excess region.
A read-only memory (ROM) cell array and a cell structure thereof is disclosed. The ROM cell array is coupled to a plurality rows of bit-lines and a plurality columns of word-lines and comprises: a plurality of sub-cell-arrays arranged along the column direction, each sub-cell-array comprising a plurality of unit cell structures. Each unit cell structure comprises: an cell base region defining a cell boundary, comprising an blanket OD layer having a wide-block profile arranged on a substrate and defining a continuous common source node, a drain pad disposed above the OD layer, arranged in selectively connection with a bit line, a vertical channel structure bridging between the drain pad and the OD layer, and a gate structure disposed vertically between the drain pad and the OD layer and arranged in connection with a word-line. The sub-cell-array boundary is defined entirely within the coverage of the OD layer.
A silicon carbide film includes a first range having a first breakdown voltage holding layer, a charge compensation region, a first junction terminal region, and a first guard ring region. The silicon carbide film includes a second range having a second breakdown voltage holding layer, a channel forming region, and a source region. The first and second breakdown voltage holding layers constitutes a breakdown voltage holding region having a thickness in an element portion. When voltage is applied to attain a maximum electric field strength of 0.4 MV/cm or more in the breakdown voltage holding region during an OFF state, a maximum electric field strength in the second range within the element portion is configured to be less than ⅔ of a maximum electric field strength in the first range.
A silicon carbide semiconductor device includes an element region and a guard ring region. A semiconductor element is provided in the element region. The guard ring region surrounds the element region in a plan view and has a first conductivity type. The semiconductor element includes a drift region having a second conductivity type different from the first conductivity type. The guard ring region includes a linear region and a curvature region continuously connected to the linear region. A value obtained by dividing a radius of curvature of an inner circumference portion of the curvature region by a thickness of the drift region is not less than 5 and not more than 10. Accordingly, there can be provided a silicon carbide semiconductor device capable of improving a breakdown voltage while suppressing decrease of on-state current.
A low leakage current switch device (110) is provided which includes a GaN-on-Si substrate (11-43) covered by a passivation surface layer (43) in which a T-gate electrode with sidewall extensions (48) is formed and coated with a conformal passivation layer (49) so that the T-gate electrode sidewall extensions are spaced apart from the underlying passivation surface layer (43) by the conformal passivation layer (49).
A semiconductor device includes a first semiconductor layer disposed over a substrate, a second semiconductor layer disposed over the first semiconductor layer, a gate recess disposed, through removal of a part of or all the second semiconductor layer, in a predetermined region over the first semiconductor layer, an insulating film disposed over the gate recess and the second semiconductor layer, a gate electrode disposed over the gate recess with the insulating film therebetween, and a source electrode and a drain electrode disposed over the first semiconductor layer or the second semiconductor layer, whereby a central portion of the gate recess is higher than a peripheral portion of the gate recess.
A semiconductor device of one embodiment, including the semiconductor layer including a III-V group nitride semiconductor; a groove portion formed in the semiconductor layer; the gate insulating film formed at least on a bottom surface of the groove portion, the gate insulating film being a stacked film of a first insulating film and a second insulating film of which dielectric constant is higher than that of the first insulating film; the gate electrode formed on the gate insulating film; and a source electrode and a drain electrode formed on the semiconductor layer across the gate electrode, in which the second insulating film is selectively formed only under the gate electrode.
Aspects of the invention provide a method of forming a bipolar junction transistor. The method includes: providing a semiconductor substrate including a uniform silicon nitride layer over an emitter pedestal, and a base layer below the emitter pedestal; applying a photomask at a first end and a second end of a base region; and performing a silicon nitride etch with the photomask to simultaneously form silicon nitride spacers adjacent to the emitter pedestal and exposing the base region of the bipolar junction transistor. The silicon nitride etch may be an end-pointed etch.
A self-rectified device is provided, comprising a bottom electrode, a patterned dielectric layer with a contact hole formed on the bottom electrode, a memory formed at the bottom electrode and substantially aligned with the contact hole, and a top electrode formed on the bottom electrode and filling into the contact hole to contact with the memory, wherein the top electrode comprises a N+ type semiconductor material or a P+ type semiconductor material, and the memory and the top electrode produce a self-rectified property.
A method of manufacturing a semiconductor device includes patterning a substrate to form an active fin, forming a sacrificial gate pattern crossing over the active fin on the substrate, forming an interlayer insulating layer on the sacrificial gate pattern, removing the sacrificial gate pattern to form a gap region exposing the active fin in the interlayer insulating layer, and oxidizing a portion of the active fin exposed by the gap region to form an insulation pattern between the active fin and the substrate.
Methods of forming ternary III-nitride materials include epitaxially growing ternary III-nitride material on a substrate in a chamber. The epitaxial growth includes providing a precursor gas mixture within the chamber that includes a relatively high ratio of a partial pressure of a nitrogen precursor to a partial pressure of one or more Group III precursors in the chamber. Due at least in part to the relatively high ratio, a layer of ternary III-nitride material may be grown to a high final thickness with small V-pit defects therein. Semiconductor structures including such ternary III-nitride material layers are fabricated using such methods.
Methods, systems, and devices are disclosed for implementing high power circuits and semiconductor devices. In one aspect, a method for fabricating a silicon carbide (SiC) device includes forming a thin layer of a protection material over a SiC substrate, in which the protection material has a lattice constant that substantially matches a lattice constant of SiC and the thin layer has a thickness of less than a critical layer thickness for the protection material over SiC to form a uniform interface between the protection material and SiC, forming a layer of an insulator material over the thin layer of the protection material, and forming one or more transistor structures over the insulator material.
A silicon oxide film is formed on an epitaxial layer by dry thermal oxidation, an ohmic electrode is formed on a back surface of a SiC substrate, an ohmic junction is formed between the ohmic electrode and the back surface of the SiC substrate by annealing the SiC substrate, the silicon oxide film is removed, and a Schottky electrode is formed on the epitaxial layer. Then, a sintering treatment is performed to form a Schottky junction between the Schottky electrode and the epitaxial layer.
A magnetically-coupled structure is integrated with an integrated circuit in back end-of-line (BEOL) digital CMOS fabrication processes. A differential primary (or secondary) coil is formed by patterning a thick copper (Cu) metal layer, and a single-ended secondary (or primary) coil is formed by patterning a thick aluminum (Al) top metal bonding layer. Crossovers and/or cross-unders are formed using thin metal layers. One embodiment provides a stacked balun with a differential primary input winding defined in the copper layer, directly underneath a single-ended spiral winding defined in the aluminum layer. The spiral forms the single-ended secondary output of the balun and is rotated by 90° to prevent metal shorting for its cross-under connections. Another embodiment provides a transformer with one differential primary (or secondary) coil defined in the copper layer and another differential secondary (or primary) coil defined in the aluminum layer and adding a center tap. The position of the tap is selected to compensate for phase differences and provide desired balance.
A display device includes a load, a transistor for controlling a current value supplied to the load, a capacitor, a first wiring, a second wiring, and first to fourth switches. Variations in the current value caused by variations in the threshold voltage of the transistor can be suppressed through the steps of: (1) holding the threshold voltage of the transistor in the storage capacitor, (2) inputting a potential in accordance with a video signal, and (3) holding a voltage that is the sum of the threshold voltage and the potential in accordance with the video signal, in the storage capacitor. Accordingly, a desired current can be supplied to the load such as a light emitting element.
A light receiving layer is formed with an array of photodiodes for accumulating signal charge produced by photoelectric conversion of incident light. A wiring layer provided with electrodes and wiring for controlling the photodiodes is formed behind the light receiving layer in a traveling direction of the incident light. In the light receiving layer, there is formed a projection and depression structure in which a pair of inclined surfaces have symmetric inclination directions and each inclined surface corresponds to each photodiode. Each inclined surface makes the incident light enter each photodiode by a light amount corresponding to an incident angle.
An active matrix image sensing panel comprises a substrate and an image sensing pixel. The image sensing pixel is disposed on the substrate and comprises a scan line, a data line crossing the scan line, a photo sensing element and a TFT element. The photo sensing element includes a first terminal electrode and a second terminal electrode, and the voltage of the first terminal electrode is higher than that of the second terminal electrode. The TFT element includes a first electrode, a second electrode, a first gate electrode and a second gate electrode. The first electrode is electrically connected to the data line, the second electrode is electrically connected to the first terminal electrode, the first gate electrode is electrically connected to the scan line, and the second gate electrode is electrically connected to the first or second terminal electrode. An active matrix image sensing apparatus is also disclosed.
According to one embodiment, a method of manufacturing a back-illuminated solid-state imaging device including forming a mask with apertures corresponding to a pixel pattern on the surface of a semiconductor layer, implanting second-conductivity-type impurity ions into the semiconductor layer from the front side of the layer to form second-conductivity-type photoelectric conversion parts and forming a part where no ion has been implanted into a pixel separation region, forming at the surface of the semiconductor layer a signal scanning circuit for reading light signals obtained at the photoelectric conversion parts after removing the mask, and removing the semiconductor substrate and a buried insulating layer from the semiconductor layer after causing a support substrate to adhere to the front side of the semiconductor layer.
