US10349570B2
Control device 80 of component mounter 11 performs control such that after a component supplied by reel unit 56 is picked up by nozzle 40 of mounting head 24 and before the component is mounted on board 12, the component is temporarily placed at a specified position of temporary placement surface 71. Also, control device 80, after performing control such that the component is temporarily placed at the specified position, determines whether the component has actually been temporarily placed at the specified position based on the pressure state at a hole provided at the specified position of temporary placement surface 71 to which negative pressure is being supplied, and performs processing according to the determination result. Because the determination of whether the component has actually been temporarily placed is based on the pressure state of the hole provided in temporary placement surface 71, the determination is performed rapidly compared to a case in which the presence of the component is checked by analyzing an image of temporary placement surface 71 captured from above.
US10349569B2
A component mounting device which mounts on a board electronic components including a fitting component to be attached by a mechanical fitting or engagement to a to-be-attached part formed in the board. The component mounting device includes a moving and mounting head which holds and takes out the fitting component by a holding unit from a component supply part to move and mount the fitting component on the to-be-attached part of the board, and a pressing head which presses the fitting component that is moved and mounted on the to-be-attached part by a pressing unit to attach the fitting component to the to-be-attached part.
US10349568B2
According to certain aspects, a circuit board panel includes a first module circuit board and a second module circuit board arranged to define a space that runs between a first portion of the periphery of the first module circuit board and a portion of the periphery of the second module circuit board; and a plurality of shield components each extending across the space and including a first conductive portion mounted along the first portion of the periphery of the first module circuit board, a second conductive portion mounted along the portion of the periphery of the second module circuit board, and a non-conductive portion extending between the first conductive portion and the second conductive portion, the first and second conductive portions of each of the plurality of shield components configured to provide electromagnetic shielding for at least one electronic component mounted on the first and second module circuit boards, respectively.
US10349561B2
A data center cooling system includes a modular heat sink and a working fluid. The modular heat sink includes an evaporator configured to thermally contact a heat-generating electronic device to receive heat from the data center heat-generating electronic device; a condenser coupled to the evaporator and configured to transfer the heat from the heat-generating electronic device into a cooling fluid; and a plurality of transport tubes that fluidly couple the evaporator and the condenser, at least one of the plurality of transport tubes including an open end positioned in the evaporator and a closed end positioned in the condenser. The working fluid vaporizes in the evaporator based on receipt of the heat from the heat-generating electronic device, and circulates, in vapor phase, from the evaporator to the condenser in the transport member, and circulates, in liquid phase, from the condenser to the evaporator.
US10349556B2
A cooling device includes: a heat receiver configured to transfer heat from a heat generation body to a refrigerant, a heat radiator that is connected to the heat receiver via a heat radiation path, and a return path that connects the heat radiator and the heat receiver with each other, in which the refrigerant is to circulate in order of the heat receiver, the heat radiation path, the heat radiator, and the return path and cause a gas-liquid two-phase change and cool the heat generation body, and in which the heat receiver includes a heat receiving plate which is in contact with the heat generation body and is configured to absorb the heat, and a heat receiving cover which covers a surface of the heat receiving plate and defines a heat receiving space.
US10349553B2
A rack for an equipment cabinet includes a plurality of rack sections adapted for mounting on an equipment cabinet, each of the rack sections including a vertical panel, a lower horizontal panel extending from a lower edge of the vertical panel, and an upper horizontal panel extending from an upper edge of the vertical panel, the rail sections being vertically stacked.
US10349548B1
A casing includes a housing having two bent edges and an elastic piece, and a plate. The bent edges are respectively located at two first sides of the housing, and the elastic piece is located at one of two second sides of the housing. Two hook portions of the plate are respectively protruded from the plate and are respectively provided correspondingly to two opening portions of the bent edges. A second coupling portion of the plate is provided correspondingly to a first coupling portion of the elastic piece. When the hook portions respectively pass through the opening portions along a first direction, the bent edges are in contact with the plate, and enter along a second direction a space between the hook portions and the plate, the first coupling portion is in contact with the second coupling portion along a second direction and is coupled with the second coupling portion.
US10349545B2
A circuit unit (10) includes a circuit body (11) having a resin portion (12) covering a circuit, first terminals (15) projecting from one edge of the resin portion (12) and second terminals (16) projecting from another edge part of the resin portion (12). A fixing member (20) made of metal is configured to fix the circuit body (11) to a base member (BM) by being mounted on the base member (BM) while being held in contact with the resin portion (12). A cover (30) having receptacles (35, 36) is fit to mating connectors (50A, 50B) while covering the first and second terminals (15, 16). The cover (30) is configured to cover the circuit body (11) and the fixing member (20). The cover (30) is formed with an opening (33) for exposing the fixing member (20) to outside.
US10349537B1
An electrical unit includes a housing member, a cover configured to at least partially cover the housing member, a primary circuit board disposed in the housing, and one or more secondary circuit boards connected to the primary circuit board. A primary circuit board may include a plurality of connection sections. A secondary circuit board may be connected to a respective pair of connection sections of the plurality of connection sections, such as via a respective pair of interconnection headers. A secondary circuit board may include a connector that may extend into a corresponding connector portion of the cover. Each of the one or more secondary circuit boards may include at least one of circuitry and electrical components for a respective vehicle function of a plurality of vehicle functions.
US10349536B2
Disclosed is a wall-mounted device, which is mainly provided with a base and a cover plate, and the at least one module circuit board is provided in the cover plate. The power terminal of at least one module circuit board is electrically connected to an exterior live wire circuit of the base, so the interior live wire circuit is able to independently supply power to the module circuit board of the cover plate. As the result, the base is able to fit or replace with any cover plate provided with module circuit board, and connects to any electronic device or network to remotely control and operate.
US10349534B2
Disclosed herein is a display apparatus capable of implementing to be slim and lightweight. The display apparatus includes a display panel for displaying an image; a bottom chassis disposed in a rear of the display panel; and wherein the bottom chassis is formed with a panel including a plastic core and a planar material stacked on a side of the plastic core.
US10349531B2
Provided herein is a carrier-attached copper foil having desirable laser drillability through an ultrathin copper layer, preferred for fabrication of a high-density integrated circuit substrate. The carrier-attached copper foil includes an interlayer and an ultrathin copper layer that are provided in this order on one or both surfaces of a carrier. The surface roughness Sz and the surface roughness Sa on the interlayer side of the ultrathin copper layer satisfy Sz≤3.6 μm, and Sz/Sa≤14.00 as measured with a laser microscope in case of detaching the carrier from the carrier-attached copper foil according to JIS C 6471 after the carrier-attached copper foil is laminated to an insulating substrate from the ultrathin copper layer side under a pressure of 20 kgf/cm2 and heated at 220° C. for 2 hours. GMD, which is a 60-degree glossiness of the ultrathin copper layer surface on the interlayer side in MD direction, satisfies GMD≤150 in case of detaching the carrier from the carrier-attached copper foil according to JIS C 6471 after the carrier-attached copper foil is laminated using the same procedure.
US10349530B1
A system for protecting electronics includes a printed wiring assembly (PWA) having a surface with at least one electronic component. The system also includes a water resistant film configured to be used as a conformal coating on the PWA and further configured to be placed on the surface of the PWA and to shrink about the at least one electronic component.
US10349526B2
An integrated circuit with a micro inductor or with a micro transformer with a magnetic core. A process of forming an integrated circuit with a micro inductor with a magnetic core. A process of forming an integrated circuit with a micro transformer with a magnetic core.
US10349523B2
Provided are display devices. The display device comprises: a printed circuit board (PCB); an under-panel sheet which is disposed on the PCB and in which a groove recessed from a surface facing the PCB toward an opposite surface is defined; and a sensor which is disposed on the PCB and in the groove, wherein one or more openings are defined in the PCB in plan view, and the PCB comprises a first area and a second area divided by the openings interposed between the first area and the second area, wherein the first area is an area where the sensor is disposed, and the second area is an area where a portion of the under-panel sheet in which the groove is not defined is disposed.
US10349515B2
A camera system including an objective, an objective holder carrying the objective, an image sensor and a printed circuit board. The printed circuit board and the image sensor are connected to one another in an electronically conductive manner, and the image sensor and the objective are arranged such that an image is n focus on the image sensor. The printed circuit board has a circuit layer made of an electrically insulating material and a printed circuit board substrate, wherein the printed circuit board substrate is manufactured from a material with a coefficient of thermal expansion aL which deviates by no more than 30% from the coefficient of thermal expansion of a material from which the objective holder is manufactured.
US10349506B2
A medical imaging apparatus includes an anode rotating type X-ray tube which generates X-rays, a high voltage generation unit implemented by circuitry which generates a high voltage to be applied to the X-ray tube, a power supply unit implemented by circuitry which supplies power to the high voltage generation unit, and a control unit implemented by circuitry which controls the high voltage generation unit to stop or start supply of a filament current to the X-ray tube and/or supply of a current to a stator coil for anode rotation in accordance with a predetermined rule.
US10349501B1
A system for locating an asset in an environment with a plurality of lighting fixtures forming a network of sensors within the environment for detecting assets in the environment. Each lighting fixture includes a transceiver for receiving from an external device identifier information associated with the asset to be tracked and for receiving an acknowledgement from the asset when the asset responds to a query message from the lighting fixture. The identifier information is communicated over the network from one lightning fixture to another until a last lighting fixture receives the acknowledgement from the asset. A first lighting fixture that first receives the identifier information from the external device to the last lighting fixture that received the acknowledgement from the asset are illuminated such that a path of light is formed from a location of the external device to the asset.
US10349497B2
A method of providing power for non-lighting related loads in which operate during daylight hours when a lighting dedicated switched mains network (220) is switched off is described. The method comprises charging a battery (240) at night from the mains network when the luminaire is switched on so that the energy/power stored in the battery can be used during the day. A luminaire (200) comprises a luminaire light engine (210) connected the mains network (220), an AC/DC down converter (230) also connected to the mains supply so that the battery (240) is charged during the hours of darkness. The battery (240) is connected to provide power to a DC non-lighting related load (250) which is operable both during daylight hours and hours of darkness.
US10349486B2
A method for generating an infrared (IR) beam for illuminating a scene to be imaged comprises providing at least two IR emitters, including a first IR emitter operable to emit a wide beam component of the IR beam, and a second IR emitter operable to emit a narrow beam component of the IR beam, wherein the wide beam component has a linear profile that has a lower standard deviation than a linear profile of the narrow beam component. The method also comprises selecting a desired linear profile for the IR beam, and selecting a power ratio of power directed to the first IR emitter and power directed to the second IR emitter that produces the IR beam with the desired linear profile when the narrow beam component and wide beam component are combined.
US10349480B2
A hybrid green-energy street light apparatus includes a bus cable, a load unit, a first storage unit, a second storage unit and a green-energy generator. The load unit, the first battery body and the green-energy generator connect the bus cable. The first storage unit includes a first controller and a first battery body having a first voltage. The first controller keeps a terminal voltage of the first battery body at a second voltage greater than the first voltage. The second storage unit includes a second battery body, a second controller and a first switch. The second battery body connects the bus cable through the first switch. When the terminal voltage of the first battery body drops to the second voltage, the second controller closes the first switch to couple the second battery body and the bus cable. The green-energy generator charges the first storage unit and the second storage unit.
US10349477B2
A double-capped LED lamp operates on an electronic ballast for a low-pressure discharge lamp. The lamp has a first lamp cap having at least one first lamp connection, a second lamp cap having at least one second lamp connection, and an LED driver unit, which is electrically coupled between the first lamp connection and the second lamp connection, for activating a plurality of LEDs on the basis of a lamp voltage supplied by the electronic ballast between the first lamp connection and the second lamp connection in a first operating state. The lamp comprises a switching element for the galvanic separation of the first lamp connection from the LED driver unit in a second operating state, and an activation device for switching at least from the second operating state into the first operating state according to the lamp voltage.
US10349476B2
A power and control assembly is disclosed. An LED driver is sized and adapted to fit within a single compartment of an electrical gang box, such as a two-gang box. An alternating current (AC) dimmer or other component is installed in an adjacent compartment. The AC dimmer supplies its output to the LED driver, which converts the AC power to an appropriate direct current (DC) power for LED lighting fixtures. The LED driver is typically recessed into the compartment, and is covered by a switch or another control element. In some cases, the switch may be a mechanical dummy selected for its aesthetic or fascial characteristics. In other cases, the switch or control element may be functional. With similar multiple-gang boxes, a number of drivers may be installed in the gang box and switches may allow both dimming and zone control.
US10349474B2
An LED lamp tube capable of rectifying and stabilizing voltages includes an LED component. Two ends of the LED lamp tube respectively include two conductive pin assemblies, a polarity conversion module, a suppressor, and a voltage buck-booster module. The polarity conversion module includes two voltage conversion devices connected to the conductive pin assemblies. A set of capacitors is electrically connected between each of the voltage conversion devices to operate a circuit in an electronic rectifier to compensate and stabilize an input voltage.
US10349471B2
Microwave irradiator 12 is attached to a furnace main body of a heating furnace 11 having microwave permeability. A running passage for passing a fiber member F which is the object to be heated is formed inside the heating furnace 11. A first tubular member 13 made of a first microwave heat-generating material absorbing microwave energy and generating heat is rotatably disposed around the running passage. A second tubular member made of a second microwave heat-generating material absorbing microwave energy and generating heat is disposed in the first tubular member 13. The fiber member F is heated and calcined while running the fiber member F containing carbon in the running passage of the second tubular member 14.
US10349469B2
An induction cooking appliance comprises a bottom metal tray containing a printed circuit board and electronic components mounted thereon, and also a pair of polymeric support elements configured to be fastened to the metal tray and interposed between the tray and the printed circuit board in order to define a predetermined distance between the tray and the printed circuit board. The polymeric support elements may have an integral intermediate polymeric frame which provides a predetermined relative position thereof.
US10349456B2
A video communication system includes a video transmission terminal and a video reception terminal. In the video transmission terminal, a first control unit causes the video transmission terminal to be disconnected from a first network by controlling a first communication session control unit. After the video transmission terminal is disconnected from the first network, the first control unit causes the video transmission terminal to start an operation as an access point by controlling the first communication session control unit and causes the first communication session control unit to create a second network. The first control unit causes the first video session control unit to establish a video session with the video reception terminal.
US10349455B2
Disclosed are a method for data communication between NAN devices, and a NAN device for performing data communication. The method for data communication between the NAN devices comprises the steps of: receiving a service discovery frame from a second NAN device by a first NAN device; transmitting a TIM element to a second NAN device by the first NAN device having received the service discovery frame and being triggered by a user action, wherein the TIM element includes information related to data buffered with respect to the second NAN device; performing, by the first NAN device, an authentication procedure and an association procedure with the second NAN device on the basis of a request of the second NAN device having received the TIM element; transmitting a falling frame from the second NAN device by the first NAN device; and transmitting, by the first NAN device, the data buffered with respect to the second NAN device, to the second NAN device in response to the falling frame.
US10349448B2
A method for transmitting and receiving a signal using steps of transmitting an uplink signal to a base station in a duration of an uplink pilot time slot (UpPTS) of a special subframe, and waiting for a guard time (GT) before receiving a downlink signal from the base station after the transmission of the uplink signal, and a terminal transmitting and receiving a signal by using the method.
US10349447B2
A method of a network node of a wireless communication system is disclosed. The method comprises configuring a first random access channel for transmission of random access messages from wireless communication devices having a first synchronization accuracy vis-à-vis the network node and a second random access channel for transmission of random access messages from wireless communication devices having a second synchronization accuracy vis-à-vis the network node, wherein the second synchronization accuracy is lower than the first synchronization accuracy. The method also comprises transmitting configuration information of at least the second random access channel configurations to one of the wireless communication devices. Corresponding method for a wireless communication device is also disclosed along with a computer program product, a network node, a wireless communication device and arrangements there for.
US10349437B2
A method for sending and detecting downlink control information, a sending end and a receiving end are described, the method for detecting the downlink control information may include: a User Equipment (UE)-specific search space of an enhance Physical Downlink Control Channel (ePDCCH) bearing downlink control information is determined according to a preset interval; wherein the preset interval is determined according to a number of candidate positions of one component carrier at a corresponding aggregation level in a corresponding resource set, or the preset interval is determined according to the number of the candidate positions of one component carrier at the corresponding aggregation level in the corresponding resource set, and a number of scheduled component carriers, or the preset interval is determined according to the number of the candidate positions of one component carrier at the corresponding aggregation level in the corresponding resource set, and a number of configured component carriers; and the downlink control information on a physical resource corresponding to the UE-specific search space is detected. Through the disclosure, a problem of detecting the ePDCCH can be solved.
US10349436B2
The present disclosure proposes a method for transmitting a buffer status report informing of the data to be transmit in uplink. The method for transmitting buffer status report of a terminal in a wireless communication system includes checking, when allocating uplink resource for new data transmission, whether first buffer status report triggered but not cancelled exists, generating, when the first buffer status report exists, uplink data including the buffer status report, checking whether second buffer status report triggered but not cancelled exist except for the buffers status report included in the uplink data, and determining whether to cancel the second buffer status report depending on whether the first buffer status report is a regular buffer status report or periodic buffer status report. With the proposed method, the terminal is capable of transmitting the padding BSR without extra cancellation operation, resulting in reduction terminal's operation complexity.
US10349433B2
The present invention relates to a wireless communication system. More specifically, the present invention relates to a method and a device for receiving a MAC CE for contention-based PUSCH in a wireless communication system, the method comprising: configuring a CB grant and a CB-RNTI associated with the CB grant; transmitting a MAC PDU including an identifier of the UE and CB grant occupancy information using the CB grant; receiving a CB MAC CE including the CB grant occupancy information indicated by a PDCCH addressed to the CB-RNTI in response to the MAC PDU transmission; and transmitting next uplink data using the CB grant during time duration indicated by the CB grant occupancy information if the identifier of the UE is included in the CB MAC CE.
US10349432B2
Methods, systems, and devices for wireless communication are described for SPS for low-latency communications. A wireless communication device may establish a block of semi-persistent scheduling (SPS) resources in each of a plurality of transmission time intervals (TTIs) for transmission of priority traffic, and determine that a level of priority traffic to transmit during a first TTI of the plurality of TTIs is below a priority traffic threshold. The wireless communication device may transmit a per-TTI release signal to indicate that the block of SPS resources in the first TTI is released from being reserved for priority traffic.
US10349429B1
A system and method for frequency redirection in a communication system. In one embodiment, an apparatus accesses a communication system using first system information associated with a first frequency providing a first radio measurement. The apparatus receives an instruction to evaluate at least one frequency, and performs a second radio measurement over a second frequency without reading second system information associated with the second frequency. The apparatus accesses the communication system using the second system information associated with the second frequency when the second radio measurement exceeds a threshold, and performs a third radio measurement over a third frequency when the second radio measurement is less than or equal to the threshold and without reading third system information associated with the third frequency.
US10349422B2
In one embodiment, a server of a first wireless communication network receives a wireless communication originated by a terminal of the first wireless communication network, the wireless communication containing a current geographic location of the terminal as determined by the terminal. The server may then determine acceptable communication parameters for the terminal to communicate on the first wireless communication network, e.g., based on preventing transmission by the terminal that might interfere with operation of one or more unintended receivers. The server then generates an instruction message for the terminal based on the acceptable communication parameters, and transmits the instruction message toward the terminal to cause the terminal to only continue transmitting according to acceptable communication parameters.
US10349413B2
A plurality of different OFDM tone blocks for a wireless local area network (WLAN) communication channel are assigned to a plurality of devices. An OFDMA data unit is generated, the OFDMA unit including a preamble portion and a data portion, the preamble portion having at least i) a first legacy portion that corresponds to at least a first OFDM tone block, ii) a second legacy portion that corresponds to a second OFDM tone block, iii) a first non-legacy portion that corresponds to the first OFDM tone block, iv) a second non-legacy portion that corresponds to the second OFDM tone block, and v) a third non-legacy portion that corresponds to a third OFDM tone block. The first OFDM tone block and the second OFDM tone block are separated in frequency by at least the third OFDM tone block.
US10349405B2
Logic may coordinate communications of different types of wireless communications devices such as high power and low power wireless communications devices. Logic may coordinate communications by assigning time slots to a low power station (LP-STA) in a management frame such as a beacon transmitted by an access point (AP) associated with the LP-STA. Logic of the high power stations (HP-STAs) may receive the beacon and shepard logic of the HP-STA may defer transmissions by the HP-STA throughout the duration(s) indicated in the beacon from the AP. Logic of the LP-STA may comprise carrier sense multiple access with collision avoidance logic to determine when to transmit a communication. Shepard logic of an HP-STA may detect the communication from the LP-STA and defer transmission of communication during a time duration for the communication by the LP-STA.
US10349404B2
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may monitor for discovery reference signal (DRS) transmissions, physical downlink shared channel (PDSCH) transmissions, or combinations thereof within a DRS transmission window. The UE may attempt to decode DRS or PDSCH transmissions for a subframe based on detection of DRS transmissions, prioritization of DRS transmissions relative to PDSCH transmissions, locations of subframes within a radio frame, overlapping of the DRS transmission window with a paging opportunity, or any combination thereof. In some cases, one or more radio link monitoring (RLM) parameters may be adjusted based on decoding of PDSCH or DRS transmissions.
US10349391B2
Embodiments of the present application provide a physical downlink data channel transmission method, a base station, and user equipment. The physical downlink data channel transmission method provided in the embodiments of the present application includes: mapping a physical downlink data channel to a time-frequency resource in at least one timeslot, where a time-frequency resource in each timeslot includes at least one enhanced physical resource block pair, and the enhanced physical resource block pair includes two consecutive physical resource blocks in a frequency domain in a same timeslot; and sending the physical downlink data channel to UE. In the embodiments of the present application, a transmission time interval of the physical downlink data channel can be reduced.
US10349385B2
Certain aspects generally relate to methods and apparatus for subframe configuration for wireless networks. For example, certain aspects provide methods and apparatus for dynamically and/or reliably indicating at least one of a downlink or uplink subframe configuration. One method includes broadcasting an information block message including a first subframe configuration indicating at least one of which subframes of a set of subframes are for uplink transmissions or which subframes of the set of subframes are for downlink transmissions, determining a second subframe configuration suitable for handling communications with one or more user equipment (UEs), and signaling an indication of the second subframe configuration to the one or more UEs. Other methods includes receiving such a broadcast information block message, receiving signaling indicating a second subframe configuration suitable for handling communications with a base station, and communicating with the base station in accordance with the second subframe configuration.
US10349384B2
In one embodiment a method including obtaining metrics regarding a WiFi network and a RAN having overlapping coverage ranges, based at least partly on the metrics, allocating a first adjusted spectrum allocation to a first network, and a second adjusted spectrum allocation to a second network, the first adjusted spectrum allocation decreased from a first current spectrum allocation, and the second adjusted spectrum allocation increased from a second current spectrum allocation, and causing enforcement of the first adjusted spectrum allocation and the second adjusted spectrum allocation, wherein the obtaining, allocating and causing are performed a plurality of times, and wherein in at least one of the plurality of times the first network is the WiFi network and the second network is the RAN, and in at least one other of the plurality of times the first network is the RAN and the second network is the WiFi network.
US10349378B2
A generating module generates a signal including a set pattern that includes a specific pattern by varying a physical quantity. A sensing module including a sensor transmits to a server, pattern detection information generated in response to the sensor detecting the specific pattern and sensor identification information identifying the sensor that has detected the specific pattern. The server stores association information associating the sensor identification information received from the sensing module that has transmitted the pattern detection information with installation target information communicated from the generating module that has generated the specific pattern.
US10349368B2
A method at a first device for synchronising a first clock of the first device to a second clock of a second device, includes receiving a first message comprising an identifier from a third device; generating a first timestamp in dependence on the time at which the first message is received at the first device according to the first clock; receiving a second message from the second device comprising the identifier and a second timestamp, the second timestamp having been generated in dependence on the time at which the second device received the first message from the third device according to the second clock; and adjusting the first clock in dependence on a time difference between a time indicated by the first timestamp and a time indicated by the second timestamp.
US10349363B2
Systems and techniques for configuring a wireless base station. A wireless base station enters a configuration mode including less than full cellular functionality, receives neighboring cell information at least one neighbor cell in the vicinity of the wireless base station using communications requiring less than full cellular functionality by the wireless base station, and entering an operational mode including full cellular functionality, using a configuration based at least in part on the neighboring cell information.
US10349360B2
Provided are a method for transmitting a device-to-device (D2D) discovery signal by a terminal in a wireless communication system and the terminal using the method. The method comprises: receiving power information (discMaxTxPower) for transmitting a D2D discovery signal; and determining transmission power for transmitting the D2D discovery signal on the basis of the power information (discMaxTxPower).
US10349358B2
A method is provided for determining transmit power of an uplink control channel of a user equipment to which two cells having different uplink (UL)-downlink (DL) configurations are assigned. A larger value between N1, the number of downlink subframes corresponding to a subframe n of a first cell having a first UL-DL configuration, and N2, the number of downlink subframes corresponding to a subframe n of a second cell having a second UL-DL configuration is chosen. A parameter value is determined based on the chosen value.
US10349357B2
Embodiments of the present invention provide a method and an apparatus for controlling transmit power of user equipment. The method includes: when total uplink transmit power of user equipment UE exceeds maximum allowed transmit power, calculating a first gain factor according to the maximum allowed transmit power; performing quantization processing on the first gain factor according to a gain factor of a first physical channel, to obtain a second gain factor, where the first physical channel includes a DPCCH2; reducing a gain factor of a second physical channel to the second gain factor, to reduce transmit power of the second physical channel, so that the total uplink transmit power of the UE does not exceed the maximum allowed transmit power, where the second physical channel includes an HS-DPCCH. This reduces a calculation error and improves control accuracy of transmit power.
US10349353B2
An automatic uploading method, comprising the steps of: receiving a wake-up signal by a low-power-consumption wireless transmission module of a portable information capturing device; actuating a high-power-consumption wireless transmission module of the portable information capturing device according to the wake-up signal; creating a connection between the high-power-consumption wireless transmission module and a first relay station after the high-power-consumption wireless transmission module has been actuated; shutting down the low-power-consumption wireless transmission module after the connection has been created; and transmitting, via the connection, an upload data of the portable information capturing device to a second relay station, wherein the second relay station is connected to the first relay station.
US10349352B2
The present invention relates to a method and a device for reducing the power of a device in a wireless communication system supporting direct device to device (D2D) communication. A method, for transmitting a signal of a device in a wireless communication system supporting direct D2D communication according to the present invention, comprises the steps of: entering sleep mode in direct D2D communication between a device and an opponent device; if data to be transmitted to the opponent device is generated, transmitting a paging signal for the opponent device to a base station connected to the device, thereby requesting transmission of the paging signal to the opponent device; and resuming the D2D communication with the opponent device that has received the paging signal through the base station.
US10349349B2
Methods of combining semi-persistent resource allocation and dynamic resource allocation are provided. Packets, such as VoIP packets, are transmitted on the uplink and downlink using respective semi-persistent resources. For each mobile device, awake periods and sleep periods are defined. The semi-persistent resources are aligned with the awake periods so that most of the time the mobile device can turn off its wireless access radio during the sleep periods. In addition, signalling to request, and to allocate, resources for additional packets are transmitted during the awake periods, and the resources allocated for the additional packets are within the awake windows.
US10349347B2
The present invention has been made in view of the aforementioned problem and aims to provide a technique for reducing consumption of transmission power of an MTC device. The present invention relates to a communication terminal including measurement means for measuring a measurement target, reception means for receiving a certain condition regarding transmission from an application server, and determination means for determining, when the resulting measurement value satisfies the condition, that the measurement value should not be transmitted to the application server.
US10349342B2
A method may include detecting multiple system-information block (SIB) blocks and associated content. The associated content may be stored. The method may further include detecting multiple change flags associated with the multiple SIB blocks, each of the multiple change flags associated with one of the multiple SIB blocks. In response to detecting a change flag having a first change flag value, content of the SIB block associated with the first change flag may be reused. The first change flag value may represent an absence of a change to the content of the SIB block associated with the first change flag. In response to detecting the change flag having a second change flag value, the SIB block associated with the second change flag may be detected and the associated content stored. The second change flag value may represent a change to the content of the associated SIB blocks.
US10349333B2
A method of utilizing a list of predictive paths by a map-server. The method includes receiving the list of predictive paths, storing the list of predictive paths in a memory, receiving, from a first network element, a request for a location of a user device, the request related to transmitting a packet to the user device, and transmitting, to the first network element, a plurality of user locations based on the list of predictive paths, the plurality of user locations identifying where a second user device will transmit the packet when the packet is received by the second user device.
US10349331B2
A packet processing method adapted to a software-defined network is provided. The packet processing method includes the following steps: receiving an upstream packet transmitted to a remote network from a user equipment; removing a tunnel header of the upstream packet, and transmitting the upstream packet to the remote network; receiving a downstream packet transmitted to the user equipment from the remote network; selecting one of a plurality of routing paths coupled to the user equipment to transmit the downstream packet; and adding a tunnel header corresponding to the selected routing path to the downstream packet, and transmitting the downstream packet to the user equipment through the selected routing path.
US10349318B2
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on 5G communication technology and IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A handover method of a terminal in a mobile communication system according to the present disclosure includes transmitting UE capability information including a random access-free handover indicator to a first base station, receiving a handover command message from the first base station, and transmitting, when the handover command message includes uplink resource information, a handover complete message to a second base station based on the uplink resource information.
US10349312B2
A method for a handover between distributed access points is disclosed, including receiving, by a central AP, an Ethernet frame; adding, by the central AP, a sequence number to the frame according to an address of a wireless terminal; sending, by the central AP to an AP 1, the frame to which the sequence number is added, and storing the frame to which the sequence number is added in a historical frame set of the wireless terminal; and sending, by the central AP, a frame in the historical frame set of the wireless terminal to an AP 2 when the wireless terminal is handed over from the AP 1 to the AP 2. If the wireless terminal moves fast, the central AP can send the frame in the historical frame set to the wireless terminal using the AP 2, so that a downlink packet loss is reduced.
US10349306B2
A method of reducing congestion in a mobile telecommunications system, the system comprising a plurality of mobile terminals, one or more relay nodes and a base station, the mobile terminals, relay nodes and base station being configured to communicate via a wireless interface. The method comprises determining first path information indicating one or more paths for transmitting data from the plurality of mobile terminals to the base station, wherein a path comprises a series of one or more edges, the series of edges being from one or more mobile terminals to the base station, directly or via one or more relay nodes; estimating, based on the first path information, a congestion likelihood for a first relay node to cause congestion for data transmission in the system; and if the estimated congestion likelihood for the first relay node is above a first threshold, determining second path information so as to reduce the congestion likelihood for the first relay node.
US10349304B2
Techniques that provide for intelligent routing of mobile device traffic using custom protocols or protocols that are otherwise unsuitable for optimization by a mobile accelerator system are discussed herein. Some embodiments may include a point-of-presence (POP) configured to manage a dynamic listing defining a listing of content server associated with traffic that is not suitable for being optimized. Upon receiving traffic from the content server, the POP may be configured to access the dynamic filter, and route data transfers between the mobile device and the content server to bypass the mobile accelerator system when indicated by the dynamic filter. The POP may be further configured to update the dynamic filter, such as by adding or removing content servers based on parsing associated traffic for optimization suitability and/or protocol use.
US10349303B2
There is provided a method and system for optimizing delivery of data to a mobile device over a network. According to one embodiment, the invention includes a communication stack, such as a TCP/IP stack, which includes an application protocol interface (API) between an application layer and a transport layer. According to this embodiment, the method includes receiving delivery optimization information; determining the priority of the data using the delivery optimization information; providing the priority of the data to a physical layer in the communication stack; and delivering the data to the mobile device based on the priority.
US10349302B2
Systems, methods, and instrumentalities are disclosed to perform rate adaptation in a wireless transmit/receive unit (WTRU). The WTRU may receive an encoded data stream, which may be encoded according to a Dynamic Adaptive HTTP Streaming (DASH) standard. The WTRU may request and/or receive the data stream from a content server. The WTRU may monitor and/or receive a cross-layer parameter, such as a physical layer parameter, a RRC layer parameter, and/or a MAC layer parameter (e.g., a CQI, a PRB allocation, a MRM, or the like). The WTRU may perform rate adaption based on the cross-layer parameter. For example, the WTRU may set the CE bit of an Explicit Congestion Notification (ECN) field based on the cross-layer parameter. The WTRU may determine to request the data stream encoded at a different rate based on the cross-layer parameter, the CE bit, and/or a prediction based on the cross-layer parameter.
US10349301B2
A method performed by a first network node operating in a wireless communication network for enabling events triggered by a wireless device served by the first network node to be reported in the wireless communications network is provided. The first network node determines that an event has been triggered by the wireless device. Then, the first network node context information associated with the wireless device from a database node that is shared externally by the first network node with one or more network nodes in the wireless communications network, which context information indicates that events triggered in the first network node by the wireless device is to be reported in the wireless communications network. After the obtaining, the first network node determines that events triggered by the wireless device is to be reported in the wireless communications network based on the obtained context information.
US10349297B2
The techniques described herein involve analysis of communication data included in trace file(s) of device(s) involved in a communication. These trace file(s) may each include data associated with multiple layers of a communication protocol stack of a respective device or data associated with a single such layer. The techniques may further involve one or more of determination of performance metrics associated with data at a specific layer of a specific device, correlation of the data between layers of a device, or correlation of data across multiple device(s) involved in the communication. The performance metrics or correlated data may then be analyzed based on thresholds or models to determine whether the performance metrics or correlated data exhibits a degraded quality of user experience. Also or instead, graphic or textual representations of the performance metrics or correlated data may be generated.
US10349296B2
Provided are a method for reporting a state of a relay operation performed by a terminal in a radio communication system and a terminal using the method. The method evaluates an event related to a state of a relay operation of the terminal and, when the event is satisfied, transmits a report for the state of the relay operation.
US10349293B2
A method, an apparatus, and a computer program product for wireless communication are provided. An eNB determines a CCA parameter for use by a UE in performing a CCA procedure for UL transmission and transmits an indication of the CCA parameter to the UE. The UE receives an indication of the CCA parameter for UL transmission from the eNB and performs the CCA procedure for UL transmission using the indicated CCA parameter. The UE may transmit to the eNB prior to receiving the indication of the CCA parameter. The eNB may use the report in determining the CCA parameter for use by the UE.
US10349290B2
The present invention relates to wireless networks and more specifically to systems and methods for selecting and implementing communication parameters used in a wireless network to optimize communication between access points and client devices while accounting for effects of adjacent networks. In one embodiment, the present invention includes a Wi-Fi coordinator device that receives packet information from devices within wireless range of the Wi-Fi coordinator. The Wi-Fi coordinator sends the packet information to a cloud intelligence engine which then time shifts the packet information and combines the packet information with other packet information. Using this integrated packet information, the cloud intelligence devices determines the access point settings to improve the operation of the network.
US10349285B1
Wireless devices may be enabled to operate at lower frequencies and higher frequencies such as 30, 40, 70 GHz gigahertz all the way up to 300 GHz or more. Short range communication may be enabled between devices. Cellular communication is enabled to operate in private unlicensed spectrum. Vehicles may take actions or present data based on the communication between vehicles. Autonomous self-driving vehicles which form a self-driving unit may send commands around how to drive in unison such that a car in front braking would cause the car behind it to also brake. These cars may use millimeter wave length communication to signal quickly. Information may be broadcast via WiFi or cellular to other devices on observations including road conditions or traffic. A first vehicle can receive a stream over a local wireless network from a second vehicle where the second vehicle has received the data from a cellular network.
US10349281B2
It is provided a method, comprising monitoring if a request is received, wherein the request requests to replace a stored first address of a charging system by a second address, the first address is different from the second address, and the charging system is assumed to control a primary account of a subscriber; informing that the request might be malicious if the request is received.
US10349277B1
Embodiments of intelligent facility devices and associated methods and systems are described. In one embodiment a method includes receiving a request for access to a network from a user interface device. The method may also include determining an authorized transceiver power level for communicating with the user interface device in response to the request. Additionally, the method may include dynamically setting a transceiver power in response to the determination. The method may also include communicating with the user interface device at the authorized transceiver power level.
US10349274B2
Aspects of the subject matter described herein relate to a simplified login for mobile devices. In aspects, on a first logon, a mobile device asks a user to enter credentials and a PIN. The credentials and PIN are sent to a server which validates user credentials. If the user credentials are valid, the server encrypts data that includes at least the user credentials and the PIN and sends the encrypted data to the mobile device. In subsequent logons, the user may logon using only the PIN. During login, the mobile device sends the PIN in conjunction with the encrypted data. The server can then decrypt the data and compare the received PIN with the decrypted PIN. If the PINs are equal, the server may grant access to a resource according to the credentials.
US10349268B1
A method and system for preparing a portable communication device for onboarding to a service network. The system includes a provisioning server, a device management server, and a factory computer. The factory computer is configured to call the provisioning server with a message that includes at least one unique identifier of the portable communication device and a certificate signing request. The provisioning server is configured to store the at least one unique identifier, register, using the at least one unique identifier, the portable communication device with the device management server, and transmit, in response to the message from the factory computer, a signed certificate and an endpoint address to the factory computer.
US10349261B2
Disclosed herein is a networked media station providing a variety of features including a wireless network interface, a wired network interface, a peripheral interface, and a multimedia interface. The wireless network interface(s) allows the device to communicate to serve as a wireless base station or repeater and/or a bridge between a wireless and a wired network. The peripheral interface allows the device to communicate with a variety of peripherals, and, in conjunction with the network interface(s), allows sharing of a peripheral among multiple networked computers. The multimedia interface allows the device to be used with entertainment devices for streaming of multimedia information from a network connected computer to the entertainment device. Control of various aspects of the device is preferably controlled from a network connected computer.
US10349259B2
Apparatuses, systems, and methods broadcast a device state in a wireless communication network. A wireless audio output device is configured to be paired with a second wireless device via a first piconet connection, wherein the second wireless device comprises a source of audio data to be output by the wireless audio output device. The wireless audio output device includes a processor configured to detect a change in the state of the wireless audio output device and set a transmission parameter of a broadcast transmission based at least in part on the detected change in the state and a transceiver configured to broadcast an advertising message to the second wireless device including information describing the wireless audio output device via the broadcast transmission.
US10349258B2
Identification of network nodes (110a-c) of a first Radio Access Technology, “RAT”, and of a wireless communication network (100), which network nodes (110a-c) are at least potentially neighboring each other. Multiple information sets associated with multiple communication devices (120a-c), respectively, are obtained (204a-b; 401). Each communication device (120a-c) supports both the first RAT and another, second RAT. Each information set, thus associated with a communication device (120a), identifies a network node (110a) of the first RAT, and one or more network nodes (111a) of the second RAT that have been identified by the communication device (120a) when the communication device (120a) was associated with a communicative connection to said identified network node (110a) of the first RAT. The network nodes (110a-b) of the first RAT that are at least potentially neighboring each other are then identified (205; 402) based on the obtained multiple information sets.
US10349255B2
A communication method and device are described. The communication device can be a multi-subscriber identity module (SIM) communication device configured to communicate using a first SIM and a second SIM. In the communication method, a Multimedia Broadcast Multicast Service (MBMS) communication can be established using the first SIM. Further, whether the MBMS communication is prioritized over a second communication being initiated using the second SIM can be determined. The MBMS communication and the second communication can be managed based on the determination. The communication device can include a service priority determination processor that can determine whether the MBMS communication is prioritized over the second communication.
US10349252B2
A computing system that includes wearable computing components may be provided that creates an interactive game for at least two players. Finite state machines may be provided with a range of states that correspond to an array of possible states of a player of the game. Each player is assigned a client device, which preferably may be embedded in wearable computing components. The client device uses software to execute a first instance of a finite state machine. The client deceives are connected in a network with server devices. The state machines transition states based upon player interaction with other players and objects. When the state machines transition states, the players are notified and their respective states within the game also change.
US10349248B2
The invention relates to a method at a network node in a communications network configured to receive messages from at least one MTC device manager intended for an MTC device, as well as the network node. The invention further relates to a network node and a method at the network node to receive messages from at least one MTC device intended for a one or more MTC device managers. In a first aspect of the present invention, a method is provided at a network node in a communications network configured to receive messages from at least one MTC device manager intended for an MTC device. The method comprises merging the received messages into at least one MTC device message, and sending the at least one MTC device message to the MTC device.
US10349241B2
A system for multiple network usage tracking, the system having a policy management platform having one or more processors able to receive and to calculate account usage data associated with an account profile, the policy management platform arranged externally from a network of at least one wireless carrier.
US10349239B2
System and method for generating notifications when a person is in a driving state, in a non-driving state, and optionally a destination arrival notification so that interested parties, such as family members, friends and/or co-workers, can make informed and proactive decisions to not call or text the person while driving is described. With push notifications, interested parties can thus make informed decisions and purposely delay making a phone call or texting a driver until after they have arrived at their destination and are no longer driving. As a result, drivers are not needlessly distracted, significantly improving road safety.
US10349236B2
According to one aspect, embodiments of the invention provide a system for providing user specific content, the system comprising a WIFI access node configured to be coupled to an external network and to receive a hardware address of at least one local mobile device attempting to connect to the external network via the WIFI access node, a content management system coupled to the WIFI access node, and a public channel coupled to the WIFI access node, wherein the content management system is configured to provide content related to a user of the at least one local mobile device to the public channel in response to the WIFI access node receiving the hardware address of the at least one local mobile device, and wherein the public channel is configured to display the content related to the user.
US10349231B2
There is provided a communication control system that receives monitoring information from a plurality of wireless terminals, the monitoring information indicating reception powers at each of the plurality of wireless terminals in a case that packets transmitted from other of the plurality of wireless terminals are received at each of the plurality of wireless terminals; and determines a representative wireless terminal from the plurality of wireless terminals based on the collected monitoring information.
US10349227B2
Various systems and methods for a personal safety system are described herein. A personal safety system includes an alert detection module to receive, at a device, input indicating an alert event; and a communication module to: transmit information regarding the alert event to a cloud service; and broadcast wireless network information of a wireless environment around the device, obtained by the device, to a plurality of devices in the wireless environment.
US10349223B1
The present disclosure is directed toward systems and methods for generating and sending a request in response to a single user interaction. For example, in response to detecting that a single user interaction moves past a first threshold relative to a transportation request graphical user interface, the systems and methods described herein provides an estimate associated with the destination option. Then, in response to detecting that the same single user interaction with the transportation request graphical user interface moves past a second threshold relative to the graphical user interface, the systems and method generate and send a transportation request to be matched to a provider.
US10349218B2
Systems and methods for an in-vehicle base station are described. In one embodiment, a method is disclosed, comprising: broadcasting, using the first access radio, the cellular access network at a first power; transmitting the location of the mobile base station to the cellular network; detecting, at the processor, a transition of the mobile base station from a stationary state to a moving state; reducing, at the first access radio, a transmit power of the cellular access network while in the moving state for disabling the cellular access network outside the vehicle; and increasing, at the first access radio, the transmit power of the mobile base station when exiting the moving state.
US10349213B2
At an antenna array of a first communication device, a wireless signal transmitted by a second communication device is received. The first communication device calculates a plurality of oversampled matched filter values corresponding to the wireless signal, which correspond to i) different values of a signal delay corresponding to the wireless signal, and ii) different values of a phase corresponding to the wireless signal. The first communication device determines a local maximum of the plurality of oversampled matched filter values across different values of the signal delay and different values of the phase, where the local maximum corresponds to a component of the wireless signal that is first to arrive at the antenna array. The first communication device calculates an angle of arrival of the wireless signal at the antenna array using a value of the phase corresponding to the local maximum of the plurality of matched filter values.
US10349210B2
An event processing system for distributing geospatial computations with geo-fences is disclosed. The system can partition and distribute geo-fences efficiently for parallel computation, and can track a potentially unlimited number of moving objects. A computing device determines a minimum bounding rectangle (MBR) covering a geographic area indexed by a geo-grid, and partitions the MBR and a set of geo-fences to a plurality of processing nodes. The computing device receives input events of a stream comprising locations within the geographic area. The device distributes the events to partitions on processing nodes, based at least on the events' locations. The device can determine a partition identifier corresponding to a respective location in constant time. The computing device then combines partition results to obtain a single geospatial computation result.
US10349207B2
Various systems and methods for a mobile geo-fence system are described herein. A system for managing mobile geo-fences includes a tracking module to track a mobile geo-fence, the mobile geo-fence corresponding to a mobile device; a detection module to detect an intersection of the mobile geo-fence with a second geo-fence; and a data transmission module to provide data to the mobile device based on a data sharing policy.
US10349206B2
Concepts and technologies are disclosed herein for geofence profile management. A processor can execute a geofence profile management service. The processor can receive geofence profile data from an administrator device. The processor can create, based upon the geofence profile data, a geofence profile. The geofence profile can include a geofence profile title, a geofence profile description, and a geofence profile option. The processor can provide the geofence profile to a user device. The processor can determine that the user device accepts the geofence profile, and the processor can activate the geofence profile in response to the user device accepting the geofence profile.
US10349199B2
An acoustic array system includes a sound field controller and an acoustic transducer array. The sound field controller provides first and second processed signals. The first processed signal is associated with a first acoustic radiation pattern and the second processed signal is associated with a second acoustic radiation pattern. The transducer array receives the first and second processed signals from the sound field controller and produces first and second driver signals for each of the transducers. The first driver signals are based upon the first processed signal and the second driver signals are based upon the second processed signal. The transducer array combines the first and second driver signals for each of the transducers to produce a plurality of combined driver signals, one for each of the transducers, and provides the combined driver signals to the transducers.
US10349195B1
A non-linear excursion estimations system for estimating non-linear excursion of a loudspeaker may include a loudspeaker having a force transducer, and a controller programmed to limit excursion of the loudspeaker by modeling at least one constrained nonlinearity curve based on an asymptote outside of a safe operating area (SOA) nonlinearly curve of the loudspeaker.
US10349190B2
A hearing device includes: a processing unit configured to compensate for hearing loss of a user of the hearing device; and a memory unit, wherein the memory unit is configured to store model data comprising model information data indicative of available models for the hearing device, the model information data comprising first model information; wherein the processing unit is configured to: verify the model data, and reject the model data if verification of the model data fails.
US10349186B2
An MEMS microphone is disclosed, which comprises a substrate and a vibrating diaphragm and a back electrode which are located above the substrate, a plurality of comb tooth parts are formed in edge positions of the vibrating diaphragm, and the plurality of comb tooth parts are distributed in a peripheral direction of the vibrating diaphragm at intervals, wherein a position between every two adjacent comb tooth parts on the vibrating diaphragm is connected to the substrate via an insulating layer; and the comb tooth parts on the vibrating diaphragm are at least partially overlapped with the substrate, and a clearance exists between the comb tooth parts and the substrate and is configured as an airflow circulation channel. The microphone of the present invention has better impact resistance and can avoid intrusion of dust.
US10349178B2
Embodiments of the present invention relate to microphones diaphragms. In one embodiment, a sensor comprising a diaphragm comprised of a composition having a plurality of individual graphene sheets. An emitter formed in a manner to transmit lights towards a surface of the diaphragm. A collector that captures at least a portion of light that is reflected by the diaphragm. A converter is in communication with the detector that converts a signal that is generated by the sensor to a digital signal for processing. The graphene-based composition includes graphene sheets.
US10349170B2
Microelectromechanical systems (MEMS) sensors and related bias voltage techniques are described. Exemplary MEMS sensors, such as exemplary MEMS acoustic sensors or microphones described herein can employ one or more bias voltage generators and single-ended or differential amplifier arrangements. Various embodiments are described that can effectively increase the bias voltage available to the sensor element without resorting to high breakdown voltage semiconductor processes. In addition, control of the one or more bias voltage generators in various operating modes is described, based on consideration of a number of factors.
US10349165B2
A loudspeaker module, comprising a housing, the housing accommodates a loudspeaker unit, and the loudspeaker unit divides the overall module inner cavity into a front acoustic cavity and a rear acoustic cavity, the rear acoustic cavity is provided with sound absorbing particles therein, the rear acoustic cavity is further provided with therein a net-like isolating component for isolating the sound absorbing particles and the loudspeaker unit, the isolating component divides the whole rear acoustic cavity into a filled region and an non-filled region, the sound absorbing particles are located within the filled region, the sound absorbing particles are made of a non-foaming material, and the external diameter of the sound absorbing particles is ≥0.01 mm and less than the height of the filled region.
US10349158B2
A loudspeaker system and method of utilizing and/or installing thereof. As a non-limiting example, various aspects of this disclosure provide a loudspeaker system that may be conveniently integrated with a power distribution network of a premises.
US10349149B2
A standby power controller having data communication capability. The standby power controller includes a data communication means adapted to communicate with a processing and display device. The processing and display device includes a processor and a display which are adapted to provide a user interface for the standby power controller.
US10349148B2
A Computer-Aided Dispatch (CAD) system is specially configured to account for the physical condition of emergency personnel, which can affect their ability to effectively handle a particular incident. The CAD system tracks health, stress, and biometric status of each available emergency responder automatically and in real-time based on a wide range of collected information and to assess the suitability of available emergency responders to respond to a given emergency incident based upon such status information. Based on such status information, the CAD system can make intelligent recommendations to the emergency dispatcher by taking into account such things as the emergency responder's past experiences with a particular type of emergency incident, the current and cumulative status of the emergency responder, and projections as to the future condition of the emergency responder if dispatched to handle the emergency incident.
US10349146B2
A method of processing a web service in a Non-Real Time (NRT) service and the broadcast receiver are disclosed herein. A method of providing an NRT service in a broadcasting receiver may include receiving first signaling information, identifying whether a service type of an NRT service is a web service based upon the first signaling information, identifying a web page type and a web page version of the NRT service and browsing the NRT service. The method may further include connecting a service signaling channel, parsing the received first signaling information, determining whether the NRT service is supported in the broadcasting receiver and consuming the web contents of the NRT service. The NRT service may include at least one of a fixed NRT service and a mobile NRT service. The first signaling information may be a data casting description table (DDT) if the NRT service is the fixed NRT service. The first signaling information may be a service map table (SMT) if the NRT service is the mobile NRT service. The DDT may include a first field identifying the NRT service and a second field identifying a type of the NRT service. The type of the web service may include at least one of a web document of text HTML and a web document of CE-HTML. The third field and the fourth field may be valid if the type of the received service is the web service based upon the second field.
US10349137B2
The present invention relates to a device and a method for recommending content and a sound source. The present invention, especially in a multimedia device such as a TV which can be used by a plurality of users, can generate channel groups in accordance with channel properties, can recommend appropriate content for each channel group by analyzing users' viewing history type for each channel group, and can acquire user's intent on the basis of user's use history of a sound source, lyrics and music information of the sound source, and the like, thereby providing, on the basis of the user's intent, sound source recommendation information and various reasons for sound source recommendation with respect to the sound source recommendation information.
US10349133B2
A network system includes a receiving apparatus for receiving contents, and a recording and reproducing apparatus for recording and reproducing the contents received by the receiving apparatus, the receiving apparatus and the recording and reproducing apparatus being interconnected via a network. The receiving apparatus includes a viewing age limit compliance information acquisition section, and a determination section. The recording and reproducing apparatus includes a storage section, and an address information delivery section.
US10349127B2
Novel systems and methods are described for creating, compressing, and distributing video or image content graded for a plurality of displays with different dynamic ranges. In implementations, the created content is “continuous dynamic range” (CDR) content—a novel representation of pixel-luminance as a function of display dynamic range. The creation of the CDR content includes grading a source content for a minimum dynamic range and a maximum dynamic range, and defining a luminance of each pixel of an image or video frame of the source content as a continuous function between the minimum and the maximum dynamic ranges. In additional implementations, a novel graphical user interface for creating and editing the CDR content is described.
US10349124B2
A method of presenting interactive content at a client device is disclosed. The client device records, in real-time, an audio stream of a piece of multimedia content broadcast by a content display device and sends an audio fingerprint of the piece of the multimedia content to a server. The server then determines, based on the audio fingerprint, an identifier of the piece of multimedia content, retrieves, based on the identifier of the piece of multimedia content, interactive content associated with the piece of multimedia content, and returns the interactive content associated with the piece of multimedia content to the client device. After receiving, from the server, the interactive content associated with the piece of multimedia content, the client device renders the interactive content to the user of the client device.
US10349122B2
An audio video display device executes a voice assistant that recognizes a spoken name associated with a hearing-impaired person and in response reduces the audio volume for the content being decoded, on the assumption that someone is speaking to the hearing-impaired person, and/or pauses the content being decoded, and/or determines the location of the source of the command and steers a microphone array to that location, and/or allows for independent volume/mute controls via an assistive listening device such as a neck loop to control the volume or mute the audio played on hearing aids independently of the volume of the display device.
US10349120B2
In some implementations, a computing device can transfer a playback queue between the computing device and a playback device. For example, the computing device can detect when the computing device is within a threshold distance of a playback device. The computing device can establish a connection to the playback device and receive state information describing the media playback state of the playback device. The computing device can determine the media playback state of the computing device. The computing device can present graphical user interfaces for initiating a transfer of a playback queue between the computing device and the playback device based on the playback state of the devices. The computing device can initiate a transfer of the playback queue in response to user input to one of the graphical user interfaces or automatically based on the context of the computing device.
US10349118B2
A transmission arrangement for wireless transmission of an MPEG2-TS (Transport Stream) compatible datastream is provided with a signal source for supplying the MPEG2-TS compatible datastream, and an arrangement for wirelessly transmitting the MPEG2-TS compatible datastream. The signal source includes an arrangement for receiving an MPEG2-TS compatible datastream, which datastream includes a plurality of video- and/or audio information signals, and is further provided with a selection arrangement which is adapted to (i) derive only one video- and/or audio information signal from the MPEG2-TS compatible datastream having the plurality of video- and/or audio information signals, (ii) generate an MPEG2-TS compatible datastream which includes this only one video- and/or audio information signal, and (iii) supply this datastream as MPEG2 TS compatible output datastream to an output of the signal source. The transmission arrangement is capable of transmitting a video- and/or audio information signal available in the form of an MPEG2-TS compatible datastream.
US10349114B2
Various arrangements for providing a multichannel viewing event are presented. A definition of the multichannel viewing event may be broadcast to multiple television receivers. A television receiver may, as part of an electronic programming guide, provide a single-selection option to activate the multichannel viewing event based on the broadcast definition. In response to receiving user input that selects the single-selection option, the definition of the multichannel viewing event is accessed. One or more tuners of the television receiver may be tuned based on the television channels defined in the definition of the multichannel viewing event. A video stream that includes live feeds of multiple television channels may then be output to a display device for simultaneous presentation.
US10349113B2
Electronic program guides in which program listings may be graphically presented and in which sponsors and celebrities of those programs may be identified are provided. The electronic programs guides may be passive television program guides, interactive television program guides, and/or on-line television program guides. Television show text information, logos and/or trademarks, celebrity images, affiliation indicators, and advertisements may be present in the program listings to enhance the electronic program guides.
US10349112B2
Methods and systems for multi-path video and network channels may comprise a communication device comprising a wideband tuner (WB) and a narrowband tuner (NB). A video channel and a network channel may be received in the WB when the device is operating in a first stage. A video channel and a network channel may be received in the WB and the network channel may also be received in the NB when the device is operating in a second stage. The network channel may be received in the NB when the device is operating in a third stage. The reception of the network channel from both the WB and NB may enable a continuous reception of the network channel in a transition between the first and third stages. The WB may be operable to receive a plurality of channels and the NB may be operable to receive a single channel.
US10349108B2
Techniques and mechanisms described herein facilitate the storage of digital media recordings. According to various embodiments, a system is provided comprising a processor, a storage device, Random Access Memory (RAM), an archive writer, and a recording writer. The archive writer is configured to retrieve a plurality of small multimedia segments (SMSs) in RAM and write the plurality of SMSs into an archive container file in RAM. The single archive container file may correspond to a singular multimedia file when complete. New SMSs retrieved from RAM are appended into the archive container file if the new SMSs also correspond to the singular multimedia file. The recording writer is configured to flush the archive container file to be stored as a digital media recording on the storage device once enough SMSs have been appended by the archive writer to the archive container file to complete the singular multimedia file.
US10349105B2
Particular embodiments use a fast channel change (FCC) process that stores an amount of content at a network device for channels that are available to a subscriber. The network device can join video streams for channels to receive content for all the channels. The network device then stores a portion of the content for all the channels in storage. When the set-top box requests a channel change, the set-top box sends a join request for the requested channel to the network device. Then, the network device sends the stored content for the requested channel to the set-top box. The stored content allows the channel change to be performed faster because the stored content is sent at wire speed and then once the join of the channel is processed, the content for the channel that is received from the regular video stream can then be sent per the channel requirements.
US10349097B2
A metadata editor processes the metadata track of a multimedia composition to synchronize the metadata track with a video track and identify any errors in the metadata track internally or relative to the video track. The metadata editor effectively divides the metadata track into segments, displays breaks on the video and metadata tracks to show the metadata segments relative to the video track, characterizes each segment as being either erroneous (e.g., warranting attention by the user) or consistent (e.g., not warranting attention by the user), and highlights erroneous metadata segments, e.g., by displaying erroneous metadata segments using a different color, pattern, or other visual indicator than consistent metadata segments. The metadata editor provides various mechanisms to allow the user to manipulate the metadata track in order to correct erroneous metadata segments.
US10349078B2
In a method for processing a video signal, according to the present invention, a first video decoder can extract motion information for inter prediction on a current half frame from a bitstream, a second video decoder can perform the inter prediction on the current half frame by using the extracted motion information, and the first video decoder can restore the inter-predicted current half frame. Accordingly, the coding time of a video sequence can be reduced.
US10349074B2
Apparatuses and methods configured to encode and decode multi-layer video are provided. A method of prediction-decoding a multi-layer video includes obtaining information indicating whether a decoded picture buffer (DPB) storing a first layer and a DPB storing a second layer operate identically, and operating the DPB storing the second layer based on the obtained information.
US10349073B2
A decoding device according to an embodiment includes: a reception memory for storing received image; a frame buffer for storing a reference image; a decoding unit for decoding the received image based on the reference image stored in the frame buffer; a reference image storage for storing the decoded image, decoded by the decoding unit, in the frame buffer as the reference image; and an output image selection unit for selecting the reference image stored in the frame buffer as an output image when the reception memory underflows and selecting the decoded image as the output image when the reception memory does not underflow.
US10349071B2
A motion vector searching apparatus includes: a memory that stores a set of instructions, and stores a first motion vector selected as a motion vector for each of blocks into which an input image is divided; and at least one processor configured to execute the set of instructions to: generate candidate vectors on a basis of a predetermined search area; calculate ratings of the generated candidate vectors on a basis of the first motion vector for each of adjacent blocks, the generated candidate vectors, the input image and the reference image, the adjacent blocks being the blocks that are included in the input image and located around an object block; and select as a second motion vector of the object block a candidate vector based on the ratings from among the candidate vectors.
US10349069B2
In aspects of the present disclosure, a software encoder augments a hardware encoder by implementing portions of a video encoding task that are not supported by the hardware encoder while the hardware encoder implements other portions of the encoding task. The use of a software encoder to augment a hardware encoder in this manner can extend the useful life of a hardware encoder, allow the system to adapt to changes in video coding standards, and in some cases improve performance of encoding implemented by hardware or software alone. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
US10349066B2
A signaling of the layer ID for packets of a multi-layered video signal is described. In particular, an efficient way of signaling this layer association is achieved, with maintaining the backward compatibility with codecs according to which a certain value of the base layer-ID field is restricted to be non-extendable such as base layer-ID value 0 in the base layer-ID field. Instead of circumventing this restriction specifically with respect to this non-extendable base layer-ID value, the layer-ID of portions of the multi-layer data stream is signaled in an extendable manner by sub-dividing the base layer-ID field into a first sub-field and a second sub-field: whenever the first sub-field of the base layer-ID field fulfills a predetermined criterion, an extension layer-ID field is provided, and if the first sub-field of the base layer-ID field does not fulfill the predetermined criterion, the extension layer-ID field is omitted.
US10349060B2
An example apparatus for encoding video frames includes a receiver to receive video frames and a heat map from a camera and expected object regions from a video database. The apparatus also includes a region of interest (ROI) map generator to detect a region of interest in a video frame based on the expected object regions. The ROI map generator can also detect a region of interest in the video frame based on the heat map. The ROI map generator can then generate an ROI map based on the detected regions of interest. The apparatus further includes a parameter adjuster to adjust an encoding parameter based on the ROI map. The apparatus also further includes a video encoder to encode the video frame using the adjusted encoding parameter.
US10349058B2
Disclosed is a method for predicting depth map coding distortion of a two-dimensional free viewpoint video, including: inputting sequences of texture maps and depth maps of two or more viewpoint stereoscopic videos; synthesizing a texture map of a first intermediate viewpoint of a current to-be-coded viewpoint and a first adjacent viewpoint, and synthesizing a texture map of a second intermediate viewpoint of the current to-be-coded viewpoint and a second adjacent viewpoint by using a view synthesis algorithm; recording a synthetic characteristic of each pixel according to the texture map and generating a distortion prediction weight; and calculating to obtain total distortion according to the synthetic characteristic and the distortion prediction weight.
US10349055B1
Techniques are described for encoding image frames of media content to be displayed within a three-dimensional projection space. Characteristics of the image frame when transformed to fit within the projection space can be determined and used to generate encoding parameters. The image frame can then be encoded using those encoding parameters, and therefore, improve the playback of the media content when it is displayed within the projection space.
US10349053B2
An image processing device and method that enable suppression of an increase in the amount of coding of a scaling list. The image processing device sets a coefficient located at the beginning of a quantization matrix by adding a replacement difference coefficient that is a difference between a replacement coefficient used to replace a coefficient located at the beginning of the quantization matrix and the coefficient located at the beginning of the quantization matrix to the coefficient located at the beginning of the quantization matrix; up-converts the set quantization matrix; and dequantizes quantized data using an up-converted quantization matrix in which a coefficient located at the beginning of the up-converted quantization matrix has been replaced with the replacement coefficient. The device and method can be applied to an image processing device.
US10349039B2
The present invention provides an object detecting system, adapted to a motion-control device, including at least one projecting unit, at least one image sensing unit and a processor. The projecting unit projects a plurality of sets of structured light corresponding to a first scanning resolution with a first scanning frequency toward a first direction. The image sensing unit senses the reflected structured light. The processor obtains a plurality of three-dimensional images corresponding to the first direction according to the sensed structured light, and determines whether there is at least one object that will move into a safe region of the motion-control device according to the three-dimensional images. When the processor detects the object, the processor adjusts the first scanning frequency and/or a scanning region of the projecting unit or the first scanning resolution.
US10349025B2
A projector includes an image projection section adapted to let a light pass through a projection lens to project a projection image on a screen, an end part extraction section adapted to detect end parts of the screen and the projection image, a lens shift adjustment mechanism adapted to move the projection lens, an operation receiving section adapted to receive an operation of moving the projection image, and a control section adapted to move the projection lens so that the projection image moves in a first direction in response to the operation, and the control section changes a moving speed at which the projection image moves in the first direction when an inter-end part distance between the end part of the screen and the end part of the projection image gets within a first range while the control section is moving the projection image in response to the operation.
US10349016B2
A color filter array for an image sensing device includes a plurality of pixels, for generating a plurality of pixel data of an image; and a control unit, for controlling the plurality of pixels; wherein each of the plurality of pixels is divided into a plurality of sub-pixels; wherein the pixel data outputted by each of the plurality of pixels is generated based on at least one pixel value of the plurality of sub-pixels and the outputted pixel data is smaller than a saturated threshold; wherein at least one pixel in the plurality of pixels has a mixed color by having different sub-pixel colors in the plurality of sub-pixels.
US10348998B2
Provided are an image display apparatus and an operation method thereof. The image display apparatus includes a display, a memory, and a processor configured to execute instructions stored in the memory, the instructions, when executed by the processor, cause the image display apparatus to perform a first channel search comprising searching for one or more channels in which a signal exists as a background operation, while simultaneously performing at least one of initial setting operations of the image display apparatus, to perform a channel search condition setting operation among the initial setting operations to obtain a channel search condition, in response to the channel search condition being obtained through the channel search condition setting operation, to perform a second channel search comprising searching for at least one channel receivable by the image display apparatus from among the channels obtained by the first channel search, based on the obtained channel search condition, and display a result of the second channel search on the display.
US10348995B2
Presence or absence of a photon is accurately detected in an image sensor with a simple configuration. A pixel circuit generates as an input voltage a signal voltage by photoelectrically converting light when the light is incident, and generates as the input voltage a predetermined reset voltage when light is not incident. A capacitor retains the predetermined reset voltage as a retained voltage. An amplification comparator amplifies a voltage difference between the input voltage and the retained voltage. A detection comparator outputs a result of determining whether or not the amplified voltage difference is higher than a predetermined value, as a detection signal indicating detected presence or absence of light incidence.
US10348993B2
Autonomously operating analog to digital converters are formed into a two dimensional array. The array may incorporate digital signal processing functionality. Such an array is particularly well-suited for operation as a readout integrated circuit and in combination with a sensor array, forms a digital focal plane array.
US10348991B2
The present technique relates to a solid-state image pickup device capable of realizing low power consumption in a simpler configuration, a control method therefor, and an electronic apparatus. The solid-state image pickup device includes a pixel array section that has a plurality of pixels arranged two-dimensionally in a matrix shape, load transistors each of which configures a source follower circuit with an amplification transistor of each pixel of the pixel array section, and a control circuit that, in accordance with the amount of light received by one or more of the pixels, controls a supply voltage of each of the load transistors or controls a current flowing through each of the load transistors. The present technique can be applied to a solid-state image pickup device, for example.
US10348987B2
The present disclosure relates to a solid-state imaging device, an AD converter, and an electronic apparatus that improve a crosstalk characteristic. The AD converter includes a comparator that compares the pixel signal with the reference signal, a pixel signal side capacitor, and a reference signal side capacitor. The pixel signal side capacitor and the reference signal side capacitor are formed such that a first parasitic capacity and a second parasitic capacity are substantially the same. The present technology is applicable to a CMOS image sensor, for example.
US10348981B1
A user factor is analyzed to establish a context in which a user will view a video segment. A data source is selected from a metadata associated with an enhanced video segment. Replacement data is obtained from the data source, where the replacement data corresponds to the context. The replacement data is arranged in a layout, the layout being selected from the metadata according to a device feature of a device on which the user will view the video segment. A set of pixels that represents a first data in a data overlay in the frame is changed, the changed set of pixels representing the layout containing the replacement data. A modified video segment is transmitted, which includes a video content from the video segment and the changed set of pixels.
US10348980B2
An imaging device includes: an imaging sensor; an optical system that changes an image magnification of a object image according to a position of a focus lens; and a controller that causes the imaging sensor to generate the plurality of pieces of image data by causing the imaging sensor to pick up the object image while moving the focus lens to generate still image data based on the plurality of pieces of image data. When generating the still image data, the controller finds an entrance pupil position of the optical system based on the position of the focus lens for each of the plurality of pieces of image data, and calculates an image magnification change rate indicating a change of the image magnification of the object image based on the found entrance pupil position, magnifies each of the plurality of pieces of image data such that a size of the object image indicated by each of the plurality of pieces of image data becomes a predetermined size, based on the corresponding image magnification change rate, and synthesizes the plurality of pieces of magnified image data to generate the still image data.
US10348975B2
Motor vehicle light system including an acquisition device for acquiring the scene in front of the vehicle, including an image sensor, a first lighting device including a light source suitable for emitting a first light beam lighting up the scene so as to increase the contrast of the images captured by the image sensor, a second lighting device including a light source emitting a second light beam performing a regulatory signalling and/or lighting function in front of the vehicle, a control unit which switches on the first lighting device when a first contrast value referred to as raw contrast C0 of the images captured by the image sensor is lower than a predefined threshold contrast Cs, the light source of the first lighting device being configured to generate modulated lighting, the modulation of which is imperceptible to the driver of the vehicle or an external observer.
US10348966B2
A control apparatus includes a signal readout unit 15 which reads out a frame image obtained from an image pickup device while the frame image is divided into a plurality of different regions, an image information calculating unit 16 which calculates image information based on an image signal of each of the plurality of different regions obtained from the signal readout unit, and an adjusting unit 17 which determines a target adjustment value of an image pickup unit including an image pickup optical system and the image pickup device based on the image information during capturing the frame image.
US10348964B2
Disclosed embodiments provide techniques for 360 degree video visualization. Various criteria such as user preferences, and/or crowdsourced information are used as triggers to signal a user device with indications for a direction of view recommendation. The direction of view recommendation instructs or suggests to the user to perform an action to change the viewpoint so that they can observe an object that they may otherwise miss. Additionally, a pre-navigated video may be created for the user. The pre-navigated video includes a sequence of viewing directions and point-of-view changes to include viewing of objects that are deemed to be of potential interest to the user. In this way, a user can have an improved 360 degree video experience which includes customized and/or crowdsourced recommendations.
US10348963B2
In one aspect, the invention provides an imaging system including an optical system adapted to receive light from a field of view and direct the received light to two image planes. A fixed image detector is optically coupled to one of the image planes to detect at least a portion of the received light and generate image data corresponding to at least a portion of the field of view. A movable (e.g., rotatable) image detector is optically coupled to the other image plane to sample the received light at different locations thereof to generate another set of image data at a higher resolution than the image data obtained by the fixed detector. The system can include a processor for receiving the two sets of image data to generate two images of the field of view. In some implementations, the processor can employ one of the images (typically the image having a lower resolution) to detect one or more objects of interest (e.g., one or more objects moving within the field of view) and to effect the acquisition of image data corresponding to one or more of those moving objects at a higher resolution (e.g., by controlling the movement of the movable image detector).
US10348954B2
An image acquisition device reciprocates a focal position of an objective lens with respect to a sample in the optical axis direction of the objective lens, while moving a field position of the objective lens with respect to the sample. This makes it possible to acquire contrast information of image data at the field position of the objective lens sequentially as the field position moves with respect to the sample. The image acquisition device acquires the image data by the rolling readout of the image pickup element according to the reciprocation of the focal position of the objective lens.
US10348952B2
A communication apparatus which, in a process for establishing a wireless communication, lowers power consumption and at the same time, saves a user from having to perform operation. A first communication unit receives a signal sent from an external apparatus using a first communication system. A second communication unit communicates with another communication apparatus different from the external apparatus using a second communication system different from the first communication system. When the signal received from the external apparatus by the first communication unit is a signal from a predetermined external apparatus, control is provided to send a signal for starting a communication unit of the other communication apparatus, which carries out communications using the first communication system, to the other communication apparatus using the second communication unit. The first communication system may be Wireless Lan (LAN), the second communication system may be Bluetooth Low Energy (BLE).
US10348946B2
A mobile device case for coupling around a miniature camera-enabled mobile device a case shutter button mechanism for actuating the miniature camera module of the mobile camera system. A half-press or single tap triggers a precapture settings menu and a full-press or double tap triggers capture of an image.
US10348942B2
Disclosed is a portable magnifier camera with both storage and deployed configurations. In the storage configuration, the entire assembly can be carried via an associated handle. The camera is designed to rest on a desktop, or other planar surface, in the deployed configuration. When deployed, a housing and camera arm are positioned in a cantilevered arrangement over top of an object to be viewed. A camera housing, with an associated camera, is pivotally connected to the camera arm and is positioned over the object upon the camera being placed into a deployed configuration.
US10348931B2
Provided is an image forming apparatus that is capable of protecting the confidentiality of an image that is printed and outputted on paper. The image forming apparatus according to this disclosure is an image forming apparatus that outputs paper on which an image is formed. The image forming apparatus includes an imaging unit, a user-recognizing unit, a person-recognizing unit, and a control unit. The imaging unit performs imaging of the surroundings. The user-recognizing unit recognizes a user of the image forming apparatus. The person-recognizing unit recognizes persons in imaging data obtained by the imaging unit. The control unit performs confidentiality-protected output of outputting the paper so that the image on the paper is shielded when the person-recognizing unit recognizes another person who is other than the user in the imaging data.
US10348929B2
An example system includes a controller. The controller is to determine a first end point of a previous frame in a first image. The first image is to be printed on a first ribbon. The controller is to determine a second end point of the previous frame in a second image to be printed on a second ribbon. The controller is to create a current frame containing first image data from the first image starting after the first end point, second image data from the second image starting after the second end point, and third image data from a beginning of the first image. The system includes an image engine to form an image corresponding to the current frame on a medium.
US10348924B2
A light receiving unit including: a sensor board assembly on which plural sensor tips are arrayed in a line in a longitudinal direction of the sensor board and mounted on the sensor board; and a sensor plate on which plural of the sensor board assemblies are arrayed and mounted in a line in the longitudinal direction. The sensor chips include plural pixels formed in a line in the longitudinal direction. At longitudinal ends of the sensor board assembly, the sensor chips protrude outward in the longitudinal direction from the longitudinal ends. Between the facing sensor chips of the adjacent sensor board assemblies, the facing sensor chips mounted at the longitudinal ends, the ends of the facing sensor chips are spaced at a predetermined interval. The sensor board includes convex portions, at the longitudinal ends, protruding in the longitudinal direction. The sensor chips are mounted at the convex portion.
US10348909B2
A system and method for associating an audio clip with an object is provided wherein the voice-based system, such as a voicemail system, is used to record the audio clips.
US10348907B1
A mobile device for electronic document collaboration is disclosed. The mobile device includes a display, a processor and a storage device. The mobile device presents a first message to prompt a first user to start recording on the mobile device in order to capture at least one of audio and video information on the mobile device. After the first user has completed the recording on the mobile device, the mobile device then presents a second message to prompt a second user to start recording on the mobile device to capture at least one of audio and video information on the mobile device. The processor determines whether or not the two recordings were performed within a predetermined time interval. If the two recordings were performed within a predetermined time interval, the processor merges the two recordings into one media document, and the media document is then stored within the storage device.
US10348905B1
A computer-based system and method for responding to customer calls. The method includes automatically determining whether at least one incoming call meets existing customer criteria and further automatically determining a market segment of the at least one incoming call. The market segment may indicate whether a specific customer prefers: (i) no voice or face-to-face interaction with a representative; (ii) a face-to-face interaction with a representative; and/or (iii) a voice only interaction with a representative. The method further includes automatically routing the at least one incoming call based upon the determined market segment to one of: (1) an automated voice prompt; (2) a gaming system having two-way video capability; or (3) a person-to-person voice call system to facilitate answering incoming calls in a customer-friendly or customer preferred manner.
US10348892B2
A computer-implemented method includes identifying a mobile phone. The method includes identifying one or more input devices. The one or more input devices are associated with the mobile phone. The method includes collecting behavior information from the input devices. The method includes applying machine learning to the behavior information to yield a schedule.
US10348889B2
A method may include receiving call information associated with an incoming communication directed to a destination communication device. The method may also include retrieving data related to the call information to be displayed according to a particular display profile of a plurality of display profiles, where the particular display profile is associated with the destination communication device.
US10348870B2
An information processing apparatus comprises a connection unit being connectable to an electronic apparatus using a first communication method or a second communication method, a receiving unit that receives, from the electronic apparatus via the second communication method, information indicating a capability of software for communication with the electronic apparatus using the first communication method, a determination unit that determines whether software of the information processing apparatus meets the capability, an acquiring unit that, if the software of the information processing apparatus does not meet the capability, acquires software that meets the capability via a network using a third communication method, and a control unit that enables the communication with the electronic apparatus using the first communication method after the software that meets the capability is acquired.
US10348866B2
A system is configured to provide an IoT device with access to cloud resources. The system includes a backend system configured to provide at least one service selected from a group consisting of: data management, file management, user management, and device management. The system also includes an IoT client device including an IoT device and a backend services module in communication with the IoT device, the IoT client device is configured to communicate with the backend system over a wide area network. The backend services module includes an IoT protocol engine configured to identify an API call for the backend system from a message communicated from the IoT device and a backend services API engine in communication with the IoT protocol engine, the backend services module configured to generate the identified API call. The backend services module also includes an Internet stack for communication of the API call to the backend system;
US10348865B2
A computer system can compress or decompress a type-length-value (TLV) component in a message. During operation, the computer can select a compression table associated with a network interface used to send and/or to receive the message, and can search the compression table for an entry that includes a prefix of a value from type-length-value (TLV) component being compressed or decompressed. If compressing the message, the computer may generate a compressed block that corresponds to a compressed version of the TLV component, such that the compressed block includes the compression encoding in place of the prefix in the TLV component's value. The computer can also generate a compressed message that includes the compressed block in place of the TLV component, without a compression table.
US10348860B2
An architecture (system) and method is provided for transcoding codec information to be sent in a Session Initiation Protocol (SIP) signaling stream for rendering rich digital media content. The method is implemented on a computer infrastructure and includes: determining a codec associated with content to be sent to one or more requesting devices; determining that at least one of the one or more requesting devices do not have the codec associated with the content to be sent to the one or more requesting devices; providing codec information to the at least one of the one or more requesting devices; and sending the content to the one or more requesting devices.
US10348857B2
Methods and devices for enabling communication of a client application of a computing device with other devices are provided. The method includes obtaining, from a first client application on the computing device, one or more preferences for creating a first subservice for communicating with the other devices. A template service file associated with the first client application is identified and the template service file includes property definitions for creating subservices that communicate with the other devices. The template service file is used to create a first configuration file corresponding to the first client application, the a first configuration file including a plurality of the property definitions of the template service file. At least one of the plurality of the property definitions is modified using the one or more preferences. The first configuration file is stored in a memory of the computing device.
US10348855B2
Various embodiments of the present disclosure provide improved mechanisms and techniques for integrating complex data structures with collaboration environments. Various embodiments involve creating a collaboration group around a selected complex data structure, and including the selected complex data structure as well one or more other related complex data structures in the collaboration group. In some embodiments, an object consumption definition is applied to metadata associated with the complex data structure to determine the related complex data structures.
US10348853B2
A method for notifying users of an online social network of an activity performed within a web site that is external to the online social network by an individual who is a registered user of the online social network and the web site. The method comprises the steps of receiving a notification package from the external web site, the notification package including a notification message that describes the activity performed, parsing the notification package to extract a list of recipients, each of whom is to receive the notification message, and issuing the notification message to each of the recipients.
US10348844B2
The disclosure discloses a monitoring method and device for pushing effect of pushing information. The monitoring method for the pushing effect of the pushing information includes: monitoring user Identifiers (ID) accessing a target website, wherein the target website is a website which displays the pushing information; monitoring user ID accessing a preset website; and determining the pushing effect of the pushing information according to first ID and second ID, wherein the first ID are the monitored user ID accessing the target website, and the second ID are the monitored user ID accessing the preset website. By the disclosure, the problem of incapability in making a statistic about the pushing effect of the pushing information in the conventional art is solved, and the effect of quantitatively monitoring the pushing effect of the pushing information is further achieved.
US10348842B1
Methods and apparatus related to determining and/or utilizing one or more attributes for an Internet Protocol (IP) address. In some of those implementations, the attributes may include a physical address associated with the IP address. Some implementations are directed to determining physical addresses for inclusion in a postal campaign based on computing devices having IP addresses associated with those physical addresses having retrieved content of one or more electronic resources (e.g., webpages) assigned to the campaign.
US10348836B2
Methods of migrating clients from a first server to a second server are described. The first server sends a message to the second server identifying a set of clients to be migrated, serializes the state of one or more objects associated with the set of clients and transmits the serialized state to the second server. The first server then instructs each client in the set of clients to establish a connection to the second server such that each client is connected in parallel to both the first and second servers with the connection to the first server as a primary connection and the connection to the second server as a secondary connection and when the clients are connected to the second server, the first server instructs the clients to disconnect from the first server and switch the primary connection to be the connection with the second server.
US10348832B2
Methods and systems for a transportation vehicle are provided. For example, one method includes storing a first portion of a media file at a first device of a peer-to-peer group having a plurality of devices at a transportation vehicle; storing a remaining portion of the media file at one or more of the plurality of devices; using the first portion of the media file to start providing access to the media file; and retrieving the remaining portions of the media file, on-demand, from the one or more devices, based on resource utilization of the one or more devices.
US10348829B2
An auto indexing method includes identifying a vault of a dispersed storage network for an auto indexing function. The method continues by obtaining search criteria for the auto indexing function. The method further includes scanning the plurality of metadata files to identify metadata files of the plurality of metadata files having at least one of the objective metadata and the subjective metadata corresponding to the search criterion. The method further includes updating an index file that includes the identity of the one or more metadata files of the plurality of metadata files having the at least one of the objective metadata and the subjective metadata corresponding to the search criterion and updating an index structure based on the index file. The method further includes utilizing the index structure to search for one or more data objects having one or more of the search criterion of the search criteria.
US10348825B2
One or more devices may receive a service request. The service request may be associated with providing a network service to a service location and may be associated with a service provider network. The one or more devices may create a virtual network function (VNF), associated with providing the network service, based on the service request. The VNF may be created such that the VNF is hosted by the device, and may be configured to provide the network service. The one or more devices may insert the VNF into the service provider network. The VNF may be inserted to interact with a physical device of the service provider network to allow the network service to be provided to the service location.
US10348817B2
Network packets containing data of a data request received from a client machine by a leader replica of a cluster of replicas can be passed to follower replicas of the cluster, and a replicate request can be sent to the follower replicas after the network packets have been sent to the follower replicas. A mutation required by the data request can be recorded as committed upon receipt of replication confirmation messages from a quorum of the replicas, and the client machine can be notified that the mutation has been completed after the recording of the mutation as committed. In one option, the client machine can send the network packets to the leader replica, which in turn sends these network packets to the follower replicas. In another option, the client machine can send the network packets to the leader replica and to the follower replicas.
US10348814B1
Systems with multiple components managing storage may implement efficient storage reclamation. A storage reclamation event may be detected for a system component. An indication to a request dispatching mechanism may be made which indicates that the system component is unable to perform further tasks in order to perform storage reclamation. A storage reclamation operation, such as a stop-the-world garbage collection technique, or a service process restart may be performed to reclaim at least some storage. Upon completion of the storage reclamation operation, an indication may be made to the request distribution mechanism that the service process has resumed performing tasks for the system. In some embodiments, a gossip protocol communicating availability information to different nodes of a distributed system may provide information to schedule storage reclamation operations at different compute nodes of the distributed system.
US10348810B1
An apparatus in one embodiment comprises at least one processing device having a processor coupled to a memory. The processing device is configured to initiate distributed computations across a plurality of data processing clusters associated with respective data zones, and to combine local processing results of the distributed computations from respective ones of the data processing clusters. The data processing clusters are configured to perform respective portions of the distributed computations by processing data local to their respective data zones utilizing at least one local data structure configured to support at least one computational framework. A first one of data processing clusters is implemented in a first cloud of a first type provided by a first cloud service provider. At least a second one of the data processing clusters is implemented in a second cloud of a second type different than the first type, provided by a second cloud service provider.
US10348809B2
The present technology monitors a web application provided by one or more services. A service may be provided by applications. The monitoring system provides end-to-end business transaction visibility, identifies performance issues quickly and has dynamical scaling capability across monitored systems including cloud systems, virtual systems and physical infrastructures. In instances, a request may be received from a remote application. The request may be associated with a distributed transaction. Data associated with the request may be detected. A distributed transaction identifier may be generated for a distributed transaction based on the data associated with the request.
US10348800B2
Disclosed are systems, methods, and computer-readable storage media for caching routing data in a request to provide a service. A front-end server located at a first datacenter receives a request for a service, with the request originating from a client device. In response to receiving the request, the front-end server queries a routing database for routing data identifying a location of one or more computing devices to fulfill the request. The front-end server receives the routing data from the routing database and transmits, based on the routing data received from the routing database, a first subsequent request to a front-end server located at a second datacenter. The subsequent request is appended with the routing data and the front-end server located at the second datacenter utilizes the routing data included in the subsequent request to fulfill the request received from the client device.
US10348799B2
Techniques are disclosed relating to unique device authentication via browser. In one embodiment, a server computer system receives, from a browser program executing on a client computer system, a request to authenticate to a private network. The server computer system causes a script to be downloaded to the client computer system, the script being executable by the browser program to establish a connection with a local host program executing on the client computer system. The server computer system receives, from the browser program, authentication information that is based on communication between the browser program and the local host program over the connection. The server computer system may then perform a process responsive to the request to authenticate the client computer system to the private network using the received authentication information. In some embodiments, the authentication information includes an identifier that uniquely identifies the client computer system within the private network.
US10348787B2
In one or more embodiments, the method for a streaming flight data from an aircraft involves transmitting, from a flight data unit(s), the flight data to a flight data recorder streaming (FDRS) server. The method further involves determining, by the FDRS server, at least one antenna to use for streaming the flight data by analyzing the flight data. Also, the method involves generating, by the FDRS server, an antenna selection signal according to the antenna(s) to use for streaming. In addition, the method involves transmitting, by the FDRS server, an antenna selection signal to an antenna switch unit. Additionally, the method involves selecting, by the antenna switch unit, the antenna(s) to use for streaming according to the antenna selection signal. Further, the method involves streaming, by the antenna(s) to use for streaming, the flight data to a satellite(s).
US10348782B2
An example method including: with respect to a local session contained in a local session list, determining a remote user account corresponding to the local session; and when it is determined that the remote user account is not included in a set particular account list, concealing the local session in the local session list. Through the above method, it is feasible to only add an account of a particular object to the particular account list. In this way, local sessions corresponding to other remote user accounts other than the account of the particular object will be concealed in the local session list, and thus it is convenient for a local user to look for a particular session.
US10348769B1
A user-portable computing device configured as a smart card enables a user to carry identification information and to generate security tokens for use in authenticating the user to a service provider. The device includes memory for storing user identities as information cards that are exported to a host computer, presented to a user in visual form, and then selected for use in the authentication process. A security token service installed on the device issues a security token in response to a token request sent from the host computer that references the selected user identity. The security token service uses user attribute information stored on the user device to compose the claim assertions needed to issue the security token. The token is returned to the host computer and used to facilitate the authentication process.
US10348766B1
A method, system and program product for group policy backup management in a network having a plurality of domains including components and modules for steps of retrieving a list of group policy objects for a domain, generating a configuration initialization file including a domains section identifying a plurality of domains that are to be backed up and a setup section specifying a plurality of values that control the backup of each policy object in each domain, determining a digital signature for each policy object on a list of policies for the domain, comparing the digital signature for each policy object with a corresponding previous digital signature for each policy, determining if a current digital signature for each policy object matches the corresponding previous digital signature for a policy, and backing up a policy object having a current digital signature that does not match the corresponding previous digital signature.
US10348765B2
A policy that includes an address group is received. The policy is compiled into a set of one or more rules. The compiling is performed at least in part by determining members of the address group. The compiling can further include substituting one or more IP addresses of the members for the address group. At least one rule included in the set of rules is enforced.
US10348761B2
The present disclosure describes systems and methods for using for a simulated phishing campaign, information about one or more situations of a user determined from an electronic calendar of the user, A campaign controller may identify/an electronic calendar of a user for which to direct a simulated phishing campaign, determine one or more situations of the user from information stored in the electronic calendar and select either a template from a plurality of templates or a starting action from a plurality of starting actions for the simulated phishing campaign based at least on the one or more situations of the user. The campaign controller may communicate to one or more devices of the user a simulated phishing communication based at least on the respective template or starting action.
US10348760B2
Systems and methods are disclosed for providing distributed denial-of-service (DDoS) mitigation service. The systems and methods may receive a request to access a web server from a user host, generate an integrated user challenge page including a user challenge test and a web page image of the web server, and transmits the integrated user challenge page to the user host. The systems and methods may further receive an answer to the user challenge test from the user host, determine whether the answer to the user challenge test is correct or not. When the answer to the user challenge test is correct, the systems and methods may establish a connection between the user host and the web server.
US10348749B2
A method and an apparatus for detecting a port scan in a network are disclosed. For example, the method extracts statistics from a message, detects the port scan for a source internet protocol address, determines whether a port scan record exists for the source internet protocol address, creates a port scan record for the source internet protocol address that is extracted when the port scan record does not exist, determines an elapsed time when the port scan record does exist, wherein the elapsed time is determined as a difference between the time stamp that is extracted and a recorded time stamp, sets the recorded time stamp to be the extracted time stamp when the elapsed time is less than an intra-scan time, and determines the port scan has ended for the source internet protocol address when the elapsed time is not less than the intra-scan time.
US10348744B2
Methods and systems are disclosed for stateful backend drivers for security processing through stateless virtual interfaces within virtual machine (VM) host servers. A security application runs within a hosted VM, and a header is stored for the security application that includes a host backend identifier (BID). The VM sends a security processing request including the header through a stateless virtual interface to a backend driver. The backend driver compares the host BID within the processing request to host BIDs associated with the VM host server. If a match is found, security processing request is performed using one or more security engines within the VM host server. If a match is not found, the VM is identified as a migrated VM, and the header is updated to store a host BID associated with the VM host server. A timestamp for virtual queue creation is preferably used for the host BID.
US10348742B2
A system, method, and computer program product are provided for dynamically configuring a virtual environment for identifying unwanted data. In use, a virtual environment located on a first device is dynamically configured based on at least one property of a second device. Further, unwanted data is identified, utilizing the virtual environment.
US10348739B2
A method is described for receiving a plurality of node data streams through a data network from a plurality of source nodes, respectively, each of the plurality of node data streams comprising a plurality of node data. The method further comprises determining a respective risk assessment for each of the plurality of node data streams based on a plurality of elements, wherein the respective risk assessment indicates a level of trustworthiness of each of the plurality of node data streams. Moreover, the method comprises determining a plurality of respective actions for each of the plurality of source nodes, based on the respective risk assessment of the plurality of node data streams. The method further comprises instructing each of the plurality of source nodes to perform the respective action.
US10348733B2
Approaches described herein manage security restrictions on a resource in a defined environment to provide authorization and access. Specifically, a security system maintains a security restriction on the resource (e.g., an information technology (IT) account of a user, or an apparatus) in a defined environment. The presence of a plurality of users is continuously monitored throughout the defined environment and, based on a detection of a pre-specified set of users from the plurality of users in the defined environment, the security restriction is managed (e.g., removed or maintained). In one embodiment, the system allows access to the resource by removing the security restriction on the resource. The security restriction on the resource may be reinstated in the case that the pre-specified set of users from the plurality of users is no longer present in the defined environment.
US10348732B2
Methods, systems, and devices are described for the prevention of network peripheral takeover activity. Peripheral devices may implement an anti-takeover mechanism limiting the number of available device command classes when certain handshake and verification requirements are not met. Anti-takeover peripheral devices with protection enabled may be relocated within a controller network, or in certain cases, from one controller network to another controller network when certain conditions are met. That same device may be hobbled when removed from a controller network and may remain hobbled when connected to another network that fails to meet certain conditions. Unprotection and unhobbling of a device may occur through an algorithmic mechanism using values stored on the peripheral device and the controller device for one or more of anti-takeover code generation, anti-takeover code comparison, network identification value comparison, and manufacturer identification value comparison.
US10348723B2
A method for recognizing a person by identification codes derivable from biometric data includes registering a user, and recognizing a registered user, among registered users, through a recognition event. Each user registration event acquires user biometric data, encodes the data into a respective user's registration identification code, associates the code to the user, and registers the user and the associated code. Each recognition terminal is associated to a respective comparison set, including comparison identification codes corresponding to a registered user's identification code. Comparison identification codes are based on comparison between registered users' localization information and known localization of the recognition terminal. A user is recognized among registered users by a recognition event at a terminal. Each recognition event acquires biometric data from the user, which is encoded. The recognition identification code is compared with each of the comparison identification codes. Recognition is recognized or refused based on estimated matching levels.
US10348719B2
The present disclosure relates to a method performed for facilitating login on a website. In accordance with an embodiment, the method comprises, by means of a web browser in a radio device, downloading a web page of the website from a web server hosting the website; receiving a login request from the web server, the login request comprising a request for login information for a service from a service application of the service in the radio device; and, in response to the received login request and by means of the service application, automatically sending a login token request to a server of a service provider providing the service. In accordance with an embodiment, the method also comprises, from the server of the service provider, receiving a login token response comprising a login token, and sending a login information message to the web server comprising the login token.
US10348713B2
A system and method for facilitating authenticating a client application to enable communications with another server-side application running on a server in communication with the client application (client). An example embodiment involves providing an authenticator for the client to a shared library that is accessible to the client and server, and then registering the authenticator for the client at the server. After registration, the client sends a request message (addressed to a server-side application) and token to the server. The token is derived using the authenticator at the shared library. The server then uses the token to check that the authenticator associated with the received token is registered. The server then communicates with the shared library to authenticate the client by verifying that the received token identifies the client that has provided the authenticator to the shared library. Client identity is then set to enable communications with the server-side application.
US10348704B2
A dynamic computer communication security encryption method or system using an initial seed key and multiple random number generators of a specific design, whereby a sequence of independent random entropy values is produced by one set of random number generators and encrypted along with the message stream using the initial seed key, or the output of a second set of random number generators initialized with the initial seed key, and following the subsequent transmission of the variable encrypted entropy/message block, the entropy values are used to symmetrically or identically augment or increase the current uncertainty or entropy of the cryptosystem at both the sender and the receiver, prior to the next encryption block operation. The encryption process effectively entailing the use of multiple encryption ciphers, and the entropy augmentation process entailing the encryption or application of various logical mathematical operations on the already dynamic but deterministic internal state values of the second set of random number generators, effectively altering their deterministic outputs in a random probabilistic manner.Random length message value sequences from one or more data sources is combined with one or more random length entropy value sequences from an independent source, following which the entropy “updates” may also be used to alter, or change any cryptosystem variable, value or component in a randomly determined manner. In addition, while ensuring synchronization, the random entropy sequences also serve to “pollute” the cipher-stream and thereby hinder most current forms of cryptanalysis, while simultaneously injecting additional entropy into the cryptographic system and allowing for its propagation to affect any connected system nodes, and thereby introducing unpredictable entropy into the system pseudorandom number generator outputs, and thereby ensuring the perpetual generation of unpredictable random numbers.Super-encryption mechanics are independent of the user data, simple, fast and efficient, and can incorporate compression, error correction and asymmetric encryption authentication routines. But most importantly, super-encryption ensures resistance to brute force attacks (not possible to verify if a message was even sent), an ability to exceed “perfect secrecy” requirements, and an improvement on previous super-encipherment design, since overhead can be dramatically reduced from 100% overhead.Communication links previously established by system nodes with central authorities may be used for secure node authentication and registration, while allowing the central authority to broker and synchronize communication channels and providing mutual authentication and other security functions between the system nodes.
US10348698B2
Disclosed herein are methods and systems for link-based enforcement of routing of communication sessions via authorized media relays. In an embodiment, a media relay receives encrypted first payloads from a first endpoint and encrypted second payloads from a second endpoint as part of a session. The encrypted first payloads require a first key for decryption and the encrypted second payloads requite a second key for decryption. The media relay is preconfigured prior to the session with secrets useable for identifying the first and second keys. The media relay decrypts the first payloads using the first key and decrypts the second payloads using the second key, and transmits the first payloads to the second endpoint and the second payloads to the first endpoint as part of the session.
US10348693B2
A digital escrow pattern for data services can include selective access for obscured data at a remote site or in a cloud service, distributing trust across multiple entities to avoid a single point of data compromise. Based on the pattern, a “trustworthy envelope” for any kind of payload enables curtained access through a variety of decorations or seals placed on the envelope that allow for a gamut of trust ranging with guarantees such as, but not limited to, confidentiality, privacy, anonymity, tamper detection, integrity, etc. For instance, XML tags can be applied or augmented to create trust envelopes for structured XML data. Some examples of mathematical transformations or ‘decorations’ that can be applied to the XML data include, but are not limited to, size-preserving encryption, searchable-encryption, or Proof(s) of Application, blind fingerprints, Proof(s) of Retrievability, etc.
US10348683B2
Described herein are systems, methods, and software to enhance the management of packet filters for host computing systems. In one implementation, a computing system may identify media access control (MAC) addresses and communication statistics for virtual nodes communicating over physical network interfaces of the computing system. The computing system may further prioritize the MAC addresses based on the virtual network interface ports and physical network interface ports that the MAC addresses were identified on, and generate a filter configuration for the physical network interfaces based on the prioritization and the communication statistics.
US10348673B2
API hostnames and HTML hostnames are separately defined, and DNS switching for HTML is performed after a time lag from completion of DNS switching for APIs. APIs of old version are thereby prevented from being called from HTML screens of new version.
US10348667B2
Disclosed is a system and method for email management that leverages information derived from automatically generated messages in order to identify types of messages and message content. The disclosed systems and methods apply the information learned from decoding previously received messages to other messages in a user's inbox to fully, or at least partially decode the information included within such messages. The disclosed systems and methods analyze messages received in a user's inbox to detect message specific information corresponding to types of content in the message and the location of such content in the messages. The message specific information is then applied to other newly received or identified messages to learn message specific information about those messages. Based on such learning, information can be extracted from such messages in order to increase a user's experience and increase monetization.
US10348663B2
Embodiments for managing social commentary as applicable to social media by a processor. A spectrum of weights is assigned to individual portions of the social commentary as a function of a determined measured characteristic. Those of the individual portions having a higher weight than a predetermined threshold are selected to be displayed through the social media in a hierarchy corresponding to a position in the spectrum of weights, while those of the individual portions having a lower weight than the predetermined threshold are selected to be withheld from display. A deduplication operation is applied to the individual portions of the social commentary. Those of the individual portions determined to be repetitive greater than a predetermined number are used to assist in formulating weights of the individual portions.
US10348662B2
A system according to various exemplary embodiments includes a processor and a user interface coupled to the processor, the user interface comprising an input device and a display screen. The system further comprises a sensor component coupled to the processor, the sensor component comprising a location sensor for determining location information associated with the system, and memory coupled to the processor and storing instructions that, when executed by the processor, cause the system to perform operations comprising: retrieving sensor information from the sensor component, the sensor information including location information from the location sensor; retrieving, from the memory, avatar information associated with a user of the system; generating a customized graphic based on the sensor information and the user's avatar information; and presenting the customized graphic within an electronic message via the display screen of the user interface.
US10348659B1
There is provided a method and system for processing a chat message. In this method, an emoji to be used in a chat session is obtained. And an emotion level is obtained, in which the emotion level is determined based on chat messages in the chat session. A type of emoji variation is determined according to the emotion level. And an emoji variation is provided according to the type of emoji variation and the obtained emoji.
US10348656B2
The present disclosure relates to methods and devices for presentation of display device notifications and key handling. The notifications are visually appealing, employing a common theme and user interface. The notifications are less-intrusive, such that the user experience is improved. The notifications can provide additional information, function as links to destinations, and give the user multiple options, from which the user can make a selection. Actions taken by a user can be controlled and monitored to optimize user interaction with the notifications. By providing display device notifications to a user, the user is able to process important information on a display device in an improved way.
US10348651B2
An apparatus for virtual switching includes a queue memory configured to store at least one queue; a data memory configured to store data; a mapper configured to classify the data into flows and store a point of the data in a queue mapped with the flows; a plurality of virtual machines configured to perform a process based on the data; and a virtual switch configured to extract the data from the data memory by referring to the point stored in the queue and transfer the data to the virtual machine, wherein the virtual switch transfers the data corresponding to a single queue to a single virtual machine.
US10348647B2
In one embodiment, a first Protocol Independent Multicast (PIM) router includes port interfaces to receive multicast traffic from a first network and forward the traffic to at least one receiver, which is in a sub-network including other PIM routers, and a routing processor configured, in response to a decision for the first PIM router to relinquish being a designated router, to generate a PIM Hello message with a first option descriptor and a first priority, the first option descriptor indicating a staggered handoff process, and send the PIM Hello message, receipt of the PIM Hello message by the other PIM routers being operative to result in a designated router election electing a new designated router, the new designated router being operative to initiate the staggered handoff process causing the first PIM router to continue forwarding traffic until the new designated router has built a multicast routing tree.
US10348634B2
Technologies for tracking out-of-order network packets include a target computing node coupled to a source computing node via a communication channel. The target computing node is configured to allocate a small window in memory in which to store a bit mask corresponding to a number of out-of-order network packets received from the source computing node via the communication channel. The target computing node is further configured to update the bit mask in the small window upon receiving an out-of-order network packet from the source computing node. The target computing node is additionally configured to allocate a large window in memory in response to a determination the size of the bit mask is larger than the size of the small window, store the bit mask in the large window, and store a pointer to the large window in the small window. Other embodiments are described and claimed.
US10348628B2
Techniques for placement of a virtual machine (VM) on a host computing system in a virtualized computing environment are disclosed. In one embodiment, a first network device having network load less than a threshold value is determined. Further, the VM is placed on the host computing system coupled to the first network device. In this case, the host computing system transmits and receives network traffic associated with the VM via the first network device.
US10348627B2
A method of estimating processor load at a device for transmitting a media stream, the device comprising an encoder and a processor capable of executing instructions for the encoder, the method comprising: encoding a first media frame and a second media frame at the encoder; determining a first time period between a first timestamp associated with the first media frame and a second timestamp associated with the second media frame; determining a second time period between a first completion time representing completion of the encoding of the first media frame and a second completion time representing completion of the encoding of the second media frame; and forming a measure of processor load in dependence on a difference between the first and second time periods.
US10348622B2
Techniques for exposing a subset of hosts on an overlay network, without exposing another subset of hosts on the overlay network, are disclosed. A component associated with an overlay network exposes a subset of hosts on the overlay network to components external to the overlay network. The component exposes the subset of hosts by distributing a mapping between (a) the hosts to-be-exposed and (b) the substrate addresses associated with the hosts. Alternatively, a component external to an overlay network exposes a subset of hosts on the overlay network to additional components external to the overlay network. The component exposes the subset of hosts by distributing a mapping between (a) the hosts to-be-exposed and (b) a substrate address associated with the particular component. In either embodiment, a mapping for hosts to-be-hidden is not distributed.
US10348618B2
A method, apparatus, and computer-readable storage medium are disclosed for processing shared risk group (SRG) information in communications networks. The method includes processing, at a domain in a network, first network information comprising a plurality of SRG identifiers. The processing includes producing second network information comprising a smaller number of SRG identifiers than that of the plurality of SRG identifiers. The method further includes sending at least a portion of the second network information to a second domain in the network. The apparatus includes a network interface adapted to send network information comprising SRG information, a processor coupled to the network interface, and a memory coupled to the processor and adapted to store program instructions operable to carry out steps of the method. The storage medium is configured to store program instructions that when executed are configured to cause a processor to carry out steps of the method.
US10348612B2
Embodiments relate to setting up direct mapped routers located across independently managed compute and storage networks for enabling multiple modes of communication over the cross-coupled links between the networks. An aspect includes identifying a characteristic of a local entity based on a unique location identifier assigned to the local entity and learning a characteristic of a remote entity based on a location identifier received over a cross-coupled link between the local entity and the remote entity. A port on a local entity router is then correlated with the received location identifier of the remote entity. A route is then built in the direct mapped router table at a location pointed to by the location identifier of the remote entity. An optimistic failover route is established from a storage entity to a compute entity when a cross-coupled link between the storage entity and the compute entity is broken.
US10348605B2
A method includes receiving, at an interface of a storage device and from a host device, an electrical signal representative of data. The storage device includes a mass storage device. The method also includes splitting, at the interface, the electrical signal representative of the data into a first data stream and a second data stream, wherein the first data stream is identical to the second data stream. The method also includes sending, from the interface and to a controller of the storage device, the first data stream; and sending, from the interface and to an analyzer integrated within the storage device, the second data stream. The method further includes filtering, by the analyzer, the second data stream to generate debugging data; and sending, by the analyzer and to the host device, at least a portion of the debugging data.
US10348604B2
A method and system for monitoring a resource consumption of an application running on a computer. A first metric describing the resource consumption of the application as a first function of time is tracked. A wavelet analysis of the first function is performed and a discontinuity is detected in the first function at a first time at which a coefficient determined from the wavelet analysis exceeds a specified threshold. The coefficient is indexed on a dilation parameter and a time offset parameter.
US10348603B1
Disclosed are techniques for implementing a device with memory comprising a data table, the data table configured to store a plurality of elements in buckets, wherein each of the plurality of buckets contains a plurality of elements. The memory can further comprise an indirection table, the indirection table comprising a plurality of bucket reference storage locations and a plurality of hash reference storage locations. The device can include processing logic configured to generate a plurality of hash values using information to be inserted into the data table and locate a hash reference stored in one of the plurality of hash reference storage locations corresponding to one of the plurality of hash values. The processing logic can further locate a bucket of the plurality of buckets corresponding to the one of the plurality of hash values.
US10348600B2
Among other things, flow rates of traffic among endpoints in a network are controlled. Notifications are received about flowlets originating or received at the endpoints. Each of the flowlets includes one or more packets that are in a queue associated with a corresponding flowlet. In response to the received notifications, updated flow rates are computed for the flowlets. The updated flow rates are sent to devices for use in controlling flow rates for the flowlets in accordance with the computed updated flow rates.
US10348595B2
The present invention extends to methods, systems, and computer program products for managing data-driven services. Aspects of the invention include a platform for data services. The platform manages data and associated data models holistically together. The platform enables and integrates data-driven services through a service model. The platform transforms data into information and information into intelligence and exposes insights to services. The platform allows for data and service sharing across domains.
US10348591B2
A method for detecting connectivity of user node interface in a virtual private network includes: acquiring a configuration parameter used for detecting connectivity of a user node interface between a source address and a destination address in the virtual private network; transmitting an Internet Control Message Protocol (ICMP) request packet from the source address to the destination address through the configuration parameter, and receiving an ICMP response packet responded by the destination address; and after receiving the ICMP response packet responded by the destination address, calculating a round-trip time value of a link between the source address and the destination address, and then collecting statistics on the connectivity of the user node interface between the source address and the destination address according to the round-trip time value obtained by calculation.
US10348590B2
Aspects of the subject disclosure may include, for example, detecting a request for a network service between two network nodes and identifying a network path between the two network nodes, wherein the network path is realized by equipment performing a number of network functions. A first network function of the number of network functions is associated with a first number of redundant virtualized network resources performing at least a similar network function as the first network function. Usage metrics are determined corresponding to the first number of redundant virtualized network resources and a first virtualized network resource of the first number of redundant virtualized network resources is assigned to the network path based on the usage metrics to obtain a first assigned virtualized network resource. The network service is provided between the two network nodes using the first assigned virtualized network resource. Other embodiments are disclosed.
US10348589B2
In one embodiment of the present invention, a content delivery network (CDN) monitoring system manages a CDN. The CDN monitoring system includes finite state machines (FSMs), and the current states of the FSMs reflect characteristics and/or behaviors associated with the CDN. In operation, the CDN monitoring system computes actions based on current states and/or metrics associated with the CDN. The actions may cause one or more of the FSMs execute state transitions. As part of a state transition, the current state of the FSM changes and an event is generated. The event triggers an event handler that may perform any type of management operations, such as generating performance reports and rerouting client requests. Notably, because each current state may be an aggregation of other current states, the CDN monitoring system may be configured to compute current states that accurately represent complex interactions between components within the CDN.
US10348588B2
An illustrative embodiment of a computer-implemented process for dynamic management of integration protocols connects a set of applications to a communication fabric to form a set of connections, which are monitored to collect a set of performance metrics. In response to a determination the predetermined performance metric is not within the predetermined tolerance associated with the particular application in the set of applications an integration path in the set of connections for the particular application in the set of applications is adjusted by programmatically using a set of rules wherein each rule in the set of rules is a performance driven rule.
US10348586B2
Systems and methods for social graph data analytics to determine the connectivity between nodes within a community are provided. A user may assign user connectivity values to other members of the community, or connectivity values may be automatically harvested or assigned from third parties or based on the frequency of interactions between members of the community. Connectivity values may represent such factors as alignment, reputation, status, and/or influence within a social graph of a network community, or the degree of trust. The paths connecting a first node to a second node may be retrieved, and social graph data analytics may be performed on the retrieved paths. For example, a network connectivity value may be determined from all or a subset of all of the retrieved paths. Network connectivity values and/or other social graph data may be outputted to third-party processes, services, and ratings agencies for use in initiating automatic transactions, making automated network-based or real-world decisions, determining or verifying the identity of a node within the community, scoring or ranking nodes, or making credit-granting decisions.
US10348575B2
Embodiments include systems and methods comprising a gateway located at a premise forming at least one network on the premise that includes a plurality of premise devices. A sensor user interface (SUI) is coupled to the gateway and presented to a user via a remote device. The SUI includes at least one display element. The at least one display element includes a floor plan display that represents at least one floor of the premise. The floor plan display visually and separately indicates a location and a current state of each premise device of the plurality of premise devices.
US10348567B2
Techniques and technologies for mapping user identifiers between different device ecosystems are described. In at least some embodiments, a system includes a processing component, a memory, and a mapping engine configured to map a first identifier associated with a user with a second identifier, at least one of the first or second identifiers being associated with a first device ecosystem; and map a third identifier associated with a second device ecosystem with at least one of the first identifier or the second identifier, the second device ecosystem different from the first device ecosystem, based at least partially on (i) a plurality of first co-location occurrences of the third identifier with the first identifier, and (ii) a plurality of second co-location occurrences of the third identifier with the second identifier. The mapping engine may provide an indication of an association of the third identifier with the user.
US10348557B1
Techniques to dynamically configure target bitrate for streaming network connections are described. An apparatus may comprise a streaming component operative to establish a streaming network connection with a second client device at a first client device; and a stream configuration component operative to determine inter-arrival rate information for the streaming network connection; provide the inter-arrival rate information to an inter-arrival rate analysis component; receive a preliminary target bitrate from the inter-arrival rate analysis component in response to providing the inter-arrival rate information to the inter-arrival rate analysis component; determine round-trip time information for the streaming network connection; determine an assigned target bitrate and a packet size setting for the streaming network connection based on the preliminary target bitrate and the round-trip time information; and configure the streaming component to perform the streaming network connection with the assigned target bitrate and the packet size setting. Other embodiments are described and claimed.
US10348550B2
A method and a system for processing network media information are provided. The method includes: collecting historical distribution effect data of network media information; performing attribute improvement processing on the historical distribution effect data by using population attribute data and network media information management data to obtain characteristic attribute data; constructing an effect parameter estimation model corresponding to each attribute of the characteristic attribute data, and training the effect parameter estimation model; estimating an effect parameter value of each audience for target network media information according to the effect parameter estimation model; and selecting an audience whose estimated effect parameter value is greater than or equal to a specified threshold value to form an audience population package to be extracted. The present invention can improve efficiency of extraction, reduce labor cost, and improve precision of distribution of network media information in an audience population package.
US10348544B2
Provided is a power control method of a transmitter. The method may include: generating a first aggregated carrier signal by aggregating multiple carrier signals; determining whether at least one peak exceeding a preset threshold is detected among the peaks of the first aggregated carrier signal; generating, if at least one peak exceeding the preset threshold is detected, at least one cancellation signal based on the detected at least one peak; and mapping the at least one cancellation signal to reserved subcarriers. It is possible to reduce the PAPR at the side of an amplifier by applying a tone reservation technique to multicarrier signals.
US10348539B1
A frequency demodulated signal includes a frequency modulation in time that is shifted by a DC level corresponding to a carrier frequency offset. A number of different frequency offsets are applied to the frequency demodulated signal to generate a corresponding number of offset frequency demodulated signals. Each offset frequency demodulated signal is correlated against a reference signal and a determination is made as to which correlation produces a highest correlation value. One offset frequency demodulated signal of the number of offset frequency demodulated signals is then selected for output as an offset corrected frequency demodulated signal. The selected signal is the one having the highest correlation value.
US10348536B2
Disclosed are a data transmission device for modulating the amplitude of a PAM-4 signal using a toggle serializer and a method of operating the same. In accordance with an embodiment of the present disclosure, the data transmission device includes a toggle serializer configured to generate at least one toggle signal by detecting logic level change of first and second signals from a Pulse Amplitude Modulation (PAM) signal including the first and second signals; and a driver configured to modulate an amplitude of the PAM signal by combining the first signal, the second signal, and the at least one toggle signal.
US10348535B1
A reference generator for use with serial link data communication is disclosed. Broadly speaking, a decision circuit may perform a comparison between a particular data symbol included in a serial data stream and a difference between a voltage level of a first signal and a voltage level of a second signal, and generate an output data value based on a result of the comparison. A reference generator circuit may selectively sink a first current value from either the first signal or the second signal based upon another output data value generated from another data symbol included in the serial data stream that was to received prior to the particular data symbol.
US10348529B2
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method for operating a receiving device in a wireless communication system comprises determining inter-symbol interference between symbols in a received signal, determining a location of a receive detection window according to the inter-symbol interference, and demodulating the received signal based on the location of the receive detection window. A receiving device includes at least one transceiver, and at least one processor configured to determine inter-symbol interference between symbols in a received signal, determine a location of a receive detection window according to the inter-symbol interference, and demodulