US10348141B2
A motor of this invention comprises a rotor having a permanent magnet, the number of which magnet poles is P, and a stator including M pcs of teeth, the teeth arranged in a circumferential direction in a manner to face the permanent magnet through a spatial gap, wherein the stator includes stator core having the number M of the teeth, and a winding wire wound about each of the tooth, wherein the number P of the magnet poles and the number M of the teeth have a relation defined by formulae (2/3)M
US10348139B2
A configurable transmit/receive multiplexed coil monitoring (CMCM) device is provided having a plurality of dual function I/O connections connectable to a plurality of coils. The CMCM device is configurable to selectively drive AC transmit signals to any of the plurality of dual function I/O connections, while simultaneously monitoring voltage and phase information received as AC voltages at the dual function I/O connections in a multiplexed manner. The CMCM device is further configured such that while a selected I/O connection is selected to receive voltage and phase information from a particular I/O connection, no AC transmit signal can be driven to that selected particular I/O connection. Embodiments may include a multiplexer and one or more receive circuits configured to receive and digitalize received AC signals for processing by a digital signal processor. Embodiments may also include selectable Class-D drivers connected to the plurality of I/O connection, wherein each Class-D driver may be configured to receive pulse width modulation (PWM) signals from a PWM circuit for amplification and output as an AC transmit signal.
US10348117B2
An apparatus, such as a user device, can comprise a battery, a plurality of antennas, a transceiver, a charging pad interface, and a controller. The battery can be configured to power the user device. The plurality of antennas can be configured to send and receive signals to and from a wireless node. The transceiver can be configured to communicate, via the plurality of antennas, with the wireless node. The charging pad interface can be configured to detect that the apparatus is coupled to a charging pad and to receive charging power from the charging pad. The controller can be configured to change a configuration of at least one antenna from the plurality of antennas in response to the charging pad interface detecting that the apparatus is coupled to the charging pad.
US10348105B2
When it has been determined according to a voltage detected by a voltage detecting unit 31 that a voltage detection line 23 between a focused-on battery 21 and the voltage detecting unit 31 has been broken, operations of each of switches 22 are controlled to separate a battery module 2 that includes the voltage detection line 23 from a power supply apparatus 1. When it has been determined according to the voltage detected by the voltage detecting unit 31 that the focused-on battery 21 has been overcharged or overdischarged, power input to, or output from, every battery module 2 is limited.
US10348100B2
A battery balance circuit configured for a battery apparatus having two batteries coupled in series, can include: first and second capacitors respectively coupled to two terminals of the two batteries; first and second switching circuits respectively coupled to the two terminals of the two batteries, where the first and second switching circuits are configured to control charging or discharging of each of the two batteries; a third capacitor coupled between the first and second switching circuits, where the third capacitor is configured to store or release energy in order to balance battery levels between the two batteries; and parasitic inductors, where the third capacitor and the parasitic inductors are configured to resonate, and the first and second switching circuits are configured to operate at a resonance frequency.
US10348099B2
A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the duty cycle of the switching between modes, the amount of energy received by the adaptive receiver may be controlled to communicate to the wireless power supply. This control is a form of adaptive resonance communication or Q control communication. Distortion can be reduced or eliminated by ramping between duty cycles with adjustment to intermediate duty cycle values.
US10348098B2
The present invention relates to a micro-grid system including a load. The load includes: a distributed power source including one or more elements which generate power; and a controller configured to derive a first load pattern by measuring load data of the load when the load is added to the micro-grid system established in advance, compare the first load pattern with a preset load pattern for each load type, and operate the distributed power source based on a result of the comparison.
US10348097B2
A generator system, including first and second generators, a connection circuit connecting output lines of the first and second generators to each other and connecting neutral lines of the first and second generators to the ground, a switch command unit outputting commands to switch a connection mode of the first and second generators between parallel and series connection modes, a circuit switch switching a connection mode of the connection circuit in response to the commands, a data acquiring unit acquiring a waveform data of the first generator when the second generator is operated after the first generator is operated, and a control unit controlling the second generator to synchronize frequency and phase of waveforms of the first and second generators in the parallel connection mode and controlling the second generator to synchronize frequency and shift phase by 180 degree in the series connection mode.
US10348096B2
Control systems and methods for control of grid frequency in an electric power grid, are described. A grid frequency is monitored by monitoring devices at one or more predefined locations in the grid, and a determination is made whether one or more conditions relating to the monitored frequency have been met. A control period during which the grid frequency at one or more of the one or more predefined locations is to be controlled is initiated based on the determination. One or more variation characterizes relating to a variation, during the control period, in grid frequency are determined. Control instructions, comprising instructions to control power flow to and/or from each of a first plurality of power units so as to control the monitored frequency, are sent. The control instructions are generated on the basis of profile information relating to the power units and the determined one or more variation characteristics.
US10348094B2
One or more techniques and/or systems are provided for facilitating a shutdown of output power from an energy panel arrangement to an inverter. A shutdown implementation module is coupled between an energy panel arrangement and an inverter that converts DC power from the energy panel arrangement to AC power for an AC power grid. A communication connection is established, over a power-line communication line, between the shutdown implementation module and a shutdown controller associated with the inverter. Responsive to identifying a loss of the communication connection or receiving a shutdown instruction over the power-line communication line, the shutdown implementation module shuts down output power from the energy panel arrangement to the inverter. The shutdown implementation module may be located within a threshold distance from the energy panel arrangement (e.g., within about 10 feet) so that the output power may be shutoff within a threshold timespan (e.g., within about 10 seconds).
US10348093B2
Unique systems, methods, techniques and apparatuses of a power collection system are disclosed herein. One exemplary embodiment is an MVDC collection system coupled to a utility grid including a collection bus, a plurality of branches coupled to the collection bus, and a branch controller. Each of the plurality of branches include a semiconductor switch coupled to the collection bus, and a DC/DC converter coupled to the semiconductor switch and an LVDC power source. The branch controller configured to determine a fault condition is occurring within the MVDC collection system, determine the location of the fault condition, and isolate the fault condition using at least one of the semiconductor switches and the DC/DC converters.
US10348090B2
The present invention relates to apparatus 30 for determining a condition of a network section 34 comprised in an electrical power network 32. The network section 34 is configured such that electrical power flows to or from each of plural locations in the network section. The apparatus 30 is configured to receive a first quantity in respect of a first location in the network section 34 and to receive a second quantity in respect of a second location in the network section, each of the first and second quantities corresponding to a signal amplitude and a signal phase angle at its respective location. The apparatus 30 comprises a processor 42 which is operative to determine a condition quantity corresponding to a loading condition of the network section 34 between the first and second locations in dependence on the first and second quantities.
US10348086B2
A process/method is provided for the management of electric distribution system operations, including accurate and efficient communications and interfaces between the transmission, distribution and residential distribution systems, managed by a distribution system operator responsible for energy balance and reliability through control on a local distribution area, namely between end use customers and the transmission node of the electrical system.
US10348084B2
An input N-plexer filter stage is susceptible to receive surge energy via an input conductor, when the surge energy occurs. A high-pass filter included in a diplexer filter stage applies a radio frequency (RF) signal in a signal path between the input N-plexer filter stage and an output of a Data Over Cable Service Interface Specification (DOCSIS) transmitter stage. A low-pass filter included in the diplexer filter stage couples a surge suppressing threshold device to the signal path to dissipate the surge energy in the surge suppressing threshold device, when the surge energy occurs. The low-pass filter has a cut-off frequency that is lower than a normal operation frequency range of the RF signal. The low-pass filter isolates the surge suppressing threshold device from the signal path in normal operation frequency range of the RF signal, when no surge energy is applied.
US10348083B2
A method is provided, including providing an accelerometer responsive to motion of a closure forming part of an automatic closure system, providing an output of the accelerometer to first and second comparator circuits, the first comparator circuit having a first reference voltage such that the output of the first comparator circuit is indicative of a direction of closure motion and the second comparator circuit having an adjustable second reference voltage such that the output of the second comparator circuit is scaled relative to this adjustable second reference voltage to adjust the sensitivity of the output of the second comparator, providing a microcontroller coupled to the first and second comparator circuits, the microcontroller determining both a motion sequence of the closure and whether the closure has impacted an object, and providing an interface circuit for communicating the output from the microcontroller to a remote controller circuit.
US10348079B2
The present overcurrent protective device comprises an input terminal configured to receive a power supply voltage, an output terminal, a switch, a detector, and a controller. The switch is provided between the input terminal and the output terminal. The detector is configured to output a limitation signal without delay when a current flowing through the switch exceeds a prescribed tolerance value. The controller is configured to receive the limitation signal and control the switch to prevent the current from exceeding the tolerance value. The detector is configured output a turn-off signal to the controller when a first state continues for a delay time determined depending on the current's magnitude. The first state is a state where the current is smaller than the tolerance value and the current exceeds a first threshold value smaller than the tolerance value. The controller turns off the switch in response to the turn-off signal.
US10348075B2
The invention described herein is a fire protection device in the form of an insert designed to be quickly installed in new or existing electrical boxes located in firewalls. This insert is comprised of a material designed to withstand high direct heat and serve as a barrier to the passage of direct heat or smoke and gases through firewalls rated under ASTM E-119. The insert features a flanged open end which overlaps any gaps between the existing electrical box and the wall. The back wall of the insert box may have either openings to permit wires to pass through to the electrical device or a plug-harness assembly which obviates the use of holes in the back of the insert box.
US10348070B1
A kit and a method for using same for pulling wire or cable through a wall or ceiling comprising a drill bit guide, a fish head rod with at least one extension, a bushing and further comprising a drill adapted for right angle drilling, at least one drill bit with at least one drill bit extension. The drill bit guide sits inside a ceiling opening for a lighting fixture has a channel that guides a drill bit at a consistent and set distance above the ceiling interior surface. The guide has a rim guard to protect the ceiling opening edge. The fish head rod and extensions have a guide line to orient a user peering from below the ceiling and a guide strip to keep the fish head rod at a consistent and set distance above the ceiling interior surface.
US10348058B1
A two-dimensional material plasmonic laser (device) is provided with a surface plasmonic cavity and an atomically thin semiconductor monolayer gain medium disposed on the surface plasmonic cavity. Under optical pumping or electrical pumping, the surface plasmonic cavity provides a laser feedback mechanism by coupling electron-hole pairs confined in the atomically thin semiconductor monolayer gain medium and the surface plasmon modes in the dark-mode surface plasmonic cavity, and a laser light is emitted from the two-dimensional material plasmonic laser.
US10348046B2
The present invention relates to a high-voltage insulated adaptor (100) for application at a point of connection between a piece of high-voltage electrical equipment (6) and at least one measuring, control and protecting means (8), which allows connecting the measuring, control and protecting means (8) with at least one bar (10) of the main set of bars of the high-voltage electrical equipment (6), regardless of the type of element (5) for electrical connection existing in the high-voltage electrical equipment (6), where the adaptor (100) additionally comprises at least one anchoring means (9) securing the installation of the assembly formed by the insulating body (1) and the measuring, control and protecting means (8) on the bushing (5) for electrical connection corresponding to at least one bar (10) of the main set of bars of the high-voltage electrical equipment (6).
US10348043B2
A cable connector includes a body having a longitudinal axis, an inner post, an outer barrel mounted to the inner post, and a fitting mounted to the inner post. The inner post includes a front, a rear, and an outwardly-directed front flange at the front. The fitting includes a front, a rear, and an inwardly-directed rear flange at the rear. The fitting is mounted on the inner post so that the front and rear flanges overlap to define a toroidal volume. A wave washer and a lock washer are each carried in the toroidal volume. When the fitting is applied to a female post, the wave washer and the lock washer are compressed between the front and rear flanges and exert an axial bias on the front and rear flanges to prevent axial separation of the fitting and the female post.
US10348032B2
A connector that is attached to ends of cables includes a substrate and a locator that is connected to the substrate. The substrate includes two electrode arrays and a positioning portion and the locator includes two through hole arrays and a positioning portion. Each of signal cable(s) of a shielded cable and cables other than the shielded cable is inserted through one corresponding through hole among through holes. The substrate and the locator are mutually positioned by the positioning portions thereof. Each of conductive wire(s) included in the signal cable(s) of the shielded cable and conductive wire(s) included in the cable(s) other than the shielded cable is connected to one corresponding electrode among electrodes. The cables are fixed to the locator with an adhesive which is applied to one part of the locator. An end of a shielding material which covers the signal cable is positioned in the vicinity of the locator.
US10348025B2
A lockable storage device includes a main body defining a connector; and a locking mechanism including a stopping member and a driving plate assembly. The connector defines a receiving space for receiving a port, the stopping member is movable in the receiving space. The driving plate assembly includes a number of driving plates marked with numbers. When a combination of numbers, formed by surfaces which are on a same plane, is different from a predetermined number sequence, the storage device is locked, when the combination of numbers formed by the surfaces is the same as the predetermined number sequence, the storage device is unlocked.
US10348024B2
The invention relates to an electrical plug and socket assembly comprising: a base including at least two first electrical contacts and a first magnetic portion arranged so as to move by magnetic attraction to move the first two electrical contacts toward the outside of the base; a plug comprising two second electrical contacts intended to electrically connect to the first two electrical contacts when same are outside the base and a second magnetic portion to move, by magnetic attraction, the first magnetic portion to drive the first electrical contacts toward the outside of the base; the first magnetic portion or the second magnetic portion comprises at least one permanent magnet such as to form a magnetic circuit when the plug is brought near the base.
US10348023B2
A connector includes a housing (20) and a front retainer (40) to be mounted into the housing (20) from the front. The housing (20) includes locking lances (31) for locking terminal fittings (10) inserted to proper positions. The locking lance (31) is pressed by the terminal fitting (10) and retracted into a deflection space (S1) when the terminal fitting (10) is inserted, and resiliently returns and locks the terminal fitting (10) when the terminal fitting (10) is inserted properly. The front retainer (40) includes deflection restricting portions (42) for restricting deformation of the locking lances (31) by entering the deflection spaces (S1), and includes ribs (45) that can contact and guide a tip of a tab (11) if the tab (11) is inclined during insertion of the terminal fitting (10).
US10348022B2
A connector includes a terminal, and a housing having a housing chamber for housing the terminal. The terminal includes a wire connection portion and an electric contact portion. An axial direction of the electric contact portion is a front-back direction crossing a vertical direction along which the wire connection portion and the electric contact portion are arranged in a row. The electric contact portion is formed in a tubular shape with a first wall portion continuing to the wire connection portion, a second wall portion facing the first wall portion, a third wall portion interposed between the first and second wall portions, and a fourth wall portion in the wire connection side and facing the third wall portion. The housing includes a locking arm. A claw portion of the locking arm catches a border portion between the second the fourth wall portions.
US10348017B2
A process is disclosed for coating a substrate. The process includes providing a substrate having at least one free surface; depositing a first layer of a first material on the free surface of the substrate; depositing a second layer of a second material, different from the first material, on the first layer; depositing a third layer of a third material, different from the first and second materials, on the second layer; depositing a protective layer of a fourth material, different from the first, second and third materials, on the third layer; and performing a reflow of at least the second and third layers from the first, second, and third layers, by transfer of heat through the thermal contact on the protective layer, such that the protective layer prevents oxidation of at least the third layer.
US10348012B2
According to one embodiment, a connector includes an insulator and a contact terminal in which an end side is pressed into a counter-press-fit portion of the insulator, and the other end side comprises a soldered portion attached to a substrate with soldering. The contact terminal comprises a flux accumulation portion inside the counter-press-fit portion and/or in an extended end portion of the soldered portion.
US10348010B2
A cable connector assembly includes: a mating portion; a flat cable electrically connecting with the mating portion, the flat cable having plural wires and an outer boot enclosed the wires, the wires including a first wire and a second wire; an inner mold enclosing a part of the mating portion and a part of the flat cable; and a shielding shell enclosed the inner mold, wherein the first wire is a core wire directly enclosed by the outer boot and the second wire comprises a core wire and an insulative layer enclosing the associated core wire.
US10348005B2
A cable connector includes a body having a longitudinal axis, a front, and an annular sidewall extending reardwardly from the front of the body along the longitudinal axis. The connector further includes a compression band in the sidewall, wherein the compression band has a thinned portion of the sidewall and also annular first and second ridges flanking the thinned portion. A compression collar is mounted to the body for axial movement between a retracted position and an advanced position in which the sidewall is deformed radially inward only at the compression band.
US10348004B2
A connector includes a first connector body and a second connector body configured to be coupled to one another. The first connector body has a through hole and a cavity. The through hole and the cavity are configured to receive an aluminum shield of a hardline coaxial cable. A first washer is disposed in the first connector body and is configured to permit the aluminum shield to be pushed in a first direction through the through hole and into the cavity while resisting movement of the aluminum shield in a second direction opposite to the first direction. The second connector body has a through hole and a cavity. The through hole and the cavity of the second connector body are configured to receive a tubular member. A second washer is disposed in the second connector body and is configured to permit the tubular member to be pushed in the second direction through the through hole of the second connector body and into the cavity of the second connector body while resisting movement of the tubular member in the first direction.
US10348002B2
A molded portion-equipped wiring member includes a conductor portion that is wire-shaped, a terminal that is connected to an end portion of the conductor portion, a molded portion that covers a connection portion between the conductor portion and the terminal such that the terminal projects from a first end portion side and the conductor portion extends from a second end portion side, and a sheath member that surrounds the conductor portion in a state where a gap of separation from the conductor portion is formed in an intermediate portion, the sheath member being in close contact with the second end portion of the molded portion in an end portion.
US10348000B2
A thermal overcurrent circuit breaker having a switch housing in which a thermal expansion element and a snap-action switching mechanism, which is coupled to the thermal expansion element and can be manually operated, and also a moving contact, which interacts with the snap-action switching mechanism, and a fixed contact are arranged, the fixed contact being connected to a first connection rail while contact is made with the moving contact by a second connection rail by means of the thermal expansion element. The switch housing has a number of connection chambers in which in each case one of the connection rails is arranged, wherein a two-limb spring element for making clamping contact with a connection line, which is guided into the connection chamber via a first housing opening and has the connection rail, is arranged in each connection chamber.
US10347994B2
In an N-port pattern/polarized antenna device, two-type antenna elements are configured to have a radiation pattern to use a spherical vector wave mode with at least N orders, the antenna elements being arranged at intervals not larger than a half wavelength between them. The antenna elements comprise electric field antennas with a radiation pattern distributed in an even mode among the spherical vector wave mode, and magnetic field antennas with a radiation pattern distributed in an odd mode, the electric field antennas and the magnetic field antennas being integrated to face a different direction, each other.
US10347992B2
An antenna includes an upper plate having a fan shape, a lower plate having a shape corresponding to the upper plate, a feeding unit disposed at a center of the fan shape, at least one waveguide formed between the upper plate and the lower plate for propagating signals supplied from the feeding unit, and at least one radiation slot formed in an arc of the fan shape for radiating the signals propagated by the at least one waveguide to the outside.
US10347988B2
The present embodiments disclose a wireless mobile device, including a metal frame, a circuit board disposed in the metal frame, where there is a slot between at least one side edge of the circuit board and the metal frame, a first grounding point is connected to the circuit board and the metal frame, a second grounding point is connected to the circuit board and the metal frame, and a feeding point is located between the first grounding point and the second grounding point and is connected to the circuit board and the metal frame; and each antenna open-circuit stub suspends in space on an outer side of the circuit board, one end is connected to the metal frame by crossing the slot, and a connection point of the antenna open-circuit stub and metal frame is located between the feeding point and the second grounding point.
US10347961B2
The concepts, systems and methods described herein are directed towards a connectorless radio frequency (RF) interface between an antenna and RF processor. An RF interconnect is provided having a housing having a ridged waveguide portion provided therein, an upper cavity formed in an upper portion of the housing, a lower cavity formed in a lower portion of the housing, a first suspended air stripline (SAS) transmission line disposed in the lower cavity such that at least a portion of the first SAS transmission line crossed a slot formed by the ridged waveguide and a second SAS transmission line disposed in the upper cavity such that at least a portion of the second SAS transmission line crosses the slot formed by the ridged waveguide.
US10347950B2
The present invention provides a sealed nonaqueous electrolyte secondary battery which is equipped with a current interrupt device that is actuated by a rise in internal pressure of a battery case and in which the current interrupt device is actuated in a speedy and stable manner during an overcharge. In the sealed nonaqueous electrolyte secondary battery, an electrode body formed by a positive electrode 10 and a negative electrode that oppose each other via a separator, an electrolyte, and an overcharge inhibitor are housed in the battery case. The positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material layer 14 which is formed on the current collector and which mainly contains a positive electrode active material. In addition, a conductive material layer 16 which mainly contains a conductive material is formed between the positive electrode active material layer 14 and the separator. A porosity of the conductive material layer 16 is 35% or more and 55% or less.
US10347948B2
A device supplying an electrical voltage from a battery system includes a series connection composed of a first battery submodule supplying a first battery submodule voltage and at least one second battery submodule supplying a second battery submodule voltage, a first voltage conversion module receiving the first battery submodule voltage and converting the first battery submodule voltage into an AC output voltage to be supplied to an electrical component connected to the first voltage conversion module, and a coupling device electrically connecting the first voltage conversion module to the first battery submodule and to the at least one second battery submodule such that the first voltage conversion module receives a sum voltage composed of the first battery submodule voltage and the second battery submodule voltage.
US10347925B2
Parasitic reactions, such as evolution of hydrogen at the negative electrode, can occur under the operating conditions of flow batteries and other electrochemical systems. Such parasitic reactions can undesirably impact operating performance by altering the pH and/or state of charge of one or both electrolyte solutions in a flow battery. Electrochemical balancing cells can allow adjustment of electrolyte solutions to take place. Electrochemical balancing cells suitable for placement in fluid communication with both electrolyte solutions of a flow battery can include: a first chamber containing a first electrode, a second chamber containing a second electrode, a third chamber disposed between the first chamber and the second chamber, a cation-selective membrane forming a first interface between the first chamber and the third chamber, and a bipolar membrane, a cation-selective membrane, or a membrane electrode assembly forming a second interface between the second chamber and the third chamber.
US10347920B2
A gas channel forming plate is arranged between a membrane electrode assembly and a flat separator base. The gas channel forming plate includes gas channels arranged on a surface that faces the membrane electrode assembly, water channels each formed on the back side of the protrusion between an adjacent pair of the gas channels, communication passages that connect the gas channels and the water channels to each other, and guide portions formed by causing an inner wall surface of a gas channel to protrude inward in the gas channel. The guide portions are formed such that the upstream edge of each communication passage is arranged in a range in which, in the velocity vector of the gas flowing in the gas channel, the directional component directed from the side corresponding to the membrane electrode assembly toward the flat separator base has a positive value.
US10347917B2
A method for manufacturing a positive active material for an all-solid Lithium-Sulfur battery includes preparing a lithium sulfide solution by dissolving lithium sulfide in anhydrous ethanol. A mixture is prepared by mixing a carbon fiber to the lithium sulfide solution. A lithium sulfide-carbon fiber composite is prepared by drying the mixture of the carbon fiber and the lithium sulfide solution to deposit the lithium sulfide on a surface of the carbon fiber. The lithium sulfide-carbon fiber composite is heated at 400 to 600° C.
US10347915B2
Various embodiments of binder compositions, electrodes incorporating the binder compositions, fabrication methods for the binder compositions, and energy storage devices having the electrodes are disclosed herein. In one embodiment, a binder composition includes an electrolyte solution that is ionically conductive, a polymeric material having a plurality of molecules mixed with the electrolyte solution, and a filler having a plurality of electrically conductive particles suspended in the adhesive matrix. The electrolyte solution plasticizing the polymeric material forming an adhesive matrix having the molecules of the polymeric material in an amorphous state.
US10347911B2
A lithium hydrogen titanate Li—H—Ti—O material includes Li, H, Ti, and O elements, wherein a mass percentage of Li is in a range from about 3% to about 12%, a mass percentage of H is in a range from about 0.1% to about 8%, a mass percentage of Ti is in a range from about 46% to about 56%, and a mass percentage of O is in a range from about 28% to about 50%. A lithium ion battery and a method for making the lithium hydrogen titanate Li—H—Ti—O material are also disclosed.
US10347906B2
According to one embodiment, a secondary battery is provided. The secondary battery includes a negative electrode including a negative electrode current collector, a negative electrode terminal electrically connected to the negative electrode current collector, a joint electrically connecting the negative electrode terminal and the negative electrode current collector, and a water repellent layer covering the joint. The joint is covered with the inner surface of the water repellent layer. A contact angle θ with respect to water on an outer surface of the water repellent layer satisfies 80°≤θ.
US10347890B2
Disclosed herein are novel or improved microporous battery separator membranes, separators, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries. Further disclosed are laminated multilayer polyolefin membranes with exterior layers comprising one or more polyethylenes, which exterior layers are designed to provide an exterior surface that has a low pin removal force. Further disclosed are battery separator membranes having increased electrolyte absorption capacity at the separator/electrode interface region, which may improve cycling. Further disclosed are battery separator membranes having improved adhesion to any number of coatings. Also described are battery separator membranes having a tunable thermal shutdown where the onset temperature of thermal shutdown may be raised or lowered and the rate of thermal shutdown may be changed or increased. Also disclosed are multilayer battery separator membranes having enhanced web handling performance during manufacturing processes and coating operations.
US10347884B2
A battery unit may include a main accommodation casing that includes a power output terminal, at least one sub-module that is accommodated in the main accommodation casing and a control unit that is accommodated in the main accommodation casing and controls at least one of charging and discharging of a unit battery, wherein in the sub-module, two or more battery blocks are accommodated inside a sub-accommodation casing so that the terminals of the battery blocks each including a plurality of unit batteries are not exposed and the battery blocks are connected to each other through an electric connection member.
US10347880B2
A battery module according to an aspect of the present disclosure includes a cooling plate provided in a plate shape and having a plurality of slits at respective predetermined positions, a plurality of battery cells uprightly disposed parallel to one another in one direction on the cooling plate, and a plurality of cooling fins, each cooling fin having a wall surface uprightly disposed over the cooling plate to come into contact with one surface of the battery cell and a lower flange integrally formed with the wall surface and disposed through the slit of the cooling plate to come into contact with a bottom surface of the cooling plate, the plurality of cooling fins spaced apart by a predetermined distance from one another and arranged between the plurality of battery cells.
US10347875B2
A battery for use in electronic devices and which is safely ingested into a body and a related method of making the battery. The battery includes an anode, a cathode and a quantum tunneling composite coating. The quantum tunneling composite coating covers at least a portion of at least one of the anode or the cathode and provides pressure sensitive conductive properties to the battery including a compressive stress threshold for conduction. The compressive stress threshold may be greater than a pre-determined applied stress in a digestive tract of the body in order to prevent harm if the battery is ingested. The battery may include a waterproof seal that extends between the quantum tunneling composite coating and a gasket separating the anode and cathode to inhibit the battery from short circuiting in a conductive fluid below the compressive stress threshold.
US10347865B2
An organic electroluminescence (EL) display panel includes a multi-layered wiring laminate including: a first part on which an organic EL element array is disposed and in which a first portion of a resin insulating layer is present, the resin insulating layer being a highest layer among insulating layers; a second part surrounding the first part in plan view and in which a second portion of the resin insulating layer having a bank-shape is present; and a third part disposed between the first part and the second part in plan view and having a shape of a circumferential groove in which the resin insulating layer is not present. In the third part, wiring is on an inorganic insulating layer that is lower by a layer than the resin insulating layer. The wiring on the inorganic insulating layer is spaced away from the second portion of the resin insulating layer.
US10347862B2
An organic EL display device (1) includes: a plurality of organic EL elements (30) each including a lower electrode (31), an EL layer (32), and an upper portion (33); and a sealing layer (40) covering the plurality of organic EL elements (30), the organic EL display device (1) having, in a non-light-emitting portion (5) of a display region (2), at least one contact hole (34) extending through at least the upper electrode (33) and the EL layer (32) and allowing the sealing layer (40) to be in contact with a surface of a layer below the organic EL layer (32).
US10347844B2
A novel and improved material for an organic electroluminescent device includes at least one monoamine compound represented by any one of the following Formulae I to III: In Formulae I to III, Ar is a substituted or unsubstituted aryl group having 6 to 50 carbon atoms for forming a ring. The organic electroluminescent device including the material may have improved emission life.
US10347840B2
A polymer comprising a fluorescent light-emitting repeating unit comprising a group of formula ED-EA wherein ED is an electron-donating unit; EA is an electron-accepting unit; and a band gap EgCT of a charge-transfer state formed from the electron-donating unit and the electron-accepting unit is smaller than the bandgap of either the electron-accepting unit EgEA or that of the electron-donating unit EgED.
US10347831B2
Doping a storage element, a selector element, or both, of a memory cell with a dopant including one or more of aluminum (Al), zirconium (Zr), hafnium (Hf), and silicon (Si), can minimize volume or density changes in a phase change memory as well as minimize electromigration, in accordance with embodiments. In one embodiment, a memory cell includes a first electrode and a second electrode, and a storage element comprising a layer of doped phase change material between the first and second electrodes, wherein the doped phase change material includes one or more of aluminum, zirconium, hafnium, and silicon. The storage element, a selector element, or both can be doped using techniques such as cosputtering or deposition of alternating layers of a dopant layer and a storage (or selector) material.
US10347828B2
A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
US10347824B2
Apparatuses, systems, and methods are disclosed for magnetoresistive random access memory. A magnetic tunnel junction for storing data includes a fixed layer, a barrier layer, and a composite free layer. A barrier layer is disposed between a fixed layer and a composite free layer. A composite free layer includes a ferromagnetic amorphous layer and an in-plane anisotropy free layer. A spin Hall effect (SHE) layer may be coupled to the composite free layer of the magnetic tunnel junction. The SHE layer may be configured such that an in-plane electric current within the SHE layer causes a spin current in the composite free layer.
US10347817B2
A lead-free piezoelectric ceramic composition including an alkali niobate/tantalate perovskite oxide main phase having piezoelectric properties and a different metal oxide. The mole ratio (Na/K) between Na (sodium) and K (potassium) in the main phase is 0.40<(Na/K)<3.0. The main phase has a crystal structure in which (i) first spots corresponding to a primitive lattice period and (ii) second spots corresponding to the lattice period two times the primitive lattice period and being weaker than the first spots appear in an electron beam diffraction image entering from the <100> direction with the main phase represented as a pseudo-cubic crystal system. Also, the area ratio of a crystal phase reflecting the second spots in the main phase is 33% or less, and the maximum grain size of crystals reflecting the second spots in the main phase is 25 nm or less.
US10347809B2
To suppress misalignment when a light-emitting element is mounted on a substrate. On the substrate of a light-emitting device, a through hole is formed passing through so as to notch the side surface of the substrate, and a side surface electrode is formed on the side surface of the through hole. The pattern of a front surface electrode has a first region, a second region being connected to the first region, and a third region being connected to the first region and the second region. The shape of the first region is a rectangle coinciding with the electrode of the light-emitting element, and the longitudinal direction of the rectangle is aligned with the longitudinal direction of the substrate. The second region is formed in a lid shape so as to cover the top of the through hole. The shape of the second region is a trapezoid.
US10347800B2
Embodiments of the invention include a light emitting device, a first wavelength converting material, and a second wavelength converting material. The first wavelength converting material includes a nanostructured wavelength converting material. The nanostructured wavelength converting material includes particles having at least one dimension that is no more than 100 nm in length. The first wavelength converting material is spaced apart from the light emitting device.
US10347790B2
Light-emitting devices having a multiple quantum well (MQW) pin diode structure are provided. The light-emitting devices include a multilayered p-type contact composed of a heavily p-type doped hole injection layer and a thin p-type group III-nitride layer. The materials of the hole injection layer and the p-type group III-nitride layer are separated by a layer of a material that allows current tunneling through the heterogeneous junction formed between the lattice mismatched materials.
US10347776B2
Disclosed are a back-surface bridge type contact electrode of a crystalline silicon solar battery and a preparation method therefor. The back-surface bridge type contact electrode of a crystalline silicon solar battery includes a local electrode connected to a local back surface field and a back surface electrode which is covered with a back surface passivation film on a contact surface with a silicon wafer substrate, at least one bridge electrode is provided between the local electrode and the back surface electrode, the contact surface of the bridge electrode and the silicon wafer substrate is also covered with the back surface passivation film, the local electrode is connected to the back surface electrode via the bridge electrode, and the back surface passivation film is also provided, besides at the connection region of the bridge electrode, between the local electrode and the back surface electrode.
US10347770B2
According to one embodiment, a semiconductor device includes an insulating substrate, an oxide semiconductor layer, a gate insulating film, a gate electrode, a first insulating film and a second insulating film. The oxide semiconductor layer is provided on the insulating substrate and includes first and second low-resistance regions and a high-resistance region between the first and second low-resistance regions. The gate insulating film is provided on the high-resistance region of the oxide semiconductor layer. The gate electrode is provided on the gate insulating film. The first insulating film is provided above the gate electrode, gate insulating film and first and second low-resistance regions of the oxide semiconductor layer, and contains at least fluorine. The second insulating film is provided on the first insulating film, and contains aluminum.
US10347767B2
A subfin layer is deposited in a trench in an insulating layer on the substrate. A fin is deposited on the subfin layer. The fin has a top portion and opposing sidewalls. The fin comprises a first semiconductor material. The subfin layer comprises a III-V semiconductor material.
US10347763B2
A semiconductor device includes an active fin on a substrate, a device isolation film covering a lower portion of the active fin, a gate structure covering the active fin and the device isolation film, and a gate spacer on a side wall of the gate structure, wherein a side wall of the gate structure disposed on the device isolation film is inclined at a uniform inclination from a point higher than a half of a height of the gate structure to a bottom of the gate structure, and an inner side wall of the gate spacer on the device isolation film is inclined at a uniform inclination from a point higher than a half of a height of the gate spacer to a bottom of the gate spacer while forming an acute angle with a bottom surface of the gate spacer.
US10347756B2
An embodiment of the invention shows a high-voltage MOS field-effect transistor connected in series with a Schottky diode. When the Schottky diode is forwardly biased, the high-voltage MOSFET can act as a switch and sustain a high drain-to-source voltage. When the Schottky diode is reversely biased, the Schottky diode can protect the integrate circuit where the high-voltage MOSFET is formed, because the integrate circuit might otherwise burn out due to an exceedingly-large reverse current.
US10347755B2
Provided are a group 13 nitride composite substrate allowing for the production of a semiconductor device suitable for high-frequency applications while including a conductive GaN substrate, and a semiconductor device produced using this substrate. The group 13 nitride composite substrate includes a base material of an n-conductivity type formed of GaN, a base layer located on the base material, being a group 13 nitride layer having a resistivity of 1×106 Ω·cm or more, a channel layer located on the base layer, being a GaN layer having a total impurity density of 1×1017/cm3 or less, and a barrier layer that is located on the channel layer and is formed of a group 13 nitride having a composition AlxInyGa1-x-yN (0≤x≤1, 0≤y≤1).
US10347746B2
Method and structure for enhancing channel performance in a vertical gate all-around device, which provides a device comprising: a source region; a drain region aligned substantially vertically to the source region; a channel structure bridging between the source region and the drain region and defining a substantially vertical channel direction; and a gate structure arranged vertically between the source region and the drain region and surrounding the channel structure. The channel structure comprises a plurality of channels extending substantially vertically abreast each other, each bridging the source region and the drain region, and at least one stressor interposed between each pair of adjacent channels and extending substantially along the vertical channel direction; the stressor affects lateral strain on the adjacent channels, thereby straining the channels in the vertical channel direction.
US10347745B2
One illustrative method disclosed herein includes, among other things, forming a vertically oriented channel semiconductor structure above a substrate, performing an epi deposition process to simultaneously form at least a portion of a bottom source/drain region and at least a portion of a top source/drain region during the epi deposition process and, after performing the epi deposition process, forming a gate structure around a portion of the vertically oriented channel semiconductor structure.
US10347741B1
Embodiments disclosed herein relate generally to forming a gate layer in high aspect ratio trenches using a cyclic deposition-etch process. In an embodiment, a method for semiconductor processing is provided. The method includes performing a cyclic deposition-etch process to form a conformal film over a bottom surface and along sidewall surfaces of a feature on a substrate. The method includes reflowing the conformal film. The method includes forming a cap layer on the reflowed film. The method includes depositing a crystalline film on the cap layer. The method includes crystallizing the reflowed film and the cap layer after depositing the crystalline film.
US10347720B2
The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
US10347718B2
A semiconductor device and a fabricating method thereof are provided. The semiconductor device includes a substrate, a first nanowire spaced apart from a first region of the substrate, a first gate electrode surrounding a periphery of the first nanowire, a second nanowire spaced apart from a second region of the substrate and extending in a first direction and having a first width in a second direction intersecting the first direction, a supporting pattern contacting the second nanowire and positioned under the second nanowire, and a second gate electrode extending in the second direction and surrounding the second nanowire and the supporting pattern.
US10347710B2
A method for forming a thin film resistor (TFR) without via penetration and the resulting device are provided. Embodiments include forming a first ILD over a substrate; forming a second ILD over the first ILD; forming a first metal layer in the second ILD; forming a first nitride layer over the second ILD and the first metal layer; forming a third ILD over the first nitride layer; forming vias through the third ILD and the first nitride layer, coupled to the first metal layer; forming a TFR layer over two of the vias and the third ILD between the two vias; forming a second nitride layer over the TFR layer and the third ILD; forming a fourth ILD over the second nitride layer; and forming a second metal layer in the fourth ILD and the second nitride layer.
US10347709B2
Methods of manufacturing are disclosed for an inductor that includes a magnetic core lying in a core plane. The magnetic core includes a vertical laminated structure with respect to the core plane of alternating ferromagnetic vertical layers and insulator vertical layers. An easy axis of magnetization can be permanently or semi-permanently fixed in the ferromagnetic vertical layers along a first axis orthogonal to the core plane. A hard axis of magnetization can be permanently or semi-permanently induced in the ferromagnetic vertical layers, the hard axis of magnetization lying in a plane that is orthogonal to the first axis.
US10347698B2
An organic EL device as an electrooptical device includes an organic EL element, a sealing member, a color filter, a dimension evaluation pattern, and a pedestal member. The organic EL element is disposed for each subpixel, in a display area of a base as a substrate. The sealing member includes a sealing layer that covers the organic EL element. The color filter is provided on the sealing layer. The dimension evaluation pattern is provided as an evaluation pattern for evaluating the color filter. The pedestal member is disposed between an end portion of the base and the sealing member. The dimension evaluation pattern is disposed on the pedestal member.
US10347697B2
A display unit includes a plurality of light emitting devices, each of the light emitting devices including a function layer including at least an organic layer is sandwiched between a first electrode and a second electrode, and which have a resonator structure for resonating light by using a space between the first electrode and the second electrode as a resonant section and extracting the light through the second electrode are arranged on a substrate, wherein in the respective light emitting devices, the organic layer is made of an identical layer, and a distance of the resonant section between the first electrode and the second electrode is set to a plurality of different values.
US10347691B2
The present invention is directed to a magnetic structure, which includes a magnetic fixed layer structure formed on top of a seed layer structure. The seed layer structure includes one or more layers of a first transition metal, which may be platinum, palladium, nickel, or iridium, interleaved with one or more layers of a second transition metal, which may be tantalum, titanium, vanadium, molybdenum, chromium, tungsten, zirconium, hafnium, or niobium. The magnetic fixed layer structure has a first invariable magnetization direction substantially perpendicular to a layer plane thereof and includes layers of a first magnetic material interleaved with layers of the first transition metal. The first magnetic material may be made of cobalt.
US10347688B2
Disclosed is an image sensor may include a pixel array having a central region and peripheral regions around the central region, one or more first unit pixels arranged in the peripheral regions. Each of the first unit pixels comprising a pair of left and right photodiodes. The left and right photodiodes in at least one of the one or more of the first unit pixels may have different sizes and are optically isolated from each other by a first PD isolation region.
US10347681B2
An object is to provide an imaging device in which a circuit for reading a signal is provided in a pixel region. The imaging device includes a first pixel and a second pixel. The first pixel is capable of outputting a first signal output from a pixel circuit included in the first pixel or a second signal input from the first pixel in the previous stage, to the first pixel or the second pixel in the next stage. The second pixel is capable of outputting, to the outside, the first signal or the second signal, which is input from the first pixel in the previous stage, or a third signal output from a pixel circuit included in the second pixel.
US10347679B2
An imaging device includes a plurality of pixels two-dimensionally disposed. At least part of the plurality of pixels includes a first photoelectric conversion unit and a second photoelectric conversion unit provided in a semiconductor substrate and each including a first semiconductor region of a first conductivity type for accumulating a signal charge, a first isolation region provided in the semiconductor substrate between the first photoelectric conversion unit and the second photoelectric conversion unit and including a second semiconductor region forming a first potential barrier for the signal charge in the first semiconductor region, and a second isolation region provided in the semiconductor substrate between the first photoelectric conversion unit and the second photoelectric conversion units and including a trench isolation forming a second potential barrier higher than the first potential barrier for the signal charge in the first semiconductor region.
US10347676B2
An image sensor may include: an active pixel region in which a plurality of active pixels are arranged; and one or more optical black regions positioned adjacent to the active pixel region, and each including a first region in which a plurality of first pixels are arranged and a second region in which a plurality of second pixels having a different pixel size from the first pixels are arranged.
US10347675B2
An image sensor includes a color filter array and a light receiving element. The color filter array includes plural repeating unit cells, and at least one of the unit cells includes at least a yellow filter, at least one green filter, and at least one blue filter. The yellow filter is configured to transmit a green component and a red component of incident light. The green filter is configured to transmit the green component of the incident light. The blue filter is configured to transmit a blue component of the incident light. Each of the unit cells does not comprise a red filter configured to transmit the red component of the incident light. The light receiving element is configured to convert the incident light transmitted by the color filter array into electric signals.
US10347664B2
The invention provides an RGBW display panel, or vertically adjacent or horizontally adjacent red sub-pixels, green sub-pixels, blue sub-pixels, and white sub-pixels (W), the TFTs for the red sub-pixels, green sub-pixels, and blue sub-pixels being disposed inside the white sub-pixels (W), and disposing bend portion (11) on borders of the sub-pixels left and right to the white sub-pixel (W) to reduce the aperture ratios of the sub-pixels left and right to the white sub-pixel (W), and increase the aperture ratios of the sub-pixels located above and below the white sub-pixel. As such, the aperture ratios of the red, green, and blue sub-pixels around the white sub-pixel approximate consistency to improve the darker shade problems of RGBW display panel display a solid or two-color mixture screen, as well as avoid white color coordinate drift, improve color shift and improve display quality.
US10347659B2
A display panel is described. Further, an electroluminescent display panel and a display device are described. By arrangement of a second signal bus line, a first end of a first signal line in a first display area in the display panel is electrically connected with the first signal bus line, and the second end of the first signal line is electrically connected with a first conducting wire in the second signal bus line, so that uniformity of a signal input by the first signal line in the first display area can be ensured. Therefore, the structure is not only the precondition of ensuring signal uniformity of the first display area, but is also the precondition of ensuring signal uniformity of a display area of the entire display panel.
US10347646B2
A structure includes a word-line, a bit-line, and an anti-fuse cell. The anti-fuse cell includes a reading device, which includes a first gate electrode connected to the word-line, a first gate dielectric underlying the first gate electrode, a drain region connected to the bit-line, and a source region. The first gate dielectric has a first thickness. The drain region and the source region are on opposite sides of the first gate electrode. The anti-fuse cell further includes a programming device including a second gate electrode connected to the word-line, and a second gate dielectric underlying the second gate electrode. The second gate dielectric has a second thickness smaller than the first thickness. The programming device further includes a source/drain region connected to the source region of the reading device.
US10347643B1
Some embodiments include a method of forming an integrated assembly. A construction is formed to include a conductive structure having a top surface, and a pair of sidewall surfaces extending downwardly from the top surface. Insulative material is over the top surface, and rails are along the sidewall surfaces. The rails include sacrificial material. The sacrificial material is removed to leave openings. Sealant material is formed to extend within the openings. The sealant material has a lower dielectric constant than the insulative material. Some embodiments include an integrated assembly having a conductive structure with a top surface and a pair of opposing sidewall surfaces extending downwardly from the top surface. Insulative material is over the top surface. Voids are along the sidewall surfaces and are capped by sealant material. The sealant material has a lower dielectric constant than the insulative material.
US10347639B1
Some embodiments include an integrated assembly having a first semiconductor material configured to comprise a pair of pedestals. The pedestals have upper regions which are separated from one another by a space, and have lower regions which join to one another at a floor region beneath the space. A second semiconductor material is configured as a bridge extending between the pedestals. The bridge is spaced from the floor region by a gap. The bridge has ends adjacent the pedestals, and has a body region between the ends. The body region has an outer periphery. Source/drain regions are within the pedestals, and a channel region is within the bridge. A dielectric material extends around the outer periphery of the body region of the bridge. A conductive material extends around the dielectric material. Some embodiments include methods of forming integrated assemblies.
US10347636B2
An integrated circuit including a link or string of semiconductor memory cells, wherein each memory cell includes a floating body region for storing data. The link or string includes at least one contact configured to electrically connect the memory cells to at least one control line, and the number of contacts in the string or link is the same as or less than the number of memory cells in the string or link.
US10347628B2
Forming a semiconductor layer on a semiconductor substrate, a top surface of the semiconductor layer above a fin in a second region is higher than a top surface of the semiconductor layer in a first region, etching the semiconductor layer and a mask in the first region to expose a top surface of the semiconductor substrate to form a first stack, and etching the semiconductor layer and the mask in the second region to expose a top surface of the fin to form a second stack, epitaxially growing a semiconductor material on a top surface of the fin not covered by the second stack, recessing the first and second stack to expose a top surface of the semiconductor layer, a portion of the mask remains above the semiconductor layer in the first stack, top surfaces of each of the first and second stacks each are substantially flush with one another.
US10347622B2
Silicon-controlled rectifiers, electrostatic discharge circuits, and methods of fabricating a silicon-controlled rectifier for use in an electrostatic discharge circuit. A device structure for the silicon controlled rectifier includes a first well of a first conductivity type in a semiconductor layer, a second well of a second conductivity type in the semiconductor layer, a cathode coupled with the first well, and an anode coupled with the second well. First and second body contacts are coupled with the first well, and the first and second body contacts each have the first conductivity type. A triggering device may be coupled with the first body contact.
US10347618B2
Various embodiments of the present disclosure include a non-volatile memory semiconductor device and a device that uses the same, the semiconductor device including a first semiconductor chip disposed on a substrate, a first sealing resin sealing the first semiconductor chip, a built-in semiconductor device disposed on the first sealing resin, and a second sealing resin sealing the first sealing resin and the built-in semiconductor device and covering a side surface of the substrate. According to an aspect of the present disclosure, it is possible to provide a high-quality semiconductor device, in which downsizing and cost reduction can be realized.
US10347615B2
Some forms include an electronic package that includes a photo-detecting receiver IC and a receiver IC. The electronic package includes a mold that encloses the photo-detecting receiver IC and the receiver IC. The photo-detecting receiver IC and the receiver IC are adjacent to one another without touching one another. Other forms include an optical module that includes a substrate and an electronic package mounted on the substrate. The electronic package includes a photo-detecting receiver IC and a receiver IC that are enclosed within a mold. The photo-detecting receiver IC and the receiver IC are adjacent to one another without touching. Other forms include a method that includes forming a mold that includes a photo-detecting receiver IC and a receiver IC that are adjacent to one another without touching. The photo-detecting receiver IC includes optical components that are exposed on a surface of the mold.
US10347609B2
Solid state transducer (“SST”) assemblies with remote converter material and improved light extraction efficiency and associated systems and methods are disclosed herein. In one embodiment, an SST assembly has a front side from which emissions exit the SST assembly and a back side opposite the front side. The SST assembly can include a support substrate having a forward-facing surface directed generally toward the front side of the SST assembly and an SST structure carried by the support substrate. The SST structure can be configured to generate SST emissions. The SST assembly can further include a converter material spaced apart from the SST structure. The forward-facing surface and the converter material can be configured such that at least a portion of the SST emissions that exit the SST assembly at the front side do not pass completely through the converter material.
US10347608B2
A power module includes a first bus bar having a first plurality of tabs, wherein each of the first plurality of tabs is electrically coupled to a respective conductive trace of a plurality of conductive traces disposed on a first side; a second bus bar having a second plurality of tabs, wherein each of the second plurality of tabs is electrically coupled to a respective conductive trace of a plurality of conductive traces disposed on a second side; and a third bus bar having a third plurality of tabs, wherein at least one tab of the third plurality of tabs is electrically coupled to a respective conductive trace of the plurality of conductive traces disposed on the first side and at least one tab of the third plurality of tabs is electrically coupled to a respective conductive trace of the plurality of conductive traces disposed on the second side.
US10347602B1
A micro-bonding structure including a substrate, a conductive pad, a bonding layer, a micro device, and a diffusive bonding portion is provided. The conductive pad is present on the substrate. The bonding layer is present on the conductive pad. The micro device is present on the bonding layer. The diffusive bonding portion is present between and electrically connected with the bonding layer and the conductive pad. The diffusive bonding portion consists of at least a part of elements from the bonding layer and at least a part of elements from the conductive pad. A plurality of voids are present between the bonding layer and the conductive pad, and one of the voids is bounded by the diffusive bonding portion and at least one of the conductive pad and the bonding layer.
US10347598B2
A composite antenna substrate and semiconductor package module includes: a fan-out semiconductor package including a semiconductor chip, an encapsulant encapsulating at least portions of the semiconductor chip, and a connection member including a redistribution layer electrically connected to connection pads; and an antenna substrate including an antenna member including antenna patterns, ground patterns, and feed lines, and a wiring member disposed below the antenna member and including wiring layers including feeding patterns electrically connected to the feed lines.
US10347596B2
The application provides an apparatus, including a first section, a second section, and a first bonding wire group, where the first bonding wire group includes at least three first bonding wire units. The first bonding wire unit includes at least one arc-shaped bonding wire, one end and the other end of the first bonding wire unit are electrically connected to electrodes of the first section and the second section, respectively, where arc heights of first bonding wire units located at two sides of the first bonding wire group are higher than an arc height of a first bonding wire unit at another position, and an arc height of a first bonding wire unit located in a central area of the first bonding wire group is lower than an arc height of a first bonding wire unit at another position.
US10347591B2
A metallic, stress-tunable thin film structure is applied to the backside of an epitaxial wafer to compensate for stress created by the frontside epitaxial layers. The structure may comprise multiple layers, including a metallic stress compensation layer (“SCL”), a metallic adhesive layer and/or a passivation (or solder attach) layer. In other embodiments, the stress compensation structure comprises only the metallic stress compensation layer. In a first application, the metallic stress compensation structure is applied to a backside of an epitaxial wafer prior to beginning device fabrication, correcting for bow present in as-purchased wafers. In a second application, the metallic stress compensation structure is applied to a backside of a thinned epitaxial wafer at the completion of frontside processing, preventing bow-induced wafer breakage upon removal from the rigid support structure or carrier disc.
US10347589B2
An assembly (101) comprising a semiconductor device (110) with solderable bumps (112); a substrate (120) with a layer (130) of a first insulating compound and an underlying metal layer (140) patterned in contact pads (141) and connecting traces (142), the insulating layer having openings (132) to expose the surface (142a) and sidewalls (142b) of underlying traces; the device bumps soldered onto the contact pads, establishing a gap (150) between device and top insulating layer; and a second insulating compound (160) cohesively filling the gap and the second openings, thereby touching the underlying traces, the second insulating compound having a higher glass transition temperature, a higher modulus, and a lower coefficient of thermal expansion than the first insulating compound.
US10347585B2
A fan-out semiconductor package includes: a first semiconductor chip having a first active surface having first connection pads; a first encapsulant encapsulating the first semiconductor chip; a first connection member disposed on the first active surface and including a first redistribution layer electrically connected to the first connection pads; a second semiconductor chip having a second active surface having second connection pads; a second encapsulant covering the first connection member and encapsulating the second semiconductor chip; a second connection member disposed on the second active surface and including a second redistribution layer electrically connected to the second connection pads; and a third via penetrating through the second encapsulant, connecting the first redistribution layer and the second redistribution layer to each other, and including a metal post connected to the first redistribution layer and a via conductor disposed on the metal post and connected to the second redistribution layer.
US10347582B2
Embedded vialess bridges are provided. In an implementation, discrete pieces containing numerous conduction lines or wires in a 3-dimensional bridge piece are embedded where needed in a main substrate to provide dense arrays of signal, power, and electrical ground wires below the surface of the main substrate. Vertical conductive risers to reach the surface plane of the main substrate are also included in the discrete piece, for connecting to dies on the surface of the substrate and thereby interconnecting the dies to each other through the dense array of wires in the discrete piece. The discrete piece to be embedded may have parallel planes of conductors at regular intervals within itself, and thus may present a working surface homogeneously covered with the ends of vertical conductors available to connect surface components to each other and to ground and power at many places along the embedded piece.
US10347578B2
A semiconductor structure and a method for fabricating the semiconductor structure are provided. The method includes providing a base substrate including a device region and a peripheral region. The base substrate includes a base interconnection structure. The method also includes forming a medium layer on the base substrate. In addition, the method includes forming a first trench having a first depth in the peripheral region, and forming a second trench having a second depth in the device region. The second depth is greater than the first depth. Moreover, the method includes forming a first opening in the device region and forming a second opening in the peripheral region. Further, the method includes forming a first interconnection structure by filling the first opening with a conductive material and forming a second interconnection structure by filling the second opening with the conductive material.
US10347577B2
Apparatuses for providing external terminals of a semiconductor device are described. An example apparatus includes: a pad formation area including a plurality of pads disposed at an edge of the apparatus; a peripheral circuit area including a plurality of circuit blocks coupled to a memory cell array, each circuit block of the plurality of circuit blocks including a via disposed at a side opposite to the pad formation area with respect to each circuit block; and a plurality of conductors, each conductor coupling the via to the corresponding pad, and crossing over, at least in part, an area in the peripheral circuit area that is outside the circuit block comprising the via.
US10347575B2
This disclosure provides a package substrate and its fabrication method. The package substrate comprises: a first dielectric material layer have an opening; a first conductive unit including a first part in the opening of the first dielectric material layer and a second part on the first dielectric material layer; and a second dielectric material layer covering the first conductive unit and the first dielectric material layer; wherein a height of the first conductive unit is larger than a thickness of the first dielectric material layer; wherein a cross-section of the second part is larger than that of the first part in the first conductive unit.
US10347571B1
In one example, a device having integrated package interference isolation includes a ground pad, an integrated circuit device die secured to the ground pad, a substrate secured to the ground pad, at least one a high-frequency, high-power semiconductor device secured to a top mounting surface of the substrate. For electromagnetic isolation, the integrated circuit device die includes a top metal, and the substrate includes a metal via electrically coupled to a metal trace that extends on the top mounting surface of the substrate. The device package also includes a number of ground pad bonding wires that electrically couple the redistribution layer of the integrated circuit device die and the metal trace to the ground pad. The redistribution layer of the integrated circuit device die and the metal trace and via of the substrate help to shield electromagnetic radiation between components in the device package.
US10347565B2
A multi-chip package of power semiconductor includes a lead frame, a first segment group, a second segment group, a first power semiconductor chip and a second power semiconductor chip. The lead frame includes a first segment group having a first gate segment, a first source segment, and a first drain segment that are separated from each other. The second segment group has a second gate segment, a second source segment, and a second drain segment that are separated from each other. The first power semiconductor chip is formed on the first segment group. The second power semiconductor chip is formed on the second segment group. The first source segment is physically connected to the second drain segment.
US10347564B2
A semiconductor device composed of a through-substrate-via (TSV) interconnect, and methods for forming the interconnect.
US10347562B1
A package includes a substrate having an electronic component flip chip mounted thereto by flip chip bumps. The electronic component includes an active surface and an inactive surface. Electrically conductive columns (TSV) extend through the electronic component between the active surface and the inactive surface. A RDL structure is coupled to the inactive surface, the RDL structure redistributing the pattern of the electrically conductive columns at the inactive surface to a pattern of inactive surface RDL lands. The inactive surface RDL lands are exposed through via apertures of a package body. By using the inactive surface of the electronic component to distribute the inactive surface RDL lands, the allowable size of the electronic component is maximized.
US10347561B2
A semiconductor apparatus includes a housing in a shape of a panel, a cooling fan configured to exhaust from a top surface of the housing, and provided on the top surface, a partition plate configured to vertically partition a space below the cooling fan into a first space and a second space, and including opening portions through which a cooling airflow produced by the cooling fan passes from the first space to the second space, semiconductor units cooled by the cooling airflow, and vertically disposed in the first space, and a slit plate attached to at least one of the opening portions of the partition plate, and configured to limit an airflow speed of the cooling airflow.
US10347558B2
Embodiments herein generally relate to the field of package assembly to facilitate thermal conductivity. A package may have a hanging die, and attach to a printed circuit board (PCB). The package may have an active side plane and an inactive side plane opposite the first active side plane. The package may also have a ball grid array (BGA) matrix having a height determined by a distance of a furthest point of the BGA matrix from the active side plane of the package. The package may have a hanging die attached to the active side plane of the package, the hanging die having a z-height greater than the BGA matrix height. When package is attached to the PCB, the hanging die may fit into an area on the PCB that is recessed or has been cut away, and a thermal conductive material may connect the hanging die and the PCB.
US10347556B2
A semiconductor device includes: a chip having an active surface having connection pads disposed thereon; an encapsulant encapsulating at least portions of the chip; a connection member disposed on the active surface of the chip and including a redistribution layer electrically connected to the connection pads; a passivation layer disposed on the connection member; and an under bump metallurgy (UBM) layer at least partially embedded in the passivation layer and electrically connected to the redistribution layer of the connection member. The UBM layer includes a UBM pad partially embedded in the passivation layer and a UVM via penetrating through a portion of the passivation layer and electrically connecting the redistribution layer of the connection member and the UBM pad to each other. A portion of a side surface of the UBM pad is exposed through an opening formed in the passivation layer and the opening surrounds the UBM pad.
US10347542B2
A method for a client-initiated leader election in a distributed system including receiving a master listener election request by at least one listener of a plurality of listeners in the distributed system, arranging a list of configured listeners in a descending priority order, the list of configured listeners comprises one or more listeners of the plurality of listeners set for connection, selecting a listener with a highest priority from the list of configured listeners, determining an availability of the selected listener, verifying a connectivity to the selected listener using a ping utility program, assigning the selected listener as a master listener based on the connectivity, and connecting to the master listener.
US10347539B2
In one example, a field effect transistor includes a pair of fins positioned in a spaced apart relation. Each of the fins includes germanium. Source and drain regions are formed on opposite ends of the pair of fins and include silicon. A gate is wrapped around the pair of fins, between the source and drain regions.
US10347535B2
The disclosed technology relates generally to methods and systems for controlling the release of micro devices. Prior to transferring micro devices to a destination substrate, a native substrate is formed with micro devices thereon. The micro devices can be distributed over the native substrate and spatially separated from each other by an anchor structure. The anchors are physically connected/secured to the native substrate. Tethers physically secure each micro device to one or more anchors, thereby suspending the micro device above the native substrate. In certain embodiments, single tether designs are used to control the relaxation of built-in stress in releasable structures on a substrate, such as Si (1 1 1). Single tether designs offer, among other things, the added benefit of easier break upon retrieval from native substrate in micro assembly processes. In certain embodiments, narrow tether designs are used to avoid pinning of the undercut etch front.
US10347520B2
Provided is an electrostatic chuck including: a base material; an adsorption unit for adsorbing a wafer by using electrostatic force; an adhesive layer for adhering the adsorption unit to the base material; and an adhesive layer anti-corrosion coating layer provided to cover an exposed surface of the adhesive layer, wherein the adhesive layer anti-corrosion coating layer has no pores or cracks since the adhesive layer anti-corrosion coating layer is made by a method of spraying and coating, at conditions of 0-50° C. and a vacuum state, ceramic powder which is continuously supplied at a constant quantity to the carrier gas of which a fixed flow rate is controlled, and a method for manufacturing an electrostatic chuck, including the steps of: (a) forming an adhesive layer for adhering an adsorption unit for adsorbing a wafer to a base material by using electrostatic force; and (b) forming an adhesive layer anti-corrosion coating layer which covers an exposed surface of the adhesive layer and has no pores or cracks as it is made by a method of spraying and coating, at conditions of 0-50° C. and a vacuum state, ceramic powder which is continuously supplied at a constant quantity to the carrier gas of which a fixed flow rate is controlled.
US10347518B2
A transport vehicle for transporting a transportation-target object to a placement location that is provided at a lower position, includes: a supporting portion configured to support the transportation-target object; a lifting/lowering portion configured to lift and lower the transportation-target object in a suspended state; and a weight detecting portion configured to detect a weight of the transportation-target object, wherein a lowering speed of the transportation-target object is increased after a detection value that is detected by the weight detecting portion while the transportation-target object is being lowered by the lifting/lowering portion in a state where the transportation-target object is supported by the supporting portion has become smaller than or equal to a first set value, and thereafter, the supporting of the transportation-target object by the supporting portion is canceled after the suspending of the transportation-target object by the lifting/lowering portion has been canceled.
US10347515B2
For vacuum treatment of workpieces by a multitude of distinct processing stations (P11-P1n, P21-P2m) the processing stations are grouped in two groups (I and II). The workpieces are handled towards and from the processing stations of the first group (I) simultaneously, whereat the workpieces are treated by the processing stations of the second group (II) in a selectable individual sequence.
US10347512B2
Light is applied for preheating from a halogen lamp to a lower surface of a semiconductor wafer supported on a susceptor within a chamber. Thereafter, flash light is applied for flash heating from a flash lamp to an upper surface of the semiconductor wafer. High-temperature treatment gas heated by a heater is supplied into the chamber to preheat a structure inside the chamber including a susceptor before heat treatment for an initial semiconductor wafer of a lot starts. By raising the temperature of the structure inside the chamber to a temperature substantially equivalent to a temperature of the structure during steady treatment, all semiconductor wafers constituting the lot are supportable on the susceptor maintained at a constant temperature without the necessity of dummy running. Accordingly, a temperature history is equalized for all the semiconductor wafers.
US10347502B2
Methods for manufacturing semiconductor devices may include forming a stack structure including layers stacked on a substrate, forming a mask pattern on the stack structure, and patterning the stack structure using the mask pattern such that the stack structure has an end portion with a stepped profile. The patterning of the stack structure may include performing a pad etching process of etching the stack structure using the mask pattern as an etch mask, and performing a mask etching process of etching a sidewall of the mask pattern. The performing of the mask etching process may include irradiating an ion beam onto the mask pattern, which may be irradiated at a first tilt angle with respect to the sidewall of the mask pattern and at a second tilt angle with respect to a top surface of the mask pattern. The first tilt angle may be different from the second tilt angle.
US10347498B2
Methods for minimizing plasma-induced sidewall damage during low k etch processes are disclosed. The methods etch the low k layers using the plasma activated vapor of an organofluorine compound having a formula selected from the group consisting of N≡C—R; (N≡C—)—(R)—(—C≡N); Rx[—C═N(Rz)]y; and R(3-a)—N—Ha, wherein a=1-2, x=1-2, y=1-2, z=0-1, x+z=1-3, and each R independently has the formula HaFbCc with a=0-11, b=0-11, and c=0-5.
US10347495B2
Methods of depositing a film selectively onto a first substrate surface relative to a second substrate surface are described. The methods include depositing a second metal on a first metal without protecting the dielectric, protecting the metal with a cross-linked self-assembled monolayer and depositing a second dielectric on the first dielectric while the metal is protected.
US10347493B2
A transistor and a method of forming the transistor are provided. The method includes forming a first interlayer dielectric layer on a substrate, forming an opening through the first interlayer dielectric layer, and forming a work function layer over side surfaces and a bottom of the opening. The method further includes forming a gate electrode layer over the work function layer, removing at least a portion of the work function layer over side surfaces of the gate electrode layer to form grooves, and forming a protection layer in the grooves.
US10347491B2
Disclosed is a method. The method includes implanting recombination center particles into a semiconductor body via at least one contact hole in an insulation layer formed on top of the semiconductor body, forming a contact electrode electrically connected to the semiconductor body in the at least one contact hole, and annealing the semiconductor body to diffuse the recombination center particles in the semiconductor body. Forming the contact electrode includes forming a barrier layer on sections of the semiconductor body uncovered in the at least one contact hole, wherein the barrier layer is configured to inhibit the recombination center particles from diffusing out of the semiconductor body.
US10347487B2
Apparatus and methods of forming an apparatus can include one or more cell contacts in an integrated circuit in a variety of applications. In various embodiments, a resist underlayer can be formed on a dielectric spacer formed on a structure for a cell contact, where the structure can include a patterned area of pillars on a silicon-rich dielectric anti-reflective coating region disposed on a dielectric region. The resist underlayer, the dielectric spacer, the patterned area of pillars, the silicon-rich dielectric anti-reflective coating, and the dielectric region can be processed to form an array of columns in the dielectric region. Regions between the columns of the array of columns can be filled with conductive material, forming the cell contact. Additional apparatus, systems, and methods are disclosed.
US10347485B2
The present invention aims to provide a reflective mask blank and a reflective mask which have a highly smooth multilayer reflective film as well as a low number of defects, and methods of manufacturing the same, and aims to prevent charge-up during a mask defect inspection using electron beams.The present invention provides a reflective mask blank for EUV lithography in which a conductive underlying film, a multilayer reflective film that reflects exposure light, and an absorber film that absorbs exposure light are layered on a substrate, wherein the conductive underlying film is a single-layer film made of a tantalum-based material or a ruthenium-based material with a film thickness of greater than or equal to 1 nm and less than or equal to 10 nm that is formed adjacent to the multilayer reflective film, or the conductive underlying film is a multilayer film including a layer of a tantalum-based material with a film thickness of greater than or equal to 1 nm and less than or equal to 10 nm that is formed adjacent to the multilayer reflective film and a layer of a conductive material that is formed between the layer of the tantalum-based material and the substrate. The present invention also provides a reflective mask manufactured using the reflective mask blank. Furthermore, a semiconductor device is manufactured using the reflective mask.
US10347478B2
A method of extracting a mass trace from mass spectrometry data of a mass stream emitted from a separation device as a function of a separation parameter, the method comprising, receiving the mass spectrometry data, wherein the mass spectrometry data comprise a plurality of mass spectra each obtained for respective values of the separation parameter; identifying, from the plurality of mass spectra, a sequence of three or more intensity peaks that are ordered according to the separation parameter, wherein said identifying the sequence of intensity peaks comprises, selecting an initial intensity peak at an initial mass, and for each other intensity peak, selecting said intensity peak based on at least the mass of an adjacent intensity peak in the sequence of intensity peaks, the method further comprising, providing a mass trace, for a given emitted compound of the mass stream, from the identified sequence of intensity peaks.
US10347452B2
A polarized DC electromagnetic device and electromagnetic contactor using same to improve assembly efficiency without size increase of the electromagnetic device. The device includes a plunger inserted through a cylindrical portion of a spool around which an excitation coil is wound and having a first armature and a second armature attached to both ends, an outer yoke attracting the first armature and the second armature, an inner yoke disposed inside the outer yoke and attracting the second armature, and a permanent magnet disposed between the outer yoke and the inner yoke. The spool includes radially protruding flange portions respectively formed at both ends of the cylindrical portion, a coil terminal attachment portion formed in the flange portion on the first armature side, and a coil terminal attached to the coil terminal attachment portion.
US10347451B2
A printed circuit board (PCB) assembly according to one embodiment of the present disclosure includes a first pad; a second pad disposed to be spaced apart from the first pad; and a thermal fuse provided with a first terminal and a second terminal which are each coupled to the first pad and the second pad by soldering. Here, a contact area between the first pad and the first terminal is smaller than that between the second pad and the second terminal.
US10347447B2
A vacuum circuit breaker includes a tank containing an electrical device. An opening corresponds to a terminal of the electrical device. A porcelain tube protruding from the tank is fixed to an opening base, and has a terminal conductor. A first connection conductor in the porcelain tube is connected to the terminal conductor. A second connection conductor is arranged in the porcelain tube. A third connection conductor is arranged between the first and the second connection conductor, has a closed end concave section fitted onto the first connection conductor and is connected to the second connection conductor by a fastener. A contact is disposed between said first connection conductor and the third connection conductor. The third and second connection conductors are made of a solid conductor. A center of the third connection conductor and a center of the second connection conductor are formed with a threaded section.
US10347444B2
A paddle switch system comprises a housing, a paddle having a pivot member pivotally disposed in the housing for operating an electrical switch within the housing in response to a force on the paddle, a cover coupled to the housing wherein the housing and the cover partially enclose the paddle, and a vibration reduction mechanism disposed in the housing proximate the pivot member of the paddle. The electrical switch comprises a dome switch and the paddle is disposed in the housing to partially preload the dome switch.
US10347437B2
A disconnector device is provided for disconnecting an electrical circuit, wherein the electrical circuit is switched by a contactor between an open position and a closed position, the disconnector device using the contactor for disconnecting the electric circuit. The disconnector device locks the contactor in the open position, in which open position contacts of the contactor are in a first position disconnecting the electrical circuit. An arrangement including the disconnector device and a contactor is also provided.
US10347428B2
A multilayer ceramic capacitor includes: a multilayer structure having an internal electrode and a dielectric layer alternately stacked; external electrodes provided on a first and second faces of the multilayer structure, wherein t12×L1/N is equal to or more than 0.1, when a distance between a first edge positioned at outermost of edges of the plurality of internal electrodes that are not connected to the first external electrode or the second external electrode in an array direction of the first external electrode and the second external electrode and a second edge positioned at innermost of edges of the plurality of internal electrodes that are not connected to the first external electrode or the second external electrode in the array direction is L1 (mm), each thickness of the plurality of dielectric layers is t1 (μm), and a stack number of the plurality of dielectric layers is N.
US10347424B2
The present invention relates generally to the fields of electrical engineering and electronics. More specifically, the present invention relates to passive components of electrical circuitry and more particularly to energy storage devices and method of production thereof.
US10347421B2
There is provided a multilayer ceramic electronic component, including: a ceramic body having external electrodes; and internal electrodes disposed between ceramic layers within the ceramic body, the ceramic body having a width smaller than a length thereof and the number of laminated internal electrodes being 250 or more, wherein when the thickness of the ceramic layer is denoted by Td and the thickness of the internal electrode is denoted by Te, 0.5≤Te/Td≤2.0, and when the thickness of a central portion of the ceramic body is denoted by Tm and the thickness of each of side portions of the ceramic body is denoted by Ta, 0.9≤Ta/Tm≤0.97, and thus, a multilayer ceramic electronic component having low equivalent series inductance (ESL) may be obtained.
US10347420B2
A winding device includes a nozzle holding mechanism for holding a plurality of nozzles in substantially parallel with each other, a nozzle rotation driving mechanism for rotating the nozzle holding mechanism about a rotation axis being substantially parallel with the plurality of nozzles, a spool supporting mechanism for supporting a plurality of spools in substantially parallel with each other, a spool rotation driving mechanism for rotating the spool supporting mechanism about a rotation axis being substantially parallel with the plurality of spools and being coaxially with or substantially parallel with the rotation axis of the nozzle holding mechanism, and a control unit for controlling the spool rotation driving mechanism in such a manner as to rotate the spool supporting mechanism in synchronism with rotation of the nozzle holding mechanism.
US10347419B2
A coil electronic component includes: a body including a substrate and coil parts disposed on first and second surfaces of the substrate; and external electrodes formed on outer surfaces of the body and connected to the coil parts. A metal layer is disposed within the substrate.
US10347402B1
A thermal fuse resistor including a ceramic substrate, a resistor body, a temperature sensing body, a first electrode cap, a second electrode cap, a first lead wire, a second lead wire, and a third lead wire. A first end of the ceramic substrate is provided with a first electrode cap, and a second end of the ceramic substrate is provided with a second electrode cap. The first electrode cap includes a main body, an inner end, and an outer end with an opening. The outer end includes an everted edge closely contacting the first end of the ceramic substrate. The main body and the inner end are arranged inside the ceramic substrate. The first lead wire extends outward from an outer end. One end of the third lead wire is electrically connected to the second electrode cap.
US10347400B2
A cable clamping device for widening a braided shield of a cable includes at least three clamping bodies that are arranged to form an equilateral polygonal passage for clamping the cable therein. The clamping bodies are slidable against each other to change the opening size of the passage.
US10347399B2
An M-jacket for use in a telecommunications cable including a jacket body. The jacket body extends along a longitudinal axis of the telecommunications cable. The longitudinal axis passes through a geometrical center of the telecommunications cable. The jacket body includes a first surface. The first surface surrounds a core region of the telecommunications cable. The first surface defines a plurality of first grooves extending radially outwardly from the longitudinal axis of the telecommunications cable and a plurality of second grooves extending radially outwardly from the longitudinal axis of the telecommunications cable. The plurality of second grooves is disposed at an interstitial position between the plurality of first grooves. In addition, the jacket body includes a second surface. The second surface extends along the longitudinal axis of the telecommunications cable and disposed in a spaced relation to the first surface.
US10347396B2
A cable jacket for a conductor is disclosed having a flame-retardant insulation and a gas-permeable, heat-resistant outer casing. The flame-retardant insulation is positioned over the conductor so as to at least partially surround the conductor. The gas-permeable, heat-resistant outer casing surrounds the flame-retardant insulation.
US10347393B2
A shielded electrical ribbon cable includes adjacent first and second longitudinal conductor sets where each conductor set includes two or more insulated conductors. The first conductor set also includes a ground conductor that generally lies in the plane of the insulated conductors of the first conductor set. At least 90% of the periphery of each conductor set is encompassed by a shielding film. First and second non-conductive polymeric films are disposed on opposite sides of the cable and form cover portions substantially surrounding each conductor set, and pinched portions on each side of each conductor set. When the cable is laid flat, the distance between the center of the ground conductor of the first conductor set and the center of the nearest insulated conductor of the second conductor set is σ1, the center-to-center spacing of the insulated conductors of the second conductor set is σ2, and σ1/σ2 is greater than 0.7.
US10347386B2
An electrode for transcutaneously transmitting electronic signals with a first layer that is designed to retain a liquid, also at least as a result of a capillary force, and an electrically conductive polymer layer, which contains conductive particles. The first layer is partially permeated by the polymer layer such that it protrudes out of said polymer layer on at least one first side. The first layer is designed to retain a liquid, also at least as a result of a capillary force, and the electrode includes an electrode contacting layer which is partially embedded in the polymer layer, such that it protrudes out of the polymer layer on a second side opposite the first side.
US10347377B1
The disclosure relates generally to methods and devices for taking care of elderly, disabled, or other dependents. The devices and methods may be useful for dependents that are not willing or able to live in an environment which has a caretaker physically present. Example devices and methods can facilitate communication between a caretaker and a dependent. Devices and methods can optionally facilitate disbursing medications remotely.
US10347361B2
This disclosure provides a technology for users to gain first-hand knowledge and experience with interpreting whole genomes. The technology graphically depicts variations in genome sequences in an expandable display, and provides a platform whereby the user may find and research the biological significance of such variants. The technology also provides a unique collaborative environment designed to capture and improve the collective knowledge of the participating community.
US10347351B2
Discussed are a display device and a method of driving the same. The display device can include a panel in which a pixel is formed in each of a plurality of intersection areas between a plurality of gate lines and a plurality of data lines, a built-in gate driver built into a non-display area of the panel, and configured to include a shift register including a plurality of scan stages which output a scan pulse, and a timing controller configured to generate first to nth clocks, a reset signal, and a start signal. In initial driving of the built-in gate driver, the timing controller continuously supplies a pulse of the reset signal to the plurality of scan stages while a pulse of the nth clock and a pulse of the first clock to a pulse of the (n−1) clock are each output once in a first frame.
US10347347B1
An apparatus is provided which comprises: a buffer to receive first data from a host, and output the first data with configurable delay; and one or more circuitries to: compare the first data from the host with second data that is accessible to the apparatus, wherein the second data is substantially a copy of the first data, and calibrate the delay of the buffer, based at least in part on the comparison of the first data and the second data.
US10347336B1
The disclosure provides a method for obtaining optimal operating condition of a resistive random access memory (RRAM). The method includes: retrieving an RRAM chip and performing a forming operation and an initial reset operation thereto based on a first operating condition; segmenting the RRAM chip into blocks; performing a set operation to each of the blocks based on various operating voltages; obtaining a fail bit value of each of the blocks; generating an operating characteristic curve related to the RRAM chip based on the fail bit value of each of the blocks and the operating voltages, wherein the operating characteristic curve has a lowest fail bit value and an operating voltage window; and when the lowest fail bit value and the operating voltage window satisfy a first condition and a second condition, respectively, determining the first operating condition is an optimal operating condition of the RRAM chip.
US10347331B2
A memory device includes a plurality of memory blocks, each block with multiple memory cells. Each memory block has an address and a block read threshold. The plurality of memory blocks is partitioned into clusters based on block read thresholds. The memory device also has a look-up table for storing information associating each cluster of memory blocks with a corresponding cluster read threshold. The look-up table further includes cluster boundaries defined in values of device status parameters. The memory device is configured to receive a read command to read a memory block with a read address and identify a cluster for the memory block with the read address. The memory device is also configured to select a cluster read threshold for the identified cluster from the look-up table, and use the selected cluster read threshold to perform a read operation of the memory block.
US10347330B2
A reading control method for a solid state storage device includes following steps. While the solid state storage device is in an idle mode, a background monitoring operation is performed on the first block and the second block. Consequently, a first optimal read voltage set corresponding to the first block and a second optimal read voltage set corresponding to the second block are acquired. In reading operation, a default read voltage set is provided to the non-volatile memory to read a data of the first block. If a data of the first block is not successfully decoded, a read retry process is performed on the first block and the first optimal read voltage set is provided to the non-volatile memory to read the data of the first block.
US10347327B2
An SRAM cell with dynamic split ground (GND) and split wordline (WL) for extreme scaling is disclosed. The memory cell includes a first access transistor enabled by a first wordline to control access to cross coupled inverters by a first bitline. The memory cell further includes a second access transistor enabled by a second wordline to control access to the cross coupled inverters by a second bitline. The memory cell further includes a split ground line comprising a first ground line (GNDL) separated from a second ground line (GNDR). The GNDL is connected to a transistor of a first inverter of the cross coupled inverters and the GNDR is connected to a first transistor of a second inverter of the cross coupled inverters.
US10347326B2
A semiconductor memory apparatus includes a bias voltage generation circuit configured to generate a bias voltage according to a read voltage or a write voltage in response to a read signal and a write signal, a data discrimination circuit configured to generate a set enable signal and a reset enable signal in response to data and the write signal. The semiconductor memory apparatus also includes a current selection circuit configured to generate a first current in response to the read signal, the set enable signal, and the reset enable signal. The semiconductor memory apparatus further includes a driver configured to receive the first current and generate a second current in response to a voltage level of the bias voltage, and a first switch configured to provide the second current to a memory cell in response to the read signal and the write signal.
US10347325B1
The present invention discloses a DDR4 memory I/O driver including a pre-driver, a pull-up circuit and a pull-down circuit. The pre-driver is coupled between a first high voltage terminal and a low voltage terminal to provide a first and a second pre-driving signals. The pull-up circuit includes: a driving PMOS transistor coupled between a second high voltage terminal and a pull-up resistor, that is coupled to an output pad, to operate according to the first pre-driving signal, in which the second high voltage terminal's voltage is not higher than the first high voltage terminal's voltage. The pull-down circuit includes: a driving NMOS transistor coupled between the low voltage terminal and a cascode NMOS transistor to operate according to the second pre-driving signal; and the cascode NMOS transistor coupled between the driving NMOS transistor and a pull-down resistor, that is coupled to the output pad, to operate according to a bias.
US10347313B2
According to one embodiment, a magnetic memory includes: magnetoresistive effect elements arranged on an conductive layer; and a first circuit which passes a write current through the conductive layer and applies a control voltage to the magnetoresistive effect elements, to write data including a first value and a second value into the magnetoresistive effect elements. The first circuit adjusts at least one of a write sequence of the first value and the second value, a current value of the write current, and a pulse width of the write current, on the basis of an arrangement of the first value and the second value in the data.
US10347309B2
Embodiments include a resistor, coupled on a signal path, that includes one or more resistive memory elements, such as one or more magnetic tunnel junctions (MTJs). The resistance of the resistive memory elements may be digitally trimmable to adjust a resistance of the resistor on the signal path. The resistor may be incorporated into an analog or mixed signal circuit to pass an analog signal on the signal path. Other embodiments may be described and claimed.
US10347300B2
Techniques are disclosed for performing a computer-implemented processing of slide presentation videos to automatically generate index locations corresponding to particular slides within a slide presentation video. In embodiments, a slide presentation video is uploaded to a video processing system. The video processing system performs an image analysis to identify each slide within the slide presentation and determine a time window for each occurrence of each slide. An audio analysis is performed to adjust the time window to the start of a sentence that precedes the introduction of the slide. A user interface includes one or more selectable links associated with each slide that link to a corresponding location within the slide presentation video. Similarly, a processed slide presentation video includes selectable links to index to the corresponding slide of the presentation.
US10347298B2
A method generating control data for displaying a video sequence on a low resolution display may comprise providing at least a first video sequence, the first video sequence comprising a plurality of image frames, determining whether a first image frame of the first video sequence comprises a sub-image of a primary object, selecting a first position of a primary image portion of an image frame such that the first position substantially matches with the position of the sub-image of the primary object, if the first image frame has been determined to comprise said sub-image of said primary object and providing control data, which indicates said first position.
US10347295B1
In one aspect, an example method includes (i) receiving, by a computing system, first video content captured by a front-facing camera of an end-user device; (ii) receiving, by the computing system, second video content captured by a rear-facing camera of the end-user device, wherein the first video content is captured by the front-facing camera while the second video content is captured by the rear-facing camera; and (iii) using, by the computing system, the received first video content, the received second video content, and a DVE template to generate third video content that includes the received first video content and the received second video content.
US10347290B2
Various embodiments for creating media clips are disclosed. In one example, a method is performed by a server for managing the creation and distribution of media clips, where the server associates a content capture device with an event, the content capture device for recording at least a portion of the event, receives a tag notification from a content tagging device via a network interface, generates a media clip creation command to the content capture device via the network interface, sends the media clip creation command to the content capture device, and receives a media clip created by the content capture device in response to receiving the media clip creation command.
US10347288B2
The disclosed embodiments allow for the capturing, synchronization, and editing of video clips captured by a plurality of devices. In one embodiment, video clips are associated with one another when the devices that captured the video clips are in physical proximity with one another and the video clips are captured during the same time period. Those video clips can be synchronized at a later time and aggregated by a user to form a new video clip.
US10347285B1
Bottom tracks are written to a recording medium using a first setting of a microwave assisted magnetic recording (MAMR) head. Top tracks are interlaced between and partially overlapping the bottom tracks using a second setting of the MAMR head, the second setting resulting in a narrower track width than the first setting.
US10347283B2
Methods and systems are described for obtaining, at a phase-error aggregator, a plurality of data-derived phase-error signals for two or more data lanes of a multi-wire bus, each data-derived phase-error signal generated using at least (i) a phase of one or more phases of a local oscillator signal and (ii) a corresponding data signal associated with one of the two or more data lanes, generating a composite phase-error signal representing a combination of the two or more obtained data-derived phase-error signals, receiving the composite phase-error signal at a loop filter responsively generating an oscillator control signal, and receiving the oscillator control signal at a local oscillator and responsively adjusting a timing of the local oscillator to adjust the one or more phases of the local oscillator signal.
US10347282B2
Embodiments of the present invention provide a tape transport control system with enhanced regulation of tape tension and velocity over the entire length of the tape. The tape transport control system comprises of circuitry adapted to output and circuitry adapted to receive one or more signals representing a tape velocity, at least one radius of either the first tape reel or the second tape reel, and a tape tension, and based on the received signals, generate at least one control signal to control at least one of the first reel motor or the second reel motor so as to reduce a tension disturbance at a minimum, one frequency corresponding to a time-varying reel-rotation frequency, based on controller parameters that depend on the tape velocity and on the at least one radius of either the first tape reel or the second tape reel.
US10347271B2
Various techniques are provided to perform enhanced automatic speech recognition. For example, a subband analysis may be performed that transforms time-domain signals of multiple audio channels in subband signals. An adaptive configurable transformation may also be performed to produce single or multichannel-based features whose values are correlated to an Ideal Binary Mask (IBM). An unsupervised Gaussian Mixture Model (GMM) model fitting the distribution of the features and producing posterior probabilities may also be performed, and the posteriors may be combined to produce deep neural network (DNN) feature vectors. A DNN may be provided that predicts oracle spectral gains from the input feature vectors. Spectral processing may be performed to produce an estimate of the target source time-frequency magnitudes from the mixtures and the output of the DNN. Subband synthesis may be performed to transform signals back to time-domain.
US10347262B2
Systems, methods, apparatus, and articles of manufacture to improve timestamp transition resolution of watermarks are disclosed. An example system includes a watermark detector to detect watermarks and a decoder to decode timestamps in respective ones of the watermarks. The example system also includes a timestamp transition resolution enhancer that estimates a first transition window indicative of a transition between a first time period to a second time period based on a first one of the timestamps and a second one of the timestamps. The timestamp transition resolution enhancer also estimates, when the first transition window does not satisfy a threshold, a second transition window indicative of a transition between the second time period and a third time period based on the second timestamp and a third one of the timestamps. In addition, the timestamp transition resolution enhancer determines a first mapped transition window based on an intersection of the first transition window and the second transition window, and sets the first mapped transition window as a reference time transition window for subsequent time periods.
US10347259B2
An apparatus for downmixing three or more audio input channels to obtain two or more audio output channels is provided. The apparatus includes a receiving interface for receiving the three or more audio input channels and for receiving side information. Moreover, the apparatus includes a downmixer for downmixing the three or more audio input channels depending on the side information to obtain the two or more audio output channels. The number of the audio output channels is smaller than the number of the audio input channels. The side information indicates a characteristic of at least one of the three or more audio input channels, or a characteristic of one or more sound waves recorded within the one or more audio input channels, or a characteristic of one or more sound sources which emitted one or more sound waves recorded within the one or more audio input channels.
US10347247B2
Modulating packetized audio signals in a voice activated data packet based computer network environment is provided. A system can receive audio signals detected by a microphone of a device. The system can parse the audio signal to identify trigger keyword and request, and generate a first action data structure. The system can identify a content item object based on the trigger keyword, and generate an output signal comprising a first portion corresponding to the first action data structure and a second portion corresponding to the content item object. The system can apply a modulation to the first or second portion of the output signal, and transmit the modulated output signal to the device.
US10347246B2
A method and an apparatus for executing a user function using voice recognition. The method includes displaying a user function execution screen; confirming a function to be executed according to voice input; displaying a voice command corresponding to the confirmed function on the user function execution screen; recognizing a voice input by a user, while a voice recognition execution request is continuously received; and executing the function associated with the input voice command, when the recognized voice input is at least one of the displayed voice command.
US10347245B2
Either or both of voice speaker identification or utterance classification such as by age, gender, accent, mood, and prosody characterize speech utterances in a system that performs automatic speech recognition (ASR) and natural language processing (NLP). The characterization conditions NLP, either through application to interpretation hypotheses or to specific grammar rules. The characterization also conditions language models of ASR. Conditioning may comprise enablement and may comprise reweighting of hypotheses.
US10347243B2
Disclosed herein is a method for analyzing an utterance meaning. The method includes collecting a voice signal of an utterer; converting the collected voice signal into information in a text form, extracting a keyword of the text information from the text information, and deriving at least one utterance topic on the basis of the extracted keywords of the text information.
US10347236B1
A system and method for applying a set of road noise cancellation parameters to a road noise cancellation system in a vehicle traveling from a first road surface type to a second road surface type, the set being associated with a vehicle type, a tire type, a road surface type, or a vehicle location. The system and method collects and compares data with the set of road noise cancellation parameters in a database to identify when the vehicle has traveled from a first road surface type to a second road surface type and, upon identifying the vehicle has traveled from a first road surface type to a second road surface type, applies the adjusted set of road noise cancellation parameters in the database that optimize the road noise cancellation system for the second road surface type.
US10347232B2
Multi-sensor signal optimization is facilitated for speech communication. A sensor component including acoustic sensors can be configured to detect sound and generate, based on the sound, first sound information associated with a first sensor of the acoustic sensors and second sound information associated with a second sensor of the acoustic sensors. Further, an audio processing component can be configured to generate filtered sound information based on the first sound information, the second sound information, and a spatial filter associated with the acoustic sensors, determine noise levels for the first sound information, the second sound information, and the filtered sound information, and generate output sound information based on a selection of one of the noise levels or a weighted combination of the noise levels.
US10347226B2
A reversible guitar bridge that can be flipped over or reversed on the guitar body to allow the same guitar to play with the right hand or left hand. The guitar strings remain attached to the reversible guitar bridge and are moved to the opposite side of the bridge when it is reversed.
US10347215B2
A user manipulates a document using a desktop computer with a large screen. Upon deciding to sign the document, the user invokes a “Sign with Mobile” workflow that causes a two-dimensional barcode to be displayed. Using a signature acquisition application executing on his or her smartphone, the user scans the displayed barcode and creates an electronic signature by snapping a photograph of a conventional pen-and-paper signature or by detecting a handwritten signature drawn on a touch sensitive surface. The signature acquisition application sends the resulting electronic signature to the desktop computer, for example via an electronic signature server. The user is then able to apply the electronic signature to the document as desired.
US10347212B2
An information processing device including a display unit and an input unit is driven by a first step of inputting an input signal from the input unit, a second step of starting to move an image displayed on the display unit, a third step of lowering luminance of the image, a fourth step of checking whether the image reaches a position of predetermined coordinates, a fifth step of increasing the luminance of the image in the case where the image reaches the position of the predetermined coordinates, and a sixth step of stopping moving the image so as to perform eye-friendly display with the display unit.
US10347207B2
A scan driver includes a plurality of stages to receive one or more clock signals, each of the plurality of stages to supply a carry signal to a corresponding first output terminal and to supply a scan signal to a corresponding second output terminal, corresponding to a voltage of a corresponding first node, and each of the plurality of stages including a reset unit, the reset unit to initialize the first node, the first output terminal, and the second output terminal, corresponding to a gate start pulse supplied to a corresponding reset input terminal.
US10347191B2
A method of driving a display panel includes providing a first clock signal having a first frequency and a second clock signal having a second frequency different from the first frequency. The method also includes providing a data signal of an N-th frame image to the display panel using the first clock signal, and providing a data signal of an (N+1)-th frame image to the display panel using the second clock signal. N is a natural number.
US10347189B2
A display device includes a display panel having a curved side or a polygonal side, the display panel including a plurality of pixels in a display region, a gate driver including a plurality of normal stages connected to each other for outputting gate signals to the pixels via a plurality of gate lines, and a plurality of dummy stages between some of the normal stages, and a data driver providing data signals to the pixels via a plurality of data lines.
US10347188B2
A display device includes a plurality of pixels, wherein a first pixel of the plurality of pixels includes: a scan line extending in a first direction; a data line extending in a second direction intersecting the first direction; a switching thin film transistor (TFT) connected to the scan line and the data line; a driving TFT connected to the switching TFT and comprising a driving gate electrode; a storage capacitor comprising the driving gate electrode as a first electrode and a second electrode arranged above the first electrode and overlapping the first electrode; a horizontal driving voltage line extending from the second electrode in the first direction; and a vertical driving voltage line extending from the second electrode in the second direction, wherein the horizontal driving voltage line, the vertical driving voltage line, and the data line are arranged over a same layer.
US10347186B2
A display panel driving unit can include: a timing controller to supply a power on reset signal for starting a sensing operation for pixel compensation during a sensing period before displaying an image; a power management integrated circuit (PMIC) to supply a high level reference voltage reset signal to the timing controller, and generate a control signal; and a control circuit to receive the high level reference voltage reset signal and the PMIC, in response to the high level reference voltage reset signal transitioning from a high to low logic level and then from the low logic level back to the high logic level, shift the power on reset signal to transition from a high to low logic level and then from the low logic level back to high, to follow the high level reference voltage reset signal, and supply the power on reset signal to the timing controller.
US10347182B2
The invention provides an OLED display device, using a 3T1C driving structure, and having the source of the first TFT to the reference voltage to ensure the second TFT to operate in saturation region in normal display state through controlling the reference voltage, to ensure the grayscale continuity. By using a reference voltage metal layer to cover all sub-pixels to replace reference voltage routing to provide reference voltage to the source of the first TFT, the invention eliminates the impact of reference voltage routing on pixel aperture ration.
US10347181B2
The disclosure discloses a display panel, a display device, and a method for driving a pixel circuit, and the pixel circuit includes a data writing module, a light-emission control module, a driver control module, a threshold compensation module, an anode resetting module, a node initialization module, and an organic light-emitting diode. The threshold compensation module can compensate for drifting of threshold voltage of the driver transistor so that the pixel circuit can emit light and display while operating current of the driver transistor to drive the light-emitting element to emit light is only dependent upon a signal on the data line and voltage at a reference signal end, but independent of the threshold voltage and a first power source voltage end to thereby avoid the threshold voltage and an IR drop from affecting the current flowing through the organic light-emitting diode.
US10347173B2
An organic light emitting diode display and a method for driving the same are disclosed. The organic light emitting diode display includes a display panel including a plurality of pixels, a display panel driver configured to drive signal lines of the display panel, and a timing controller configured to divide one frame into a plurality of subframes, divide data of an input image at each bit, map the data of the input image to the plurality of subframes, control an operation of the display panel driver, and adjust data addressing speeds of the plurality of subframes for adjusting the emission times of the upper and lower display lines of the display panel differently.
US10347168B2
A high-resolution display includes a display substrate having an array of light-emitting display pixels disposed thereon for displaying an image comprising an array of image pixels. The total number of display pixels in the array of light-emitting display pixels is less than and evenly divides the total number of image pixels in the image in at least one dimension. An actuator physically moves a display substrate and light-emitting display pixels in one or two dimensions in a direction parallel to a surface of the display substrate. A controller controls the light-emitting operation of display pixels and controls physical location of the display pixels. In some embodiments, a controller controls an actuator to spatially interpolate the spatial location of display pixels at successive times and controls the light-emitting operation of display pixels to display a different subset of the image pixels at each successive time.
US10347165B2
An OLED panel may include a substrate including a first region and a second region disposed along a first direction. A plurality of first pixels are disposed in the first region on the substrate, the first pixels each having a first area, the first pixels each comprising a first unit pixel, a second unit pixel disposed along a second direction from the first unit pixel, and a transmission portion disposed along the first direction from the first unit pixel and the second unit pixel. A plurality of second pixels are disposed in the second region on the substrate, the second pixels each having a second area less than the first area, the second pixels each comprising a third unit pixel. The first unit pixel, the second unit pixel, and the third unit pixel may have substantially the same shape as each other.
US10347156B2
Various embodiments are described herein for an integrated female pelvic model that comprises a main body having a front opening with curved edges to define a pliable vulvar opening; and a first compartment having a front portion that is flexibly attached to the curved edges of the main body, an end portion that is disposed within the main body having a first side that is shaped to provide a cervix structure and a second side that is flexibly anchored to a first portion of the main body; and a first channel that extends within the first compartment from the front portion to the end portion of the first compartment, the first channel defining a continuous, flexible vagina ending at the cervix structure.
US10347152B2
A health and fitness management system that employs an algorithm to determine suggested recommended actions for a user to improve their health and fitness. The system obtains a user's weight from a scale. The user is never informed of their weight. Other data can be collected and included when calculating a health index number. Base line data, such as age, ideal age, initial weight, current weight, ideal weight, etc. can be considered in the algorithm. Examples include the user's environment, sleep habits, exercise routines, medical records, and the like. The health index number is used to determine recommended actions, which can include changes to environments, routines, activities, etc. Data collection, the algorithm, and other features of the system can be provided by an Application operating on a portable computing device. Features of the portable computing device can be employed to automatically acquire data for the algorithm.
US10347143B2
A collision avoidance method and system for a trailer aircraft of an aircraft formation relative to an intruder aircraft. The collision avoidance system is embedded in a trailer aircraft of an aircraft formation and it is intended to avoid a collision relative to at least one aircraft external to the aircraft formation, called intruder aircraft, the aircraft formation including a lead aircraft and the at least one trailer aircraft, the collision avoidance system being configured to bring the trailer aircraft to a safety point dependent on a safety zone, prior to the implementation of an avoidance maneuver, the safety zone corresponding to a zone located to the rear of the lead aircraft and with no wake turbulence generated by the lead aircraft.
US10347136B2
Apparatus and methods related to autonomous aerial communications are included. A computing device can detect data associated with relevant events, determine information related to the event that should be communicated and a target aerial vehicle for that information, identify one or more operational parameters of the target aerial vehicle, and, based on those operational parameters, select a language associated with the target aerial vehicle, and generate and transmit a message expressing that information in the selected language to the target aerial vehicle. In a further aspect, a computing device can detect data associated with relevant events, determine information related to the event that should be communicated and a target recipient for that information, identify one or more operational parameters of the target recipient, and, based on those operational parameters, select a language associated with those operational parameters, and generate and transmit a message expressing that information in the selected language to the target recipient.
US10347128B1
Methods and systems for vehicle-to-vehicle communication are disclosed. In some embodiments, the method includes: receiving, from a first vehicle via a network, a request for communicating with another vehicle; receiving, via the network, a first position signal from the first vehicle; determining a position of the first vehicle based on the first position signal; determining a target vehicle of the request, based on the request and the position of the first vehicle; transmitting, via the network, the request to the target vehicle; determining whether the target vehicle drives according to the request; and adding an amount of credit to an account associated with the target vehicle when it is determined that the target vehicle drives according to the request.
US10347122B2
In an anomaly detection apparatus mounted in a vehicle, a model storage stores a driving model which is set corresponding to a travel location of the vehicle traveling on a roadway and represents a normal driving state as the vehicle is traveling at the travel location. A data acquirer acquires driving performance data representing the driving state of the vehicle. A degree-of-anomaly calculator calculates a degree of anomaly in the driving state based on the driving model stored in the model storage and the driving performance data acquired by the data acquirer. A vehicle-mounted transmitter, if the degree of anomaly calculated by the degree-of-anomaly calculator exceeds an anomaly determination value for determining the presence of an anomaly in the driving state, transmits at least the degree of anomaly and the travel location corresponding to the degree of anomaly to a monitoring center located external to the vehicle and detects an anomaly in the road condition based on the degree of anomaly.
US10347119B2
A gimbal remote controller includes a press key, a sensor disposed below the press key for acquiring an operation state of the press key, and a controller electrically coupled to the sensor and configured to send a gimbal control signal in accordance with the operation state of the press key.
US10347118B2
A control device and method for controlling a plurality of targeted devices. The control device includes orientation and direction sensors for measuring orientation and direction of the control device relative to the environment, a device location tracking system for determining the location of the control device relative to at least one reference device, a database for storing location data of spatial targets for the target devices, a processor for determining if the control device is pointed at the spatial target based on the location data of the spatial target and the orientation, direction, and location of the control device, and an input mechanism for receiving control instructions for controlling the targeted device.
US10347114B2
A sensor system for sensing a moisture level of a working fluid includes a body housing a moisture indicator that changes color in the presence of moisture. The moisture indicator has a fixed position immersed in a path of fluid flow through the body. A light source is configured to transmit light through the moisture indicator to a color-sensing sensor of the sensor system. The sensor is separated from fluid flow through the system, and the system is configured to prevent external light from affecting the sensor. The moisture indicator is manually viewable where necessary. The sensor system also is configured to provide an electric signal corresponding to the color level of the moisture indicator, to generate an alarm signal with respect to a moisture level, to adjust for change in light intensity being sensed by the sensor, and to signify if the moisture indicator is damaged or has failed.
US10347111B1
A method for detecting an event occurring during operation of a vehicle includes receiving indications of a plurality of variables from an installed device communicatively coupled to the mobile device via an internal communication link. The method further includes analyzing the received indications of the plurality of variables to detect the event occurring during the operation of the vehicle. Still further, the method includes, upon detecting the event, initiating: (i) a first communication session between the mobile device and an entity outside of the vehicle, and (ii) a second communication session between the mobile device and the installed device, wherein the mobile device forwards content communicated via the first communication session to the installed device via the second communication session such that the installed device presents the content to the vehicle operator. In one aspect, air pressure wave sensor and accelerometer data may trigger automatic crash notifications to emergency responders.
US10347110B1
A patient support and reclining device having a built in alarm and including an arrangement of sensors, timer and switches extending between the device and a separate connected control module for notifying when the patient is no longer supported upon the chair or recliner or when the patient has been supported in a static position to too long a period of time, thus notifying the caregiver of the necessity of repositioning in order to prevent the occurrence of bedsores and the like. The recliner device includes slaved or independent repositionable drives incorporated into the seat and back supports. The repositionable drives are communicated with the control module in order to reconfigure the patient support device, such as timed intervals to correspond with patient repositioning, such as of particular value to immobile or mobility limited individuals.
US10347109B2
An automated human personnel fall arresting system including a holonomic base platform, a boom arm movably mounted to and depending from the base platform, at least a portion of the arm being movable in three degrees-of-freedom relative to the base platform, a tether supported by the arm, an operator harness coupled to the tether so as to be dependent from the arm, at least one sensor disposed on the arm and configured to sense movement of the portion of the arm in two degrees-of-freedom of the three degrees-of-freedom, and a controller mounted to the base platform and communicably coupled to the at least one sensor, the controller being configured to automatically control position of the base platform in two orthogonal translational directions and one rotation direction controlled independently from translation, relative to the operator harness, based on signals from the at least one sensor.
US10347097B2
A plug for detecting tampering of a container is configured to close an opening of the container. The plug includes an attachment device for attaching the plug to the opening of the container, a motion sensor for sensing rotation of the plug with respect to the container, a communication device for communicating with a server, a microcontroller unit and a memory unit. The microcontroller unit is configured to compare a sensed rotation of the plug to a service schedule stored in the memory and detect the tampering of the container based on the comparison.
US10347096B2
Systems and methods for marking and locating objects in crowded environments, and more particularly, systems and methods that include a remote configured to communicate with a beacon having audio and visual indicators, are shown and described. One system comprises a remote including a housing, a tool extending from the housing, a movable sleeve configured to cover the tool, a first control circuit, a selection button coupled to the control circuit, a first transceiver, and a beacon including a second transceiver configured to communicate with the first transceiver, a second control circuit, an indicator electrically coupled to the second control circuit, and a latch mechanism, the tool configured to interact with the latch mechanism to securely couple the beacon.
US10347093B2
A system includes a processor, an audio display, and a haptic peripheral including a haptic output device. The audio display includes a speaker and a headphone connector. The haptic output device is configured to receive a control signal from the processor and output a haptic effect to the haptic peripheral in response to the control signal from the processor. The processor is configured to vary the control signal for the haptic output device depending on an audio output accessory connectivity status of the audio display such that the haptic output device generates and applies a first haptic effect if the audio display is connected to an audio output accessory in order to output audio through the headphone connector and the haptic output device generates and applies a second haptic effect if the audio display is not connected to an audio output accessory in order to output audio through the speaker.
US10347088B2
Systems, methods, and devices for playing and managing a card game are described. The card game is known as “Pick Poker” and incorporates elements of traditional poker with that of paramutual wagering. A pool of common Community Cards are dealt, and players select their preferred starting hand from that pool of Community Cards. Subsequently, a pool of common Replacement Cards are dealt, and players complete a 5 card poker hand from the Replacement Cards. Each player's final poker hand consists of the cards they chose from the Community Cards in addition to cards selected from the Replacement Cards. Players with the best hand (as determined by the rules of the game) are awarded a at least some of the pot. In some versions, multiple players each having the best hand obtain equal shares of the pot.
US10347084B2
A method of gaming comprising: determining which of a plurality of gaming devices, each operable for independent play of one or more games, are eligible for an additional game; initiating an additional game; and determining in response to initiation of the additional game, which eligible gaming devices will participate in the initiated additional game, the determination including a random determination in respect of at least one of the eligible gaming devices to determine whether the respective eligible gaming device will participate in the additional game.
US10347081B2
The invention includes a system and method for conducting a focus group via networked gaming devices. A slot server or a third party server in communication with gaming devices provides access to players operating the gaming devices. A topic for the focus group's discussion is received from a marketer via a marketer terminal in communication with the slot server. The system identifies players currently operating gaming devices who also are suitable potential participants in the focus group based on a focus group pool definition received from the marketer. Those players that accept an invitation to participate, become participants. The topic is communicated to the participants and the participants comments are relayed back to a moderator who controls the focus group discussion via a moderator terminal (and a graphical user interface) also in communication with the slot server. The moderator (and/or the system) verifies that each of the participants is in fact participating in the focus group and compensation is provided to the participants via the gaming devices.
US10347078B2
An interleaved wagering system including an interactive controller constructed to communicate application telemetry associated with an interactive application provided by the interactive controller. The system also includes a wager controller constructed to communicate a wager result associated with a received wager request. The system also includes the application controller operatively connected to the interactive controller and the wager controller, and constructed to: receive application telemetry; upon receiving application telemetry, determine whether to trigger a supplementary mode based on a threshold value; and communicate a notification to provide a supplementary mode session. The interactive controller is further constructed to: provide the supplementary mode session upon receiving the supplementary mode notification; communicate results of the supplementary mode session. The application controller is further constructed to: receive the results of the supplementary mode session; and when the received results are successful, communicate a request for benefits.
US10347075B2
In various embodiments, the present disclosure relates generally to gaming systems and methods for providing an award based on triggering symbols and secondary symbols.
US10347071B2
A method is set forth for providing for the integration of gaming functions and system functions into a gaming device of the type having a video touch screen display. The method includes configuring a platform for the gaming device to have at least a first processor for real time processing of hardware tasks and game logic processes and a second processor for processing system logic and game and system information display processes. At least one first processor and second processor are arranged to control said display to display a gaming interface for viewing a wagering game for play by a player and the second processor is configured to display a systems interface into said gaming interface to display non-game system information from said system-based information signals. The systems logic processes are kept separate from said game logic processes. In various embodiments the method includes displaying a system interface when a player or employee inserts a card into a card reader. In some embodiments the gaming interface may be controlled to relinquish the display to the systems interface.
US10347068B2
A capacitance detection device includes a first electrode and a second electrode that at least partially face each other on opposite sides of a transfer path. An oscillator circuit forms an electric field between the first electrode and the second electrode. A detection circuit detects a change in capacitance between the first electrode and the second electrode. At least one of the oscillator circuit and the detection circuit is included in each of a first board and a second board. The first board is disposed such that a side surface of the first board faces the first electrode in an electric field direction, and the second board is disposed such that a side surface of the second board faces the second electrode in the electric field direction.
US10347063B1
A method includes, receiving a biometric identifier from a visitor to the property, determining an arrival time of the visitor based on receiving the biometric identifier, comparing the arrival time of the visitor to an expected arrival time of an expected visitor, based on comparing the arrival time of the visitor to an expected arrival time, transmitting the biometric identifier and data identifying the expected visitor, receiving, by the monitoring system and from the external server, (i) data indicating that the biometric identifier corresponds to the expected visitor and (ii) data indicating that an electronic device of the expected visitor is located at the property, and based on (i) the data indicating that the biometric identifier corresponds to the expected visitor and (ii) the data indicating that the electronic device of the expected visitor is located at the property, granting, by the monitoring system, the visitor access to the property.
US10347062B2
A multi-stage control system for inspection of a person includes at least one control device at a first location and at least a follow-up control device at a second location. The control device is configured to determine a follow-up control area of the person, store data defining the follow-up control area in a data set, generate a unique identification feature for the person based on a detected external feature of the person, and allocate the person to the data set. The follow-up control device comprises a display device for displaying a graphical representative of a person, and is configured to display a visually recognizable follow-up control area of the person for finding hidden objects in accordance with a data set allocated to the person. The follow-up control device can also be configured to generate the unique identification feature for the person based on a detected feature of the person.
US10347061B2
Merchandise security systems and methods are provided. In one example, a merchandise security system includes a plurality of electronic keys and a plurality of merchandise security devices located within a retail store. Each electronic key and each merchandise security device is configured to store one or more serial numbers. In addition, each electronic key is configured to be authorized for communication with one or more merchandise security devices within the retail store. An electronic key is configured to communicate with a merchandise security device for locking, unlocking, arming, and/or disarming the merchandise security device when the serial numbers match.
US10347060B2
An electronic card access system, for example, for managing access control of a venue or facility, and an access card for use with the card access system.
US10347052B2
Local color information in a 3D mesh is used to enhance fine geometric features such as those in embroidered clothes for 3D printing. In some implementations, vertex color information is used to detect edges and to enhance geometry. In one embodiment, a 3D model is projected into a 2D space to obtain a 2D image, so that pixels that lie on edges in the 2D image can be detected. Further, such edge information is propagated back to the 3D model to enhance the geometry of the 3D model. Other embodiments may be described and/or claimed.
US10347047B2
Example implementations may relate to methods and systems for detecting an event in a physical region within a physical space. Accordingly, a computing system may receive from a subscriber device an indication of a virtual region within a virtual representation of the physical space such that the virtual region corresponds to the physical region. The system may also receive from the subscriber a trigger condition associated with the virtual region, where the trigger condition corresponds to a particular physical change in the physical region. The system may also receive sensor data from sensors in the physical space and a portion of the sensor data may be associated with the physical region. Based on the sensor data, the system may detect an event in the physical region that satisfies the trigger condition and may responsively provide to the subscriber a notification that indicates that the trigger condition has been satisfied.
US10347044B2
A data reading system and method for constructing a three-dimensional model of an item passing through a read zone of the data reading system, the system including a plurality of light transmitters each operable to generate a light curtain across the read zone. As the items interrupt each of the light curtains, a height measurement of the item is obtained. Thereafter, the data reading system combines the height measurement data from each of the light curtains taken at various times, and generates a three-dimensional model of the item based on the obtained data.
US10347043B2
Improved techniques of managing graphical user interface (GUI) objects based on portal layers (or simply portals) are described. A portal refers to a logical reference to a GUI object specified by an application that enables an operating system to access and process the specified GUI object without affecting any of the rules/assumptions required by the application for the specified GUI object. Portals can assist with reducing computational resources required for rendering by assisting with reducing or eliminating the use of snapshots for rendering. One embodiment includes generating a layer tree; identifying a first sub-tree of the layer tree as portal content; establishing a portal as a reference to the portal content in a second sub-tree of the layer tree; generating a render tree based on the layer tree; rendering the render tree to create an image; and presenting the image on a display.
US10347037B2
An exemplary virtual reality provider system accesses surface data representative of a virtual three-dimensional (“3D”) space of a virtual scene. Based on the accessed surface data, the system orthographically projects a respective plurality of adjacent surface data slices of the virtual 3D space along each of three orthogonal axes in a coordinate system associated with the virtual 3D space. The system generates virtual reality data that represents the virtual 3D space and accounts for level of detail of the surfaces included within the virtual 3D space with respect to a particular vantage point. The system provides this virtual reality data to a media player device associated with the particular vantage point for processing by the media player device to present, to a user, virtual reality content that is based on the virtual 3D space and is tailored to the particular vantage point.
US10347036B2
A method, for arranging graphical design elements on a seat cover (1) of a vehicle seat, includes creating a three-dimensional seat cover model (2) having at least two three-dimensional cut models (2.1.1 to 2.1.7) connected by at least one seam (N) and visualizing the three-dimensional seat cover model (2) by a computer-assisted design tool (CAD) and positioning at least one graphical design element (G) on at least one cut part (1.1.1 to 1.1.7) with a drawing tool (ZW). An image of a graphic design element (G) is displayed on the three-dimensional seat cover model (2) in accordance with a UV transformation (UVT) of a corresponding cut model (2.1.1 to 2.1.7) with a texture display tool (TW) connected to the computer-assisted design tool (CAD).
US10347022B2
A method for graphically representing a subterranean space from the perspective of a point within the subterranean space, in some embodiments, comprises: obtaining data associated with the subterranean space, said data corresponding to a plurality of coordinates in a first coordinate system; associating the data for each of said plurality of coordinates with one or more corresponding coordinates in a second coordinate system; generating a different model of the subterranean space based on the data and said associations; and displaying the different model on a display, wherein the different model represents the subterranean space from the perspective of a point within the subterranean space.
US10347020B2
Embodiments of the invention are directed to methods and devices for displaying trends and variability in a physiological dataset. The method comprises obtaining the physiological dataset, applying a smoothing algorithm to the physiological dataset to obtain a trend of the physiological dataset, applying a variability algorithm to the physiological dataset to obtain the variability of the physiological dataset, outputting a graph of the trend of the physiological dataset, and outputting a graph of the variability of the physiological dataset.
US10347018B2
The various embodiments described herein include methods and devices for interactive data visualization. In one aspect, a method is performed at a device with a touch-sensitive surface and a display. The method includes (i) displaying a first chart, where the first chart concurrently displays a first set of categories in a first region and a second set of categories in a second region; and (ii) displaying a respective visual mark in the first chart corresponding to each respective pair of categories. The method further includes: (i) detecting a touch input that corresponds to a location on the display of the first chart; (ii) determining whether the location is in the first region, the second region, or neither; (iii) removing, via an animated transition, one or more visual marks based on the determination; and (iv) updating display of the first chart.
US10347016B2
A system includes a computing device that includes a memory configured to store instructions. The system also includes a processor to execute the instructions to perform operations that include receiving data representative of a portion of a font character. The portion of the font character being represented as one or more cubic curves. Operations also include determining one or more quadratic curves that approximately track the shape of the one or more cubic curves. In a geometric and recursive manner, determining the one or more quadratic curves includes using a predefined tolerance to compare the one or more quadratic curves to the one or more cubic curves. Operations also include preparing data to represent the one or more quadratic curves to represent the portion of the font character.
US10347014B2
A system and method for image reconstruction are provided. A first region of an object may be determined. The first region may correspond to a first voxel. A second region of the object may be determined. The second region may correspond to a second voxel. Scan data of the object may be acquired. A first regional image may be reconstructed based on the scan data. The reconstruction of the first regional image may include a forward projection on the first voxel and the second voxel and a back projection on the first voxel.
US10347012B2
An interactive palette interface includes a color picker for digital paint applications. A user can create, modify and select colors for creating digital artwork using the interactive palette interface. The interactive palette interface includes a mixing dish in which colors can be added, removed and rearranged to blend together to create gradients and gamuts. The mixing dish is a digital simulation of a physical palette on which an artist adds and mixes various colors of paint before applying the paint to the artwork. Color blobs, which are logical groups of pixels in the mixing dish, can be spatially rearranged and scaled by a user to create and explore different combinations of colors. The color, position and size of each blob influences the color of other pixels in the mixing dish. Edits to the mixing dish are non-destructive, and an infinite history of color combinations is preserved.
US10347010B2
Computer-implemented methods and apparatuses for anomaly detection in volumetric images are provided. A two-dimensional convolutional neural network (CNN) is used to encode slices within a volumetric image, such as a CT scan. The CNN may be trained using an output layer that is subsequently omitted during use of the CNN as an encoder. The CNN encoder output is applied to a recurrent neural network (RNN), such as a long short-term memory network. The RNN may output various indications of the presence, probability and/or location of anomalies within the volumetric image.
US10347008B2
A camera is oriented at a workspace by comparing a three-dimensional model of the workspace to an image. A user provides an initial estimation of camera location. A feature of the three-dimensional model is projected onto the image. The feature of the three-dimensional model is compared to a corresponding feature in the image. A position and orientation of the camera are calculated by comparing the feature of the three-dimensional model the corresponding feature in the image.
US10347006B2
A wheel alignment system includes a side-to-side reference including an active reference pod and a passive reference pod disposed on opposite sides of the vehicle. The active reference pod includes a reference image sensor fixedly attached to a reference target, for mounting on a first side of the vehicle such that the reference image sensor produces image data including a perspective representation of the passive reference pod disposed on a second/opposite side of the vehicle. In operation, alignment cameras on the opposite sides of the vehicle capture perspective representations of targets mounted to vehicle wheels and of targets of the active and passive reference pods. A computer processes the image data to compute an alignment measurement of the vehicle based on a spatial relationship between the active reference pod and the passive reference pod determined according to the image data produced by the reference image sensor.
US10347003B1
Systems and methods for locating and/or tracking objects in an environment are discussed. The system may include non-visible light emitters and a camera and server system including an image geometry module configured to determine the location of an identified object in the environment. Objects may be identified based on a predefined frequency and/or pattern of pulses.
US10346999B2
A system and method for measuring distances related to a target object depicted in an image and the construction and delivery of supplemental window materials for fenestration. A captured digital image is obtained containing a scene with a target object whose dimension is to be measured. The digital image may contain a target object dimension identified by one or more ancillary objects and a reference object in the same or different planes. Image processing is performed to find the reference object using known fiducial patterns printed on the reference object, metadata supplied by a user and/or by the detection of colored papers in the scene of the captured image. Adhering objects aid in keeping the reference object applied to an item in the scene such as a wall, while contrast objects aid the image processing to locate the reference object in low contrast reference object/background situations. Once located and measured, the reference object is used to calculate a pixel scale factor used to measure the target object dimensions. Target object dimensions are provided to an automated or semi-automated measurement process, design and manufacturing system such that customized parts are provided to end users.
US10346993B2
A method and system for image processing are provided. An MR image including a plurality of slice images may be obtained. The plurality of slice images including a myocardium of a left ventricle. A reference image for each slice image of the plurality of slice images may be determined. An endocardial boundary of the myocardium for the each slice image of the plurality of slice images may be determined. The each slice image of the plurality of slice images may be registered according to a corresponding reference image. An epicardial boundary of the myocardium in the each slice image of the plurality of slice images may be determined according to the endocardial boundary of the myocardium in the registered each slice image of the plurality of slice images.
US10346983B2
The invention is a method for estimating the amount of analyte in a fluid sample, and in particular in a bodily fluid. The sample is mixed with a reagent able to form a color indicator in the presence of the analyte. The sample is then illuminated by a light beam produced by a light source; an image sensor forms an image of the beam transmitted by the sample, from which image a concentration of the analyte in the fluid is estimated. The method is intended to be implemented in compact analyzing systems. One targeted application is the determination of the glucose concentration in blood.
US10346981B2
The various embodiments herein disclose a system and method for non-invasive computational biopsy analysis. The system is configured to provide diagnosis of human tissue health by non-invasive medical imaging procedures. Further, the system provides a graphical interface providing visual representation of anomalous tissue. The system for computational biopsy includes a Data synthesis module, Signal Filtering module, Classifier module, Analysis Module, Display module, Metric Summary model, Identification of Unknown Tissue module, tissue definition database, and Anomaly Detector module implemented on a computing device.
US10346980B2
Presented are techniques for processing medical images. The techniques can include accessing a stored medical image and electronically representing a plurality of overlapping tiles that cover the medical image, each overlapping tile including a non-overlapping inner portion and an overlapping marginal portion. The techniques can also include in parallel, and individually for each of a plurality of the overlapping tiles: applying a segmentation process to identify objects in the at least one medical image, identifying inner object data representing at least one inner object that is contained within an inner portion of at least one tile, and identifying marginal object data representing at least one marginal object that overlaps a marginal portion of at least one tile. The techniques can also include merging at least some of the marginal object data to produce merged data, and outputting object data including the inner object data and the merged data.
US10346979B2
A system for computer-aided triage can include a router, a remote computing system, and a client application. A method for computer-aided triage can include determining a parameter associated with a data packet, determining a treatment option based on the parameter, and transmitting information to a device associated with a second point of care.
US10346973B2
A method of providing a prognosis in a cancer patient comprising analyzing a tumor image to calculate a metric of immune infiltration for the tumor, and a method of analyzing a tumor image.
US10346962B2
A method of examining a cellular structure includes the steps of providing an inspecting device, a neural network and a target cellular structure that includes a plurality of target cells extending therethrough and further includes a target face exposing an arrangement of the target cells; inspecting the arrangement of cells on the face of the target cellular structure using the inspecting device; representing the arrangement of cells with numerically defined target cell parameters; inputting the target cell parameters into the neural network; and generating an output from the neural network based on the target cell parameters, the output being indicative of a strength of the target cellular structure.
US10346961B2
A method of enhancing an image includes constructing an input histogram corresponding to an input image received at a focal plane array, the input histogram representing a pixel intensity distribution corresponding to the input image and performing an analytical operation on the input histogram to produce a modified cumulative distribution, wherein the analytical operation is a function of camera temperature. The input image is transformed using the modified cumulative distribution to produce an enhanced output image corresponding to the input image, wherein at least a portion of the input image is enhanced in the output image. In addition to or in lieu of the non-linear operation, the binning edges of the input histogram can be adjusted based on at least one of camera temperature and sensitivity state to construct an adjusted cumulative distribution.
US10346953B2
A computer-implemented flash artifact removal apparatus is described. The apparatus has at least a memory storing a flash image depicting a person's face captured in the presence of a flash illumination, and a non-flash image depicting the person's face captured without flash illumination. A plurality of pixels in the flash image comprise artifacts as a result of flash light reflecting from one or more eyes of the person. The apparatus has a flash artifact removal component which corrects the flash image by replacing at least some of the plurality of pixels in the flash image with pixels computed from at least the non-flash image. The flash artifact removal component is configured to detect edges of features of the one or more eyes in the non-flash image and to detect the plurality of pixels to be replaced in the flash image on the basis of the detected edges.
US10346948B2
A technique for graphics processing, which completes graphics processing of an image loaded from a system memory by performing a series of slice processing steps. A device for graphics processing has an internal vector dynamic memory for buffering slices of pixel data loaded from the system memory. The internal vector dynamic memory has a first buffer for buffering non-overlapped pixel data, which is not reused in a next slice processing step and a second buffer for buffering overlapped pixel data, which is reused in the next slice processing step.
US10346942B2
A computer implemented method for event detection in real-time graphic applications, comprising: receiving an indication for a method selected from a group of methods for identifying an action-requiring element comprised in a frame rendered during a game; activating the method for recognizing whether the element is comprised in a frame to be rendered; and responsive to the element being comprised in the frame, taking the action, wherein the method is a least resource-consuming or least intrusive method of the group of methods applicable for the frame.
US10346931B2
An approach for influencing demand response event performance through a variable incentive signal. Automated demand response programs may achieve an energy demand reduction by signaling participating consumers to curtail energy usage for a certain period of time, referred to as an “event”. Customers may be free to “opt-out” and withdraw their participation from DR events, on a per-event basis. When a participant opts out, the quantity of energy savings of the event may be reduced. Participating customers may be sent a message offering an incentive to tolerate an ongoing DR event. As the event progresses, the DR operator may dynamically monitor and modulate the rate of opt-outs. The present approach may be different in that instead of modulating the number of participants that are included in the event, it may modulate an incentive signal to keep already-included participants from opting out.
US10346929B2
Methods, apparatuses and systems directed to detecting objects in user-uploaded multimedia such as photos and videos, determining the location at which the media was captured, inferring a set of users of a social network who were physically present at the time and place of capture, and pushing remarketing content to the set of inferred users for the detected objects, or alternatively, the competitors of the detected concepts.
US10346925B2
Proposed is a OEM-linked, telematics-based system and platform (1) for score-driven operations associated with motor vehicles (41, . . . , 45) or transportation means of passengers or goods and based on a dynamic, telematics-based data aggregation, and method thereof. The telematics-based system (1) comprises vehicle embedded telematics devices (OEM line fitted) (411, . . . , 415) associated with the plurality of motor vehicles (41, . . . , 45), wherein the vehicle embedded telematics devices (OEM line fitted) (411, . . . , 415) comprise a wireless connection (42101-42108) to a central, expert-system based circuit (11). The telematics devices (411, . . . , 415) are connected via interfaces (421, . . . , 425) to the sensors and/or measuring devices (401, . . . , 405) and/or an on-board diagnostic system (431, . . . , 435) and/or an in-car interactive device (441, . . . , 445), wherein the telematics devices (411, . . . , 415) capture usage-based (31) and/or user-based (32) and/or operational (33) telematics data (3) of the motor vehicle (41, . . . , 45) and/or user (321, 322, 323). In response to an emitted shadow request (109) of a central, expert-system based circuit (10) of system (1) associated with a second risk-transfer system, individualized risk-transfer profiles (114) based upon the dynamically generated variable scoring parameters (1011, . . . , 1013) are transmitted from a first risk-transfer systems (11) to the corresponding motor vehicle (41, . . . , 45) and issued by means of a dashboard (461, . . . , 465) of the motor vehicle (41, . . . , 45) for selection by the driver of the motor vehicles (41, . . . , 45). In return of issuing an individualized risk-transfer profile (114) over said dashboard (461, . . . , 465), payment-transfer parameters are transmitted from the first risk-transfer system (11) to the OEM of the OEM-linked, telematics-based system and platform (1).
US10346924B1
A property analyzer device may include (1) a receiver configured to receive property identification information from a mobile device, the received property identification information including a picture of the property and/or a property location; (2) a retriever configured to retrieve property-related information from multiple property sources (such as public record databases, websites, or an internal company database) based upon the received property identification information; (3) a processor configured to consolidate the retrieved property-related information into a consolidated property-related image of the property; and (4) a transmitter configured to transmit the consolidated property-related image to the mobile device for review by a user. The mobile device may display the consolidated images that may include several images of the property taken over time (such as showing repairs or improvements made), home insurance quotes, home loan quotes, and other types of property-related or community information that home buyers or owners would find useful.
US10346918B2
A derived order gives a participant simultaneous access to liquidity across multiple books, destinations, or marketplaces. The derived order can be placed and anchored in one trading venue and simultaneously replicated in another trading venue. A participant can place the derived order in the lit book as an anchor book and replicate the order in the hybrid book and/or the dark book, or alternatively, the participant can place the derived order in the hybrid book as an anchor book and replicate the order in the dark book. A trading engine can be configured to replicate an order in different books and guarantee that each order is only executed once. When an order is replicated, the trading engine can check the stored record to see where the order was placed, and then adjust or cancel an order in one book when it is being fulfilled in a different book.
US10346914B2
Embodiments of the present invention may provide users with an automated electronic trade matching system for orders to buy and sell fixed income instruments. Embodiments of the present invention may incentivize subscribers to enter unbiased, executable orders in their maximum desired size while discouraging and taming predatory behavior. Embodiments of the present invention may prevent individual subscriber order information from being revealed to other parties unless needed to facilitate the execution and clearance/settlement of subscriber orders or required by law or regulation.
US10346911B2
The technology relates to allowing investors to electronically invest in private market investments, such as a private equity fund. System and methods described herein relate to an electronic private marketplace where investors can participate in a rule-based system for establishing and investing in private market assets, such as a private equity fund, during predetermined time periods for various buying and selling activities in the private marketplace.
US10346903B2
An illustrative method for identifying information associated with a ring of individuals performing improper financial activities may include combining a list of user identifiers with one or more attributes tables corresponding to the financial transactions. A computer device may analyze a first list of identifiers in relation to an attribute table, where the identifiers may be associated with one or more suspected improper financial activities and the attribute table may include attributes of one or more financial transactions performed over a specified duration. The computer device may then link the first list of identifiers with one or more attributes included in the attribute table to determine a second list of identifiers and the process may be repeated until a stopping condition has been reached. After the stopping condition has been met, the computer device may communicate a report to a user.
US10346902B2
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for account authentication. A method includes receiving a user request to include financial data describing a financial account in an interface, the financial account being associated with a financial institution. The method further includes redirecting the user to a first webpage associated with the financial institution, where the user inputs into the first webpage login credentials for accessing the financial account. The method further includes, in response to the user inputting into the first webpage login credentials for accessing the financial account, receiving, from the financial institution, an access token other than the login credentials for accessing the financial account. The method further includes storing the access token for use in accessing and aggregating financial data describing the financial account.
US10346895B2
In one embodiments, initiation of purchase transaction in response to a reply to a recommendation comprises a method. The method comprises, at a computer system having one or more processors and non-transitory memory storing one or more programs for execution by the one or more processors, detecting a recommendation associated with a first user, the recommendation associated with a product or service. The method further comprises detecting a response from a second user to the recommendation, determining whether the response from the second user comprises a purchase decision, and in accordance with a determination that the response from the second user comprises the purchase decision, initiating a transaction for the second user to purchase the product or service associated with the recommendation. Other embodiments are described herein.
US10346891B2
A method and system is provided for notifying an addressee about a mail piece having an address. The system captures an image of the mail piece and determines a communication channel for the addressee using the address from the mail piece. The system provides the addressee with the image via the communication channel.
US10346886B2
Systems and methods for a hierarchical resale system for telecommunications services are described. In an embodiment, a computerized method for managing events in a hierarchical resale model for telecommunication products may include receiving, via an electronic interface, access information for accessing an event response system of a down-level provider; identifying, using a data processing device, an event requiring a response from the down-level provider; accessing, using a network interface, the event response system of the down-level provider; and generating, using the data processor, an event response for transmission by the event response system of the down-level provider.
US10346880B2
Social networking systems allow deal providers to provide social deals that require participation by users connected via the social networking system for activation. A social deal is activated for a user based on actions performed by other users connected to the user. The actions performed by a participant of the social deal include actions related to the social deal as well as actions related to objects associated with the social deal, for example, purchasing an item, associated, checking in to a location associated with the social deal, or recommending the social deal. The social networking system may suggest potential participants in the social deal for a user. The deal may be activated by performing actions of one or more type. A threshold number of actions of each type may be required for activating the deal.
US10346868B2
A gift exchange platform assigns gifts to individuals in a network of businesses. Each of the businesses offers a set of gifts available for assigning by other businesses or individuals. The gift assignment system receives the set of offered gifts and gift transaction data describing the gifts in a time interval. A fairness score for each business is calculated based on the comparison of the inbound and outbound scores of the business reflecting the value provided by the business and received by the business of gifts. A request is received from a business, individual or an automated gift system to assign a gift to an individual. A gift and a gift offering business are assigned to an individual based on the fairness score of the assigned business. The gift assignment further accounts for an expected value of an individual to the business on redemption of the gift by the individual.
US10346867B2
Provided is a process of identifying an offers engine configured to provide information about offers to users, the method including: receiving, at an offers engine, a request for an offers interface website from a mobile computing device; and in response to the request, transmitting to the mobile computing device a website configured to cause a browser of the mobile computing device to perform steps, including: detecting an offers intent in the transmitted website; retrieving from memory of the mobile computing device an identifier of a native application offers interface mapped to the offers intent; and in response to retrieving the identifier of the offers engine, launching the native application, the native application being stored in memory of the mobile computing device and configured to provide an offers interface to the offers engine.
US10346863B2
A system, computer program product, and method for activation-based marketing are presented. In one embodiment, the system includes one or more data storage devices configured to store demographic data, healthcare utilization data, and response data associated with a target individual. The system may include a server coupled to the one or more data storage devices. The server may be suitably programmed to determine a life stage associated with a target individual, determine an attitudinal segment associated with the target individual, and determine a response model associated with the target individual. The server may assign the target individual to at least one of a predetermined set of segmentation groups in response to the life stage, the attitudinal segment, and the response model associated with the individual. The system may generate a personalized communication modality tailored to the target individual in response to the segmentation group assigned to the target individual.