An electronic device according to one or more embodiments of the invention comprises a plurality of first output lines and a plurality of current to voltage convertors. Current signals from a plurality of signal sources are output to the first output lines. Each of the current to voltage convertors are electrically connected to a corresponding one of the first output lines. The current to voltage convertor includes a first amplification unit. An offset reduction unit in a subsequent stage of the current to voltage convertor is provided for each of the first output lines.
A display device and a method of manufacturing the same. In one embodiment, a display device includes a substrate having a pixel region, a transistor region and a capacitor region, a transistor arranged within the transistor region of the substrate and a capacitor arranged within the capacitor region of the substrate, wherein the capacitor includes a lower electrode arranged on the substrate, a gate insulating layer arranged on the lower electrode and an upper electrode arranged on the gate insulating layer and overlapping the lower electrode, the upper electrode includes a first conductive layer and a second conductive layer arranged on the first conductive layer, wherein the first conductive layer is opaque.
A non-volatile memory cell including a substrate having first and second regions with a channel region therebetween. A floating gate is disposed over and insulated from a first portion of the channel region which is adjacent the first region. A select gate is disposed over and insulated from a second portion of the channel region which is adjacent to the second region. The select gate includes a block of polysilicon material and a work function metal material layer extending along bottom and side surfaces of the polysilicon material block. The select gate is insulated from the second portion of the channel region by a silicon dioxide layer and a high K insulating material layer. A control gate is disposed over and insulated from the floating gate, and an erase gate is disposed over and insulated from the first region, and disposed laterally adjacent to and insulated from the floating gate.
An integrated circuit is formed on a p-type semiconductor substrate connected to ground potential. A deep n-well is disposed in the p-type substrate. A p-well is disposed in the deep n-well. An n+ drain region and an n+ source region are disposed in the p-well, the n+ source region connected to a common potential. A p-type contact is disposed in the p-well and is connected to ground potential through a resistor.
An object is to provide a semiconductor device which can store data even after the application of power supply voltage is stopped, a manufacturing method thereof, or a driving method thereof. Data stored in a first circuit portion is transmitted to a second circuit portion, the data is stored in the second circuit portion in a period during which the application of power supply voltage is stopped, and data corresponding to the data is transmitted to the first circuit portion at the time of applying power supply voltage again. With such a configuration, a semiconductor device can store data even in a period during which the application of the power supply voltage is stopped. In particular, the second circuit portion includes a transistor including an oxide semiconductor, whereby the data can be accurately stored.
According to a first aspect embodiments provide a transistor including at least one gate region between at least one drain region and at least one source region, wherein a ratio between a width of the gate region and a length of the gate region exceeds 300.
The invention relates to a method for embedding a non-embedded or bare LED network. To this end, the method of embedding a non-embedded LED network comprises the steps of: •(a) providing said non-embedded LED network associated with a continuous flexible support; •(b) applying in a continuous manner a flexible insulation layer on a liquid basis onto said non-embedded LED network associated with said continuous flexible support.
An optical sensor chip device and a corresponding production method. The optical sensor chip device includes a substrate having a front side and a rear side; at least one first optical sensor chip for acquiring a first optical spectral range, the chip being attached to the substrate; and a first sealed cavern fashioned above an upper side of the first optical sensor chip. The first optical sensor chip is situated on a first side of the first cavern, and a first optical device is situated on an opposite, second side of the first cavern.
An electronic apparatus includes a base substrate, the base substrate including an interconnect. The electronic apparatus further includes a first die including a first semiconductor device, the first semiconductor device being coupled to the interconnect, and further includes a second die including a second semiconductor device, the second semiconductor device being coupled to the interconnect. The first and second die are attached to the base substrate in opposite orientations.
A low-cost high-frequency electronic device package and associated fabrication method are described wherein waveguide structures are formed from the high frequency device to the package lead transition. The package lead transition is optimized to take advantage of waveguide interconnect structure.
A semiconductor substrate includes scribe and product regions, with grooves formed in the scribe region. The grooves are embedded with an insulating film to provide an isolation region, and an active region, including semiconductor elements, is formed in the product region. Dummy patterns are formed in the scribe region, which include a first dummy pattern and second dummy patterns for preventing dishing of the insulating film. The second dummy patterns are surrounded and defined by the isolation region. A target pattern for optical pattern recognition is arranged over the first dummy pattern, and includes a first conductive film. A plane area of the first dummy pattern is larger than a plane area of each of the second dummy patterns, and the first dummy pattern and the second dummy patterns are arranged in order from an edge of the semiconductor substrate toward the product region.
A semiconductor device is provided which complies with restrictions on layout on a mounting substrate side. The semiconductor device includes a wiring substrate having a plurality of bonding leads at an upper surface having a rectangular shape, a semiconductor chip mounted over the upper surface of the wiring substrate, and having a plurality of electrode pads at a main surface having a rectangular shape similar to a square shape, and a plurality of metal wires for coupling the bonding leads of the wiring substrate to the electrode pads of the semiconductor chip. In a BGA, the metal wires are arranged at three sides of a main surface of the semiconductor chip, the bonding leads are provided in lines at the upper surface of the wiring substrate outside the respective opposed short sides of the main surface of the semiconductor chip, and the metal wires are coupled to the bonding leads.
A wire bondless, double flip chipped discrete power package including a base plate for structural support, heat spreading, and thermal connection, power substrate for electrical interconnection and isolation, lead frames for external connections, an upper substrate for topside electrical interconnection, and injection molded housing for mounting, isolation, and protection.
A semiconductor device includes a substrate having a plurality of contact surfaces, an interlayer dielectric layer formed over the substrate and having a first open portion which exposes a part of the contact surfaces and a second open portion which exposes the other contact surfaces, a storage node contact (SNC) plug filling the first open portion, and a damascene structure filing the second open portion and including a bit line, a spacer formed on both sidewalls of the bit line, a capping layer formed over the bit line and the spacer, and an air gap formed between the bit line and the spacer. The bit line includes a conductive material of which the volume is contracted by a heat treatment to form the air gap.
Self-heating integrated circuits are provided. In one embodiment, a self-heating integrated circuit comprises a drive circuit configured to drive a device and a controller configured to selectively operate the drive circuit in a first mode or a second mode. In the first mode, the controller is configured to operate the drive circuit to drive the device and, in the second mode, the controller is configured to operate the drive circuit to heat the integrated circuit to a target temperature.
Presented herein are an interconnect structure and method for forming the same. The interconnect structure comprises a contact pad disposed over a substrate and a connector disposed over the substrate and spaced apart from the contact pad. A passivation layer is disposed over the contact pad and over connector, the passivation layer having a contact pad opening, a connector opening and a mounting pad opening. A post passivation layer comprising a trace and a mounting pad is disposed over the passivation layer. The trace may be disposed in the contact pad opening and contacting the mounting pad, and further disposed in the connector opening and contacting the connector. The mounting pad may be disposed in the mounting pad opening and contacting the opening. The mounting pad separated from the trace by a trace gap, which may optionally be at least 10 μm.
A semiconductor package includes a passivation layer overlying a semiconductor substrate, a bump overlying the passivation layer, and a molding compound layer overlying the passivation layer and covering a lower portion of the bump. A sidewall of the passivation layer is covered by the molding compound layer.
A substrate including a handle substrate, a lower insulator layer, a buried semiconductor layer, an upper insulator layer, and a top semiconductor layer is provided. Semiconductor fins can be formed by patterning a portion of the buried semiconductor layer after removal of the upper insulator layer and the top semiconductor layer in a fin region, while a planar device region is protected by an etch mask. A disposable fill material portion is formed in the fin region, and a shallow trench isolation structure can be formed in the planar device region. The disposable fill material portion is removed, and gate stacks for a planar field effect transistor and a fin field effect transistor can be simultaneously formed. Alternately, disposable gate structures and a planarization dielectric layer can be formed, and replacement gate stacks can be subsequently formed.
A non-planar semiconductor structure includes mixed n-and-p type raised semiconductor structures, e.g., fins, having epitaxial structures grown on top surfaces thereof, for example, epitaxial silicon and silicon germanium, naturally growing into a diamond shape. The surface area of the epitaxial structures is increased by removing portion(s) thereof, masking each type as the other type is grown and then subsequently modified by the removal. The removal may create multi-head (e.g., dual-head) epitaxial structures, together with the neck of the respective raised structure resembling a Y-shape.
Approaches for front side laser scribe plus backside bump formation and laser scribe and plasma etch dicing process are described. For example, a method of dicing a semiconductor wafer having integrated circuits on a front side thereof involves forming first scribe lines on the front side, between the integrated circuits, with a first laser scribing process. The method also involves forming arrays of metal bumps on a backside of the semiconductor wafer, each array corresponding to one of the integrated circuits. The method also involves forming second scribe lines on the backside, between the arrays of metal bumps, with a second laser scribing process, wherein the second scribe lines are aligned with the first scribe lines. The method also involves plasma etching the semiconductor wafer through the second scribe lines to singulate the integrated circuits.
A semiconductor device including at least one self-aligned contact has at least one gate electrode on a bulk substrate layer of the semiconductor device. A gate cap encapsulates the at least one gate electrode. The semiconductor device further includes at least one contact separated from the at least one gate electrode via a portion of the gate cap. The at least one contact includes a metal portion that directly contacts the gate cap.
A composition and method for tungsten is provided comprising: a metal oxide abrasive; an oxidizer; a tungsten removal rate enhancing substance according to formula I; and, water; wherein the polishing composition exhibits an enhanced tungsten removal rate and a tungsten removal rate enhancement.
An exemplary semiconductor device comprises a through silicon via penetrating a semiconductor substrate including a circuit pattern on one side of the substrate, a first doped layer formed in the other side, and a bump connected with the through silicon via.
A method for producing a semiconductor component with a semiconductor body includes providing a substrate of a first conductivity type. A buried semiconductor layer of a second conductivity type is provided on the substrate. A functional unit semiconductor layer is provided on the buried semiconductor layer. At least one trench, which reaches into the substrate, is formed in the semiconductor body. An insulating layer is formed, which covers inner walls of the trench and electrically insulates the trench interior from the functional unit semiconductor layer and the buried semiconductor layer, the insulating layer having at least one opening in the region of the trench bottom. The at least one trench is filled with an electrically conductive semiconductor material of the first conductivity type, wherein the electrically conductive semiconductor material forms an electrical contact from a surface of the semiconductor body to the substrate.
A method of transferring a layer from a donor substrate onto a receiving substrate comprises ionic implantation of at least one species into the donor substrate and forming a layer of concentration of the species intended to form microcavities or platelets; bonding the donor substrate with the receiving substrate by wafer bonding; and splitting at high temperature to split the layer in contact with the receiving substrate by cleavage, at a predetermined cleavage temperature, at the layer of microcavities or platelets formed in the donor substrate. The method further comprises, after the first implantation step and before the splitting step, ionic implantation of silicon ions into the donor substrate to form a layer of concentration of silicon ions in the donor substrate, the layer of concentration of silicon ions at least partially overlapping the layer of concentration of the species intended to form microcavities or platelets.
One illustrative method disclosed herein includes forming a plurality of spaced-apart fin structures in a semiconductor substrate, wherein the fin structures define a portion of an alignment/overlay mark trench where at least a portion of an alignment/overlay mark will be formed, forming at least one layer of insulating material that overfills the alignment/overlay mark trench and removing excess portions of the layer of insulating material positioned above an upper surface of the plurality of fins to thereby define at least a portion of the alignment/overlay mark positioned within the alignment/overlay mark trench. A device disclosed herein includes a plurality of spaced-apart fin structures formed in a semiconductor substrate so as to partially define an alignment/overlay mark trench, an alignment/overlay mark consisting only of at least one insulating material positioned within the alignment/overlay mark trench, and a plurality of FinFET semiconductor devices formed in and above the substrate.
A substrate processing chamber comprises an electrostatic chuck comprising a ceramic puck having a substrate receiving surface and an opposing backside surface. In one version, the ceramic puck comprises a thickness of less than 7 mm. An electrode is embedded in the ceramic puck to generate an electrostatic force to hold a substrate, and heater coils in the ceramic puck allow independent control of temperatures at different heating zones of the puck. A chiller provides coolant to coolant channels in a base below the ceramic puck. A controller comprises temperature control instruction sets which set the coolant temperature in the chiller in relation prior to ramping up or down of the power levels applied to the heater.
Multi-chip underfills and methods for multi-chip module fabrication include connecting one or more chips to a substrate with one or more electrical connections; partially curing an underfill material such that the underfill provides structural support to the electrical connections; electrically testing the one or more chips to identify one or more defective chips; and replacing the one or more defective chips.
A semiconductor device has a first insulating layer formed over a carrier. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first conductive layer. Vias are formed through the second insulating layer. A second conductive layer is formed over the second insulating layer and extends into the vias. A semiconductor die is mounted to the second conductive layer. A bond wire is formed between a contact pad on the semiconductor die and the second conductive layer. The second conductive layer extends to a mounting site of the semiconductor die to minimize the bond wire span. An encapsulant is deposited over the semiconductor die. A portion of the first insulating layer is removed to expose the second conductive layer. A portion of the first conductive layer is removed to electrically isolate remaining portions of the first conductive layer.
Methods for fabricating integrated circuits using chemical mechanical planarization (CMP) for recessing metal are provided. In an embodiment, a method for fabricating an integrated circuit includes filling a trench with a metal and forming an overburden portion of the metal outside of the trench. The method further includes performing a planarization process with an etching slurry to remove the overburden portion of the metal and to recess the metal within the trench.
A plasma processing method for a plasma processing device is provided. The plasma processing device includes a reaction chamber, multiple Radio Frequency (RF) power supplies with different RF frequency outputs apply RF electric fields to the reaction chamber, the output of at least one pulse RF power supply has multiple output states, and the processing method includes a match frequency obtaining step and a pulse processing step. In the match frequency obtaining step, the output state of the pulse RF power supply is switched to make the reaction chamber have multiple impedances to simulate the impedances in the pulse processing step. The output frequencies of the variable frequency RF power supply are adjusted to match the simulated impedances. The adjusted output frequencies are stored as match frequencies. In the subsequent pulse processing step, the fast switched impedances are instantly matched by the stored match frequencies.
A method for etching a layer in a plasma chamber with an inner injection zone gas feed and an outer injection zone gas feed is provided. The layer is placed in the plasma chamber. A pulsed etch gas is provided from the inner injection zone gas feed at a first frequency, wherein flow of pulsed etch gas from the inner injection zone gas feed is ramped down to zero. The pulsed etch gas is provided from the outer injection zone gas feed at the first frequency and simultaneous with and out of phase with the pulsed etch gas from the inner injection zone gas feed. The etch gas is formed into a plasma to etch the layer, simultaneous with the providing the pulsed etch gas from the inner injection zone gas feed and providing the pulsed gas from the outer interjection zone gas feed.
The present invention relates to an apparatus and method for manufacturing a semiconductor light-emitting device using a neutral particle beam. According to the present invention, since the kinetic energy of the neutral particle beam is provided as a portion of the reaction energy for causing a nitride semiconductor single crystal thin film to be formed on a substrate, and the reaction energy is not provided as heat energy by heating a substrate as in the prior art, the substrate may be treated at a relatively low temperature. Furthermore, elements such as Si, Mg, and the like, which are solid elements required for doping are sprayed onto the substrate from a source which generates solid elements for doping together with the neutral particle beam to achieve high doping efficiency at a lower temperature. According to the present invention, since the substrate is treated at a low temperature, the degradation of the substrate and thin film may be prevented, and the undesired diffusion of the doping elements may be prevented to enable the manufacture of the semiconductor light-emitting device having superior light-emitting properties in a relatively easy manner.
A structure includes a substrate having a surface and a first transistor disposed in a first region supported by the surface of the substrate. The first transistor has a channel formed in a first compound (Group III-V) semiconductor having a first energy bandgap. The structure further includes a second transistor disposed in a second region supported by the substrate. The second transistor has a channel formed in a second compound (Group III-V) semiconductor having a second energy bandgap that is larger than the first energy bandgap. In one embodiment the first compound semiconductor is a layer that overlies a first portion of the surface of the substrate and the substrate is the second compound semiconductor. In another embodiment the second compound semiconductor is provided as a second layer that overlies a second portion of the surface of the substrate. Methods to form the structure are also disclosed.
A ceramic metal-halide lamp is provided that can improve both lamp efficacy and color characteristics, and in which light color shift from the white region can be prevented when the lamp is dimmed. The lamp includes a luminous material, which contains sodium iodide (NaI), cerium iodide (CeI3), thallium iodide (TIl), dysprosium iodide (DyI3) and indium iodide (InI). The amount D[DyI3] of dysprosium iodide DyI3 is selected so as to fall within a range of 0.07 mg/cm3≦D[DyI3]≦1.53 mg/cm3 and a weight ratio R[InI/TIl] of indium iodide InI relative to thallium iodide TIl contained in the luminous material is selected to so as to fall within a range of 0
An electrostatic lens (3), including five cylindrical electrodes (31-35) arrayed along an ion-optical axis (C) and an aperture plate (38) located on a common focal plane of two virtual convex lenses (L1 and L2) formed under an afocal condition, is used as an ion-injecting optical system for sending ions into an orthogonal acceleration unit. The diameter of a restriction aperture (39) formed in the aperture plate (38) determines the angular spread of an exit ion beam. When voltages for making the electrostatic lens (3) function as an afocal system are set, a measurement with high mass-resolving power can be performed at a slight sacrifice of the sensitivity. When voltages for making the lens function as a non-afocal system having the highest ion-passage efficiency are set, a measurement with high sensitivity can be performed at a slight sacrifice of the resolving power.
A time of flight (TOF) spectrometer and a method for operating the same is disclosed. The spectrometer includes an event extractor, a streaming processor, and a FIFO buffer. The event extractor generates a ion event record corresponding to each detected ion, the ion event record including an intensity of a plurality of aliases for that detected ion. The streaming processor includes a memory array that stores a TOF spectrum and a probability processor that provides a probability for each alias in each received ion event record and updates the TOF spectrum based on the probabilities. A FIFO buffer receives each of the ion event records after the TOF spectrum has been updated and outputs the oldest ion event record to the streaming processor when a new ion event record is processed by the streaming processor.
A plasma processing apparatus includes: a processing chamber that accommodates a substrate therein; a lower electrode positioned within the processing chamber and serving as a mounting table; an upper electrode positioned to face the lower electrode within the processing chamber; a first high frequency power supply that applies high frequency power for plasma generation of a first frequency to the lower electrode or the upper electrode; a second high frequency power supply that applies high frequency power for ion attraction of a second frequency lower than the first frequency to the lower electrode; at least one bias distribution control electrode positioned at least in a peripheral portion above the lower electrode; and at least one bias distribution control power supply that applies an AC voltage or a square wave voltage of a third frequency lower than the second frequency to the at least one bias distribution control electrode.
A multi charged particle beam writing method includes emitting each corresponding beam in an “on” state while starting and continuing tracking control, shifting a writing position by beam deflection of the multi beams, in addition to tracking control, while continuing tracking control, emitting each corresponding beam in the next “on” state to the next writing position having been shifted while continuing tracking control, and returning the tracking position by resetting tracking control, after emitting each next corresponding beam to the next writing position having been shifted at least once, wherein writing of a predetermined region is completed by repeating the number of preset times a group of performing emitting, shifting, emitting, and returning, wherein the tracking time from start to reset of tracking control in at least one of the repeated groups is longer than the others.
Liquid metal containment in an x-ray tube. In one example embodiment, an x-ray tube anode assembly includes a shaft terminated by a head and an anode connected to an anode hub. The anode hub is at least partially surrounding the head of the shaft. The anode hub is configured to contain a volume of a liquid metal and to rotate around the stationary shaft. The anode hub may also define a catch space within the anode hub that is configured to catch the liquid metal in order to contain the liquid metal within the hub while in a non-rotating state and regardless of the orientation of the x-ray tube anode assembly.
A switching unit includes a pawl and a pawl spring, embodied such that, when a switching lever of the switching unit is moved from an ON position into a TRIP position and/or from the TRIP position into a RESET position, the pawl spring is bent by contact with a lateral face of the pawl. An electrical switching device, such as a circuit breaker, including at least one such switching unit is also disclosed.
A ceramic electronic component includes a ceramic body, a glass coating layer, and an electrode terminal. The ceramic body includes a plurality of internal electrodes whose ends are exposed on the surface of the ceramic body. The glass coating layer covers a portion of the ceramic body on which the internal electrodes are exposed. The electrode terminal is provided directly on the glass coating layer. The electrode terminal includes a plating film. The glass coating layer is made of a glass medium in which metal powder particles are dispersed. The metal powder particles define conduction paths that electrically connect the internal electrodes with the electrode terminal.
A method for patterning a metal substrate includes a series of surface treatments to control tunnel initiation at a micron or sub-micron level. In particular, the series of surface treatments include forming a hydration layer which acts as a mask while etching the surface of the metal substrate. The hydration layer mask enables control of the tunnel initiation on a micron or sub-micron level because the etching does not undercut the interface between the metal substrate and the hydration layer. As a result, the tunnels can be initiated in an orthogonal direction and closer together, thereby increasing the tunnel density.
An object of the present invention is to provide an R—Fe—B based sintered magnet that exhibits excellent corrosion resistance and maintains excellent adhesion strength to an adherend even under severe conditions, and a method for producing the same. A corrosion-resistant magnet of the present invention as a means for achieving the object is characterized by comprising a chemical conversion film containing at least Zr, V, Al, fluorine, and oxygen as constituent elements and not containing phosphorus over a surface of an R—Fe—B based sintered magnet with a film made of Al or an alloy thereof therebetween.
According to one embodiment, a current input converter includes a first metal plate having a solid shape, which has one end attached to the terminal table and one other end attached to one end of a primary-side coil of the transformer, and connects the terminal table and the one end of the primary-side coil of the transformer to each other, and a second metal plate having a solid shape, which has one end attached to the terminal table and one other end attached to one other end of the primary-side coil of the transformer, and connects the terminal table and the other end of the primary-side coil of the transformer to each other.
The invention relates to a control transformer that is designed as a phase-shifting transformer, wherein semiconductor switching components are provided for each phase at a regulating winding with several partial windings. According to the invention, an additional connecting line with an additional electronic switching component is provided in each phase wherein each of these connecting lines connects a module of the respective phase with the end of the main winding of the adjacent phase.
A three-dimensional (3D) orthogonal inductor pair is embedded in and supported by a substrate, and has a first inductor having a first coil that winds around a first winding axis and a second inductor having a second coil that winds around a second winding axis. The second winding axis is orthogonal to the first winding axis. The second winding axis intersects the first winding axis at an intersection point that is within the substrate.
A system and a method are described herein for demagnetizing a region of a magnetic structure. In one embodiment, the system comprises: (a) a pulsed magnetizer; and (b) at least one magnetizing coil that receives a sequence of discrete current with continually decreasing current values from the pulsed magnetizer and outputs a sequence of discrete magnetizing fields with continually decreasing field strengths to overwrite and at least partly demagnetize the region of the magnetic structure. The at least one magnetizing coil is located adjacent to the region of the magnetic structure.
A template for radiography and methods of using and making a template are described. The template can include a contoured sheet having first portions and second portions. The first portions are radiodense and the second portions are radiolucent to provide markings on a radiograph. At least one surface of the contoured sheet can correspond to at least one surface of a target part to provide alignment of the contoured sheet to the target part.
A container for a non-irradiated nuclear fuel assembly including a single casing for receiving at least one nuclear fuel assembly, the casing being formed from an elongate tubular shell, the shell including a metallic internal layer delimiting at least one individual housing for receiving a nuclear fuel assembly, and a metallic external layer surrounding the internal layer, the shell being filled between its internal layer and its external layer, and from lids for closing the or each housing at the longitudinal ends of the shell.
Apparatus for longitudinally segmenting a cruciform shaped irradiated boiling water reactor control rod having four elongated blades radially extending from a central spline, into four flat panels. The apparatus employs a double bladed band saw with the band saw blades orthogonally oriented at two different elevations and having one side of each band saw blade crossing over the center of the spline of the control rod in between the control rod blades.
A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and high temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.
A heat exchanger, methods therefor and a nuclear fission reactor system. The heat exchanger comprises a heat exchanger body defining an exit plenum chamber therein shaped for uniform flow of a hot primary heat transfer fluid through the chamber. A plurality of adjacent heat transfer members are connected to the heat exchanger body and spaced apart by a predetermined distance for defining a plurality of flow passages between the heat transfer members. The flow passages open into the exit plenum chamber. Spacing of the heat transfer members by the predetermined distance evenly distributes flow of the primary heat transfer fluid through the flow passages, across the surfaces of the heat transfer members and into the exit plenum chamber. Each heat transfer member defines a flow channel therethrough for flow of a cooler secondary heat transfer fluid. Heat transfer occurs from the hot primary heat transfer fluid to the cooler secondary heat transfer fluid as the primary heat transfer fluid flows through the chamber and as the secondary heat transfer fluid simultaneously flows through the flow channel.
The technology may include: a first error detection operation unit configured to perform a serial error detection operation on a data signal which is inputted in sequence through each of multiple input/output pads, and to generate multiple pieces of preliminary information; and a second error detection operation unit configured to perform a parallel error detection operation on the multiple pieces of preliminary information, and to generate an error detection code.
An active precharge circuit for a non-volatile memory array which minimizes write disturb to non-selected memory cells during programming is disclosed. In a programming cycle, all bitlines are pre-charged to a program inhibit voltage level and held at the program inhibit voltage level with current or voltage sources coupled to each of the bitlines in a precharge operation and a following programming operation. In the programming operation, a bitline connected to a memory cell to be programmed is driven to a programming level, such as VSS, while the active precharge circuit is enabled to enable programming thereof. Because the other non-selected bitlines are held at the program inhibit voltage level, they will not be inadvertently programmed when the programming voltage is supplied by the word line.
The invention is an internal power voltage generating circuit, adjusted such that an internal power voltage becomes the reference voltage. The internal power voltage generating circuit further includes: a charge share circuit, including a charging capacitor, an initial voltage adjusting circuit and a charge reset circuit. The charging capacitor is connected to a differential amplifier via a switch circuit, and is charged by charges of a control voltage. The initial voltage adjusting circuit adjusts and applies an initial voltage to the charging capacitor. The charge reset circuit discharges the charging capacitor. When the internal power voltage is lower than a reference voltage, the charging capacitor having the initial voltage is connected to the differential amplifier, and the charges of the control voltage are transferred to the charging capacitor during a transfer period.
A method of enhancing a thermal anneal of a flash memory in an integrated circuit (IC) chip package by addition of an electric field may include heating an integrated circuit (IC) chip, disposed within an IC chip package, to an elevated temperature that does not degrade the IC chip package, where the IC chip includes a flash memory that includes blocks of flash memory cells. A negative electric field may be applied to each of the blocks of flash memory cells at the elevated temperature. The application of the negative electric field and the heating of the IC chip may be terminated. Stored data for each of the blocks of flash memory cells may be retrieved from a storage device and rewritten into each of the blocks of flash memory cells.
Disclosed is a memory system and a method of programming a multi-bit flash memory device which includes memory cells configured to store multi-bit data, where the method includes and the system is configured for determining whether data to be stored in a selected memory cell is an LSB data; and if data to be stored in a selected memory cell is not an LSB data, backing up lower data stored in the selected memory cell to a backup memory block of the multi-bit flash memory device.
A flash memory device may operate from two supply voltages, one being provided externally, and the other being generated within the flash memory device from the external supply voltage. The flash memory device may be provided with a selectable-level buffer for interfacing with either low supply voltage or high supply voltage integrated circuits. To provide even greater flexibility, the flash memory device may be provided with the capability of receiving a second supply voltage from an external source, which may take precedence over the internally-generated second supply voltage or may be combined with the internally-generated second supply voltage.
The semiconductor device includes a CAM block including a plurality of vertical strings having a perpendicular configuration with respect to a semiconductor substrate, wherein each of the plurality of vertical strings is electrically coupled to a plurality of word lines and each of the plurality of word lines is electrically coupled to a plurality of CAM cells, a peripheral circuit configured to program CAM cells selected from the plurality of CAM cells, and a control circuit configured to issue at least one command to the peripheral circuit to simultaneously apply a program voltage to an nth word line, an n−1th word line and an n+1th word line to simultaneously program CAM cells electrically coupled to the n−1th word line, the nth word line and the n+1th word line, wherein the n−1th word line and an n+1th word line are adjacent to the nth word line and the selected CAM cells are electrically coupled to the nth word line.
A static memory cell is provided. The static memory cell includes a data latch circuit and a voltage provider. The data latch circuit is configured to store a bit data. The data latch circuit has a first inverter and a second inverter, and the first inverter and the second inverter are coupled to each other. The first inverter and the second inverter respectively receive a first voltage and a second voltage as power voltages. The voltage provider provides the first voltage and the second voltage to the data latch circuit. When the bit data is written to the data latch circuit, the voltage provider adjusts a voltage value of one of the first and second voltages according to the bit data.
A storage device stores data in groups of memory cells using vectors corresponding to voltage code codewords, each codeword having k entries. Entries have values selected from a set of at least three entry values and 2n distinct inputs can be encoded into k-entry codewords for some n>k. A vector storage element comprising k cells can store an k electrical quantities (voltage, current, etc.) corresponding to a codeword. The voltage code is such that, for at least one position of a vector, there are at least three vectors having distinct entry values at that position and, for at least a subset of the possible codewords, the sum of the entry values over the positions of the each vector is constant from vector to vector in that subset. The storage device might be an integrated circuit device, a discrete memory device, or a device having embedded memory.
A refresh address generator includes a refresh sequence buffer and a refresh address generating unit. The refresh sequence buffer stores a sequence of memory groups, each memory group including a plurality of memory cell rows. The refresh address generating unit generates a plurality of refresh row addresses according to the sequence of memory groups stored in the refresh sequence buffer, in response to a refresh signal.
The present invention provide circuits, methods, and apparatus directed to an integrated circuit having a memory interface that is configurable to have one of a multiple different bus widths. The memory interface has a first set of lines and a second set of lines. The first and second set of lines are arranged such that there are multiple locations at which a via may be placed to connect a line of the first set to a line of the second set. The placement of the vias determines the bus width of the memory interface.
A semiconductor device includes a system-on-chip (SOC) and at least one wide input/output memory device. The SOC includes a plurality of SOC bump groups which provide input/output channels, respectively, independent from each other. The at least one wide input/output memory device is stacked on the system-on-chip to transmit/receive data to/from the system-on-chip through the SOC bump groups. The SOC bump groups are arranged and the at least one wide input/output memory device is configured such that one of the wide input/output memory devices can be mounted to the SOC as connected to all of the SOC bump groups, or such that two wide input/output memory devices can be mounted to the SOC with each of the wide input/out memory devices connected a respective half of the SOC bump groups.
A recording head actuator assembly for correcting for tape mis-registration (TMR) in a tape drive. The assembly includes a recording head actuator including a recording head and actuators for laterally positioning the head relative to tracks of a tape. The assembly also includes a dynamic azimuth control (DAC) assembly that includes a flexural pivot and a rotation driver. The rotation driver applies a driving force on the flexural pivot causing the flexural pivot to rotate about a hinge axis and the head to rotate about a rotation axis passing through the head, from a first azimuth angle to a second azimuth angle. The rotation axis and the hinge axis coincide, and the rotation axis of the head is transverse to a direction of tape travel. In some useful implementations, the flexural pivot may include a planar outer flexure and a planar inner flexure arranged as a cross strip pivot.
An apparatus for a heat assisted magnetic recording device that includes a write pole, a near-field transducer, and a heat sink. The near-field transducer is comprised only of a peg disposed adjacent the write pole. The heat sink is disposed between the write pole and at least a portion of the near-field transducer.
Disk drives with a Channel System and Write Driver Preamp architecture that dynamically adjusts the write driver's signal wave-shape depending on the write data signal pattern are described. The wave-shape control signal is generated in the Channel and transmitted to the Write Driver Preamp. Embodiments of the invention provide discrete n-level overshoot amplitude control using amplitude-level modulated (AML) signal. One embodiment implements a look-ahead strategy overshoot amplitude control where the overshoot amplitude for each transition depends only on the subsequent (following) bits in the data stream and not on any previously recorded data.
A new hybrid audio decoder and a new hybrid audio encoder having block switching for speech signals and audio signals are provided. Currently, very low bitrate audio coding methods for speech and audio signals are proposed. These audio coding methods cause very long delays. Generally, in coding an audio signal, an algorithm delay tends to be long to achieve higher frequency resolution. In coding a speech signal, the delay needs to be reduced because the speech signal is used for telecommunication. To balance fine coding quality for speech and audio input signals with very low bitrate, a combination of a low delay filter bank like AAC-ELD and a CELP coding method is provided.
In particular embodiments, one or more computer-readable non-transitory storage media embody software that is operable when executed to receive an audio waveform fingerprint and a client-determined location from a client device. The received audio waveform fingerprint may be compared to a database of stored audio waveform fingerprints, each stored audio waveform fingerprint associated with an object in an object database. One or more matching audio waveform fingerprints may be found from a comparison set of audio waveform fingerprints obtained from the audio waveform fingerprint database. Location information associated with a location of the client device may be determined, and the location information may be sent to the client device. The client device may be operable to update the client-determined location based at least in part on the location information.
Methods and devices for a low complex inter-channel difference estimation are provided. A method for the estimation of inter-channel differences (ICDs), comprises applying a transformation from a time domain to a frequency domain to a plurality of audio channel signals, calculating a plurality of ICD values for the ICDs between at least one of the plurality of audio channel signals and a reference audio channel signal over a predetermined frequency range, each ICD value being calculated over a portion of the predetermined frequency range, calculating, for each of the plurality of ICD values, a weighted ICD value by multiplying each of the plurality of ICD values with a corresponding frequency-dependent weighting factor, and calculating an ICD range value for the predetermined frequency range by adding the plurality of weighted ICD values.
Technologies are described herein for providing validated text-to-speech correction hints from aggregated pronunciation corrections received from text-to-speech applications. A number of pronunciation corrections are received by a Web service. The pronunciation corrections may be provided by users of text-to-speech applications executing on a variety of user computer systems. Each of the plurality of pronunciation corrections includes a specification of a word or phrase and a suggested pronunciation provided by the user. The pronunciation corrections are analyzed to generate validated correction hints, and the validated correction hints are provided back to the text-to-speech applications to be used to correct pronunciation of words and phrases in the text-to-speech applications.
There is provided a mounting system for a fish finding device to a watercraft which has a support for supporting a fish finding device on a watercraft. The support has a top, a bottom and a peripheral side wall which form a receptacle housing for a battery. Mounting means are positioned at the top of the support to receive a fish finder. Securing means are provided on the bottom of the support for mounting the support to a surface on a watercraft. Mounting means are provided for detachably securing a transducer to a watercraft.
Vibro-acoustic attenuation or reduced energy transmission. The present invention relates to devices that display frequency zones of strong vibro-acoustic attenuation or reduced energy transmission. This can be used in particular, although not necessarily solely, in applications that require lightweight materials with good mechanical properties and good vibro-acoustic response or in applications that require materials with high sound reflection, absorption or sound isolation in a certain frequency band.
An apparatus including: at least one processor; and at least one memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, allow the apparatus to perform at least the following: receiving a background audio signal from an earpiece microphone, the earpiece microphone configured to convert sound from a surrounding environment into the background audio signal; and allow a user of the apparatus to control the generation and characteristics of a noise cancellation signal, the noise cancellation signal configured to interfere destructively with the background audio signal to alter the amplitude of the background audio signal.
A keyboard instrument includes: an instrument body; at least one speaker; and at least one acoustic pipe configured to collect a sound emitted from the at least one speaker and guide the sound to at least one sound emitting opening formed in a front face of the instrument body.
The present invention has been made in an effort to provide a display device comprising: a data driver; a display panel for displaying an image in response to a data signal supplied from the data driver; and a programmable gamma unit for supplying a gamma reference voltage to the data driver, wherein a different number of bits is allocated to each of decoders included in the programmable gamma unit.
According to an aspect, a display device includes a display unit and a control unit. The display unit stereoscopically displays a display object. When a movement of an object is detected in a three-dimensional space where the display object is stereoscopically displayed, the control unit for changes the display object in the three-dimensional space according to the movement of the object.
A constant speed display method applied in an electronic device is provided. The electronic device is in a full screen view for illustrating images in a photograph. The method has the following steps of: determining whether consecutive swiping touch actions matching specific criteria have been received by the electronic device; and displaying an aligning animation of the images in the photograph at a constant speed without being affected by a next swiping action after the consecutive swiping touch actions matching the specific criteria have been received by the electronic device.
The present disclosure provides a frame scanning pixel display driving unit and a driving method thereof, and a display apparatus. The frame scanning pixel display driving unit includes: a driving control module for receiving a first frame data signal, and controlling the driving transistor to drive the pixel to display based on the first frame data signal; a data writing module for receiving and latch the second frame data signal when the driving transistor drives the pixel to display based on the first frame data signal, and transmitting the second frame data signal to the driving control module after the displaying of the first frame data signal is completed. The present disclosure enables a frame scanning display mode, and can reduce the power consumption during the signal writing phase and effectively reduce the power consumption of the panel display.
A display device which includes a substrate having a pixel unit that receiving first and second voltages is disclosed. In one aspect, the first and second power lines are coupled to the first and second voltages, and are supplied to the pixel unit via first and second power pads. In some aspects, the first and second power pads are alternately disposed while being spaced apart from each other in at least a portion of the peripheral area, and the second power pads are disposed in the space between the respective first power pads.
A detection circuit and a detection method for liquid crystal display are provided. The detection circuit comprises gate driver for providing row scan signal to liquid crystal cell to be detected; signal source for providing polarity inversion signal to source driver, polarity inversion signal comprises continuous high level signal and continuous low level signal; source driver for performing digital-analog conversion on received display data signal according to preset reference voltage and polarity inversion signal, generating pixel voltage signal, and sending pixel voltage signal to liquid crystal cell to be detected, polarity inversion mode formed by pixel voltage signal is column inversion mode. The polarity inversion mode of column inversion, formed by pixel voltage signal in technical solution makes white dot of damaged area of alignment film is more prominent during detection process, so it would be easy for the operator to recognize it and avoid the issue of missing detection.
The present disclosure provides for a customizable, portable billboard system. The portable billboard has a number of sidewalls enabling advertisement graphic placement. These sidewalls sit upon a support base that has structures, preferably wheels, which help to facilitate movement of the billboard. The advertisement graphical overlay is attached to the sidewalls via framing that surrounds the perimeter of each of the sidewalls. The entire system is self-contained and has a generator to power any lights or speakers or the like that may be required. The system has a hitch attachment so that it may be easily maneuvered or transported to a particular location by motor vehicle.
A sign holder includes a pair of upright posts, each having a lower ground engaging end and an upwardly disposed portion having a serpentine area with a plurality of bend areas leading to an upper end which is not aligned with the lower end. A relatively thicker transverse member joins the upright posts such that the upper ends thereof are spaced farther apart than the lower ends thereof.
An optical adhesive film for improving the adhesive strength between constitutional elements of a flat panel display device, and a flat panel display device having the same. According to an aspect of the present invention, there is provided an optical adhesive film for use in a flat panel display module that displays an image, the optical adhesive film including a transmission unit disposed on the flat panel display module and allowing the image to transmit through the transmission unit; a wing member extending from at least one side surface of the transmission unit, and covering side surfaces and a portion of a rear surface of the flat panel display module; and an adhesive member disposed covering all surfaces of the transmission unit and the wing member.
A flight simulator rests on a plurality of air cushions as a hovercraft and assumes spatial attitudes depending upon the relative heights of the air cushions. Flight controls determine the volume of air supplied to each air cushion and thereby control the pitch and roll attitudes of the flight simulator. The simulator may be connected to an external support frame and may thereby be subjected to longitudinal, lateral, and rotational movements.
A system and method for monitoring objects, such as vehicle traffic, and controlling a flow of the objects, such as vehicle traffic, through a flow point, such as an intersection having traffic control signals. At least one three-dimensional (3D) vector imaging sensor is operable for detecting an object and capturing node-based object with motion vector data relating to the object. A Sensor Processing Unit (SPU) is associated with the vector imaging sensor(s) and operable for processing the mode-based object with motion vector data, determining a tracked object from a plurality of the objects detected by the vector imaging sensor(s) and extracting the object data of the tracked object to an object database. A Central Tracking Unit (CTU) is associated with the SPU and operable for classifying the tracked object, generating object tracking data from the tracked object, predicting a future object state of the tracked object, and generating an object control output for controlling a control signal to thereby facilitate the flow of the objects through the flow point.
An intelligent medical vigilance system that observes and analyzes, and, only in the event of a clinically significant negative condition, notifies and reports the event to the care staff utilizing the hospital's existing nurse call system. The device includes a bedside unit connected to a pad or coverlet with a sensor array (placed under the patient) and also to an existing hospital nurse call system via an interface. The bedside unit is a wall-mounted unit with a display that becomes active when an alarm condition is enabled. Vigilance alarms are suspended if a patient is detected out of bed. An unable-to-measure alert is provided if the system is unable to reliably monitor. An alert message is generated and maintained on the display screen to inform a responding caregiver of the time and reason for any alarm.
A method for playing a wagering game allows an opportunity to achieve a progressive award. A wager input is received from a player for playing the wagering game. A triggered progressive game includes player-selectable elements, each of the player-selectable elements being capable of association with a progressive-winning outcome. An outcome is assigned to each of the player-selectable elements, wherein a probability that the outcome is a progressive-winning outcome depends upon an amount of the wager input. The player-selectable elements are displayed.
A control unit for an automatic device for preparing a beverage, which control unit is provided with a display panel and an input wherein the control unit is provided furthermore with an operating unit for displaying by the display panel a visually observable reaction to designations provided by the user, and for controlling a preparation unit of the automatic device, wherein the display panel has selection fields for mutually exclusive settings for formulations of the beverage to be prepared, wherein the control unit enables the user to select one of the settings by designation of one of the selection fields, wherein a collecting field with at least one setting field shows the chosen setting of the formulation, and wherein the non-designated selection fields remain visible and selectable.
A system, method, and computer program product for automatically combining computer-generated imagery with real-world imagery in a portable electronic device by retrieving, manipulating, and sharing relevant stored videos, preferably in real time. A video is captured with a hand-held device and stored. Metadata including the camera's physical location and orientation is appended to a data stream, along with user input. The server analyzes the data stream and further annotates the metadata, producing a searchable library of videos and metadata. Later, when a camera user generates a new data stream, the linked server analyzes it, identifies relevant material from the library, retrieves the material and tagged information, adjusts it for proper orientation, then renders and superimposes it onto the current camera view so the user views an augmented reality.
A computer system is described for automatically generating a 3D model, including hardware and non-transitory computer readable medium accessible by the hardware and storing instructions that when executed by the hardware cause it to create wire-frame data of structures within a geographic area; identify a geographic location of a structure of the structures; receive multiple oblique images representing the geographic location and containing a real façade texture of the structure; locate a geographical position of a real façade texture of the structure; select one or more base oblique image from the multiple oblique images by analyzing, with selection logic, image raster content of the real façade texture depicted in the multiple oblique images, and, relate the real façade texture of the one or more base oblique image to the wire-frame data of the structure to create a three dimensional model providing a real-life representation of physical characteristics of the structure.
Representing a transparent object as a summation of substantially zero step functions of a visibility curve for the object. An array may be used to store nodes to represent the visibility function. The size of the array may be limited to be storable within a memory of an on-chip graphics processing unit.
A method of applying a post-render motion blur to an object may include receiving a first image of the object. The first image need not be motion blurred, and the first image may include a first pixel and rendered color information for the first pixel. The method may also include receiving a second image of the object. The second image may be motion blurred, and the second image may include a second pixel and a location of the second pixel before the second image was motion blurred. Areas that are occluded in the second image may be identified and colored using a third image rendering only those areas. Unoccluded areas of the second image may be colored using information from the first image.
Examples disclose selecting an error calculation corresponding to a measure of goodness of fit and identifying a fit type among multiple fit types based on the selected error calculation. The identified fit type indicates a better fit type of goodness of fit than the multiple fit types. The examples further disclose providing the goodness of fit based on the selected error calculation and the identified fit type.
A method may include receiving a selection of a streaming data source, where the streaming data source provides data to a display component in a graphical model; determining a data type for the data associated with the streaming data source. Determining the data type may include reading a portion of the data from the data source, analyzing the read data portion to determine a data pattern, and identifying the data type based on the data pattern, where the identified data type is one of a plurality of available data types. The method may further include selecting, in response to determining the data type, a visual representation for the data associated with the data source; and displaying the data associated with the data source using the selected visual representation within the display component.
A system receives a description of a first set of elements representing physical and/or logical entities in a geographic area to be displayed on a digital map. The system determines current boundaries of a viewport within which the digital map is to be displayed and generates a metric indicative of how frequently the elements in the first set occur within the current boundaries of the viewport relative to at least a second set of elements displayed on the digital map. The system determines one or more visual attributes for the first set of elements based at least in part on the generated metric and displays representations of the first set of elements on the digital map in accordance with the determined one or more visual attributes.
The encoding of a line pattern representation. The line pattern representation has a changing value in a first dimension as a function of a value in a second dimension. The line pattern representation is segmented into multiple segments along the second dimension. The line pattern representation is then encoded by assigning a quantized value to each of the segments based on the changing value of the line pattern in the first dimension as present within the corresponding segment. If the line pattern generally falls within a given range within a segment, the segment will be assigned a quantized value corresponding to that range. The encoding may be used to assign the line pattern representation into a category.
A method for compressing digital breast tomosynthesis data, a system and a control unit for image reconstruction of three-dimensional digital breast tomosynthesis volumes (DBT). The volume to be reconstructed is analyzed in order to identify clusters of regions in the volume with a low and high degree of diagnostically relevant information. Depending on the affiliation or belonging to a certain cluster, a specific reconstruction algorithm and a specific slab thickness are determined in order to be used for reconstruction of the cluster. Thus, different clusters are reconstructed differently.
A computer processor of the mobile device may overlay a shape graphic on a fixed area of a screen of the mobile device. A camera of the mobile device may search the fixed area for a ball with a marking. The computer processor may recognize the marking on the ball. The computer processor may calibrate the movement of the ball in the overlayed shape graphic in view of the recognized marking of the ball. The camera may track and may record data pertaining to the movement of the ball. The computer processor may calculate one or more metrics relating to ball controlling abilities from the data. The computer processor may display the one or more metrics on the screen.
An image processing method includes, calculating a partial distance between a pixel of interest in an image and each of reference pixels, sequentially calculating a total distance between the pixel of interest and each of the plurality of the reference pixels based on the partial distance, determining a shortest total distance among the total distances that have been already calculated, in the sequential calculation of the total distance, and categorizing the pixel of interest based on the reference pixel corresponding to the shortest total distance, wherein, if the partial distance between the pixel of interest and a specific one of the reference pixels to be calculated is equal to or greater than the shortest total distance in the sequential calculation of the total distance, the calculation of the total distance between the pixel of interest and the specific one of the reference pixels to be calculated is omitted.
A system for cleaning up and preparing an image for segmentation is disclosed. An image transmitting device is configured to transmit a first image to an image receiving device. The image receiving device is configured to: receive the first image; apply a Dual Tree Complex Wavelet transform to the first image to form a plurality of sub-images; generate a high pass image based on the plurality of sub-images; generate a rotational invariant resultant image based on the high pass image; generate a low pass image based on the plurality of sub-images; and combine the rotational invariant resultant image and the low pass image to form a pseudo-fluorescent image.
Provided is a stereo image processing device, with which it is possible to compute disparity with high precision even for an object of a small image region size in a baseline length direction. With this device, an image matching unit (102) acquires a correspondence point of a reference image for a target point of a target image. An image cropping unit (201) extracts first two-dimensional pixel data including the target point from the target image, and extracts second two-dimensional pixel data including the correspondence point from the reference image. An image reconfiguration unit (202) reconfigures the respective first two-dimensional pixel data and second two-dimensional pixel data into first one-dimensional pixel data and second one-dimensional pixel data. A peak position detection unit (104) computes disparity based on the correlation between the first one-dimensional pixel data and the second one-dimensional pixel data.
A method for analyzing a functional map of at least one tissue of a patient. The method comprises managing a plurality of functional maps each being associated with a plurality of first biological activity indications, receiving a functional map which is associated with a plurality of second biological activity indications, identifying a matching set of the managed functional maps by matching between the plurality of first and second biological activity indications, and using the matching set for a member of a group consisting of: an image data acquisition, a diagnosis of the received functional map, a classification of the received functional map.
A method of large-radius edge-preserving low-pass filtering is performed on a digital signal having data points. The method includes computing a weighted average of a signal layer at vertices spaced a distance apart such that an amount of the vertices is less than an amount of the data points and producing, for each of the data points, a large-radius edge-preserving low-pass filtered signal based on the weighted average of the signal layer at vertices neighboring the data point.
Algorithms for improving the performance of conventional tone mapping operators (TMO) by calculating both a contrast waste score and a contrast loss score for a first tone-mapped image produced by the TMO. The two contrast scores can be used to optimize the performance of the TMO by reducing noise and improving contrast. Algorithms for generating an HDR image by converting non-linear color space images into linear color space format, aligning the images to a reference, de-ghosting the aligned images if necessary, and merging the aligned (and potentially de-ghosted) images to create an HDR image. The merging can be performed with exposure fusion, HDR reconstruction, or other suitable techniques.
The present disclosure relates to the re-sampling of pixel data, with one application being micro-lithography. In particular, it relates to a first pixel map, including a plurality of white, black and grey scale pixels and gradient directions for one or more of the grey scale pixels, that is resampled to produce a second pixel map using edge geometry data generated from the gradient directions and grey scale values.
An image processing device (100) is configured such that an edge histogram creating section (130) calculates interproximal pixel luminance difference for each of pixels constituting a frame, and a first ratio, which is a ratio of pixels whose interproximal pixel luminance difference is greater than or equal to a first threshold, and an edge enhancement section (140) performs edge enhancement in such a way that a shoot component to be added is smaller for a frame having a larger first ratio.
A computing system employing a multi-GPU graphics processing and display subsystem supporting single-GPU non-parallel (i.e. multi-tasking) and multi-GPU parallel application-division modes of graphics processing operations, in order to execute graphic commands and process graphics data (GCAD) render pixel-composited images containing graphics for display on a display device during the run-time of the multiple graphics-based applications, while managing and conserving electrical power and graphics processing resources. An automatic mode control module (AMCM) analyzes the application profiles assigned to graphics applications running on the computing system, and automatically controls the mode of operation of the multi-GPU graphics processing and display subsystem during the run-time of the multiple graphics-based applications.
Embodiments of the invention relate to systems, methods, and computer program products for providing e-receipts to customers. Embodiments receive authorization from a customer for the customer to be enrolled in a point of transaction e-receipt communication program; receive transaction data corresponding to at least one transaction performed by the customer at a point of transaction of a merchant; and initiate communication, to the customer, of an e-receipt based at least in part on the received transaction data. Some embodiments receive authorization from a plurality of enrolling merchants for enrollment in the point of transaction e-receipt communication program; and build a cooperating merchant list comprising information corresponding to a plurality of cooperating merchants cooperating with a financial institution implementing the point of transaction e-receipt communication program.
The systems and methods described herein relate to a system for documenting transactions. A filter is provided that captures content associated with transactions. The filter may be configured to start and stop the capture at predetermined times, and may be further configured to specify what content is to be captured during a transaction. The system may store any documents or data associated with a transaction, including dynamic content and user selections and inputs. A document repository may be provided for storing unstructured data representing data, text, forms, and so forth presented to a party during a transaction. A viewer may be provided for displaying data stored in the document repository.
A system and method for facilitating payment for online purchases is disclosed. The system allows consumers/customers who shop online to select, at the time of checkout, direct payment from an account as the payment option. An electronic bill (ebill), independent of any confidential financial information pertaining to the consumer, is automatically displayed and emailed to the consumer. The consumer pays the ebill at their bank the same way they pay their utility bill, which then results in a payment confirmation sent from the bank to the payee. Payment information from the bank is sent to the system to update the purchase transactions. Once the payment information is processed, the consumer and merchant accounts are balanced and both receive automatic notification of the payment.
A service provider provides instances of computing resources for customer use, such as instances of data processing resources, data storage resources, database resources, and networking resources. A customer of the service provider might create a solution that utilizes one or more instances of computing resources provided by the service provider. The customer can request to transfer control and payment responsibility for computing resources, such as those utilized in a solution, to another customer of the distributed computing environment. In response to such a request, control and payment responsibility for the resources may be transferred to the receiving customer. The request to transfer resources might be received by way of a solution marketplace or through another mechanism.
Techniques for determining the popularity of a business entity are provided. A communication is received at a computing system. The computing system searches the received communication for a business entity name. The computing system also searches the received communication for information related to an opinion about the business entity. Based on the information related to the opinion, the computing system determines a customer satisfaction rating of the business entity.
User commentary concerning a user experience is received and a user experience data card is generated for the user experience based, at least in part, upon the user commentary. The user experience data card is stored, wherein the stored user experience data card corresponds to a first view of the user experience data card and receiving a request for an experience data card from a second user. The user experience data card is provided to the second user at least in part based on the request received from the second user and receiving feedback from the second user concerning the user experience data card. A second view of the user experience data card is generated based, at least in part, upon the feedback from the second user, wherein the second view of the user experience data card is distinct form the first view of the experience data card.
Advertising method and system for creating a personalized advertisement, and for recommending a product being advertised. An uploaded facial photograph is received, the facial photograph including a plurality of facial features. At least one facial feature of the plurality of facial features is detected. Personal information may be extracted by analyzing the at least one detected facial feature. A product being advertised may be recommended, wherein the recommended product applies to a treatment related to the extracted personal information.
A modular device payment module includes a chassis. A modular device connector is located on the chassis. A payment module database in the chassis stores funding source information and security information. A payment module engine in the chassis determines that the modular device connector has been connected to a modular device frame of a modular device, and retrieves modular device identifying information from the modular device. The payment module then determines that the modular device identifying information matches an authorized modular device identified by the security information in the payment module database and, in response, enables the transmission of at least some of the funding source information from the payment module database to conduct a payment transaction.
A method and system is provided that enables generation of messages for various types of card activated terminal devices such as automated teller machines. Automated teller machines operate responsive to a variety of ATM message formats. The transaction processing system may generate ATM messages one of the ATM message formats using information associated with the ATM message format that is stored in a data store. The transaction processing system may include among its software components a message gateway router (MGR) which is operate to use information stored in the data store to convert messages from an internal message format to a variety of external message formats used by the automated teller machine.
A method and system for increasing the computational and network efficiency of presence servers having collections of publications is provided. The presence system uses several techniques that enable a presence server to provide rich presence information without requiring expensive processing. First, the presence system accepts batches of publication updates in a single presence update request. Similarly, the presence system accepts batches of subscription requests. Next, the presence system supports new expiration types for publication update requests that eliminate the need for a publishing user to continually refresh presence information that has not changed. Finally, the presence system accepts access lists that contain membership groups rather than an individual list of users that are to have access to a particular presence collection.
A method for annotation mapping includes identifying a set of differences between a first version of a document and a second version of the document, the first version comprising annotations. The method further includes generating a position map that maps differences between the first version and the second version, where the position map facilitates the migration of the annotations from the first version to the second version.
In an embodiment, a method is provided for customizing a task associated with a business process. In this method, a business process platform is accessed. The business process platform includes a business process definition and a provider semantic configuration. A group semantic configuration is generated, where the group semantic configuration extends the provider semantic configuration. A task defined in the business process definition is the customized based on the group semantic configuration.
A method and system for handling files with mobile terminals and a corresponding computer program and a corresponding computer-readable storage medium, which can be used in particular for handling e-mail attachments and the like on mobile terminals (PDAs, Smartphone, mobile phone) are described. According to the described method, an original file is stored on a data processing device different from the mobile terminal, and a file corresponding to the original file is generated and transmitted to the mobile terminal. The corresponding file includes information about the storage location of the original file. The original file is handled on the data processing device. An application installed on the mobile terminal processes at least part of the data in the corresponding file according to user input entered on the mobile terminal. First processing device is thereby prompted to execute handling of the original file according to the user input.
A system, method, and computer program product are provided for automatically creating and submitting defect information associated with defects identified during a software development lifecycle to a defect tracking system. In use, creation of a defect ticket is initiated for an identified defect for submission to a defect tracking system, the identified defect being identified during a software development life cycle. Additionally, a list of potential originating teams from which the identified defect was potentially identified is presented, the list of potential originating teams being presented in a user selectable format. Further, a list of teams in which to assign the identified defect is presented, the list of teams in which to assign the identified defect being presented in a user selectable format. Furthermore, a user selected originating team and a user selected team in which to assign the identified defect is identified. Additionally, details associated with the identified defect are collected from one or more data sources. Further, a description associated with the identified defect is generated utilizing the details associated with the identified defect. Moreover, the defect ticket is generated for the identified defect utilizing the identified user selected originating team, the identified user selected team in which to assign the identified defect, and the generated description associated with the identified defect.
The interaction of a plurality of users with a computer system is monitored and measurements are made of different features of this interaction such as process creation, registry key changes, and file system actions. These measurements are then analyzed to identify those features that are more discriminatory. The set of features is then used to develop for each user a model of his/her interaction with the computer system that can then be used to authenticate that user when interacting with the computer system at a later time. Advantageously, these steps are performed automatically and may be performed periodically or even continuously to verify that each user of the computer system is indeed the individual he/she purports to be. Illustratively, the feature extraction is performed using Fisher's criteria; and the user model is developed using a Gaussian mixture model. A method for updating the user model is also disclosed.
A computer-implemented system and method for generating a reference set via seed documents is provided. A collection of documents is obtained. One or more seed documents are identified. The seed documents are compared with the document collection and those documents that are similar to the seed documents are identified as reference set candidates. A size threshold is applied to the reference set candidates, which are grouped as the reference set when the size threshold is satisfied.
Embodiments are directed towards the visualization of machine data received from computing clusters. Embodiments may enable improved analysis of computing cluster performance, error detection, troubleshooting, error prediction, or the like. Individual cluster nodes may generate machine data that includes information and data regarding the operation and status of the cluster node. The machine data is received from each cluster node for indexing by one or more indexing applications. The indexed machine data including the complete data set may be stored in one or more index stores. A visualization application enables a user to select one or more analysis lenses that may be used to generate visualizations of the machine data. The visualization application employs the analysis lens to produce visualizations of the computing cluster machine data.
A method and corresponding system for providing a skip group rule feature is disclosed. When a search for a key matches a skip group rule in a group of prioritized rules, the search skips over rules having priorities lower than the skip group rule and the search continues to a next group. A convenient example of a compiler rewrites the lower priority rules by subtracting the skip group rule from them. The subtraction includes subtracting range, exact-match, mask, and prefix fields. The rewritten rules appear to a search processor as typical rules. Beneficially, the search processor requires no additional logic to process a skip group rule, skip over lower priority rules, and go on to search a next group of rules. Advantageously, this approach enables any number of skip group rules to be defined allowing for better classification of network data.
Machines, systems and methods for classifying documents, the method comprising: classifying a document from among a plurality of documents in a first class, in response to applying statistical analysis to data associated with the document; classifying the document in a second class, in response to determining that a rule from among a plurality of rules applies to the document, wherein a proposed rule is added to the plurality of rules, in response to determining that application of the proposed rule to one or more of the plurality of documents to which the rule is applicable does not diminish accuracy of overall classification for the plurality of documents.
A neuromorphic compiler includes a placement module to provide analytic placement of neurons in a neural network description. The analytic placement is to produce placed neurons. The neuromorphic compiler further includes a smoothing module to perform diffusion-based smoothing of the placed neurons; a legalization module to adjust locations of the placed neurons to correspond to legal locations of neuromorphic neurons within a neural fabric; and a simulated annealing module to refine locations of the placed neurons within the neural fabric using simulated annealing following location adjustment by the legalization module. The neural fabric is to implement a synaptic time-multiplexed (STM) neuromorphic network.
Described herein are systems and methods for identifying herbal ingredients effective in treating illnesses in Traditional Chinese Medicine (TCM) using an artificial neural network.
An electric power system includes: a switching power supply converting an AC into a DC and operating in an on mode and an off mode; a power supply control unit activated when electric power is supplied from the AC power supply, and the power supply control unit being configured to control an oscillation operation of the switching power supply according to the mode designation signal; a mode control unit generating the mode designation signal; and an auxiliary power supply configured to supply electric power to the mode control unit when the switching power supply does not oscillate. In one of the on mode and off mode, the mode control unit performs outputs a consecutive-pulse signal to the power supply control unit. In the other mode, the mode control unit performs a restriction process of restricting output of the consecutive-pulse signal.
A recording device, a control method for a recording device, and a program can record even when recording using a font that is not internally stored by the recording device is specified. A printer 2 that records on a recording medium using a font specified by a host computer 4 has font substitution information 24C that correlates specified fonts to internal fonts based on the number of columns per line that can be recorded on the recording medium using the specified font. When a font is specified by the host computer 4, the printer 2 substitutes an internal font for the specified font based on the font substitution information 24C.
An image forming apparatus includes a communication interface unit to receives an XML paper specification (XPS) file, an XPS file processing unit which converts the XPS file into an output data corresponding to printing paper to print the XPS file using information regarding the height and width of a FixedPage in the XPS file, and a control unit which controls the image forming apparatus to print the output data. Accordingly, even when an XPS file does not include information regarding printing paper, a user can select and print printing paper suitable for the user's demand.
Systems, devices, and methods for generating an image representation obtain a set of low-level features from an image; generate a high-dimensional generative representation of the low-level features; generate a lower-dimensional representation of the low-level features based on the high-dimensional generative representation of the low-level features; generate classifier scores based on classifiers and on one or more of the high-dimensional generative representation and the lower-dimensional representation, wherein each classifier uses the one or more of the high-dimensional generative representation and the lower-dimensional representation as an input, and wherein each classifier is associated with a respective label; and generate a combined representation for the image based on the classifier scores and the lower-dimensional representation.
This invention relates to a method and an apparatus for generating an image description vector, an image detection method and apparatus. The method for generating an image description vector comprising: an encoding step of encoding each of a plurality of pixel regions of an image into M pieces of N-bit binary codes, wherein each bit of an N-bit binary code represents a neighboring pixel region which is in neighborhood of a corresponding pixel region; and a generating step of generating an image description vector of the image based on matching at least one of the M pieces of N-bit binary code of each pixel region of the plurality of pixel regions with a particular code pattern, where M is an integer of 3 or larger, and N is an integer of 3 or larger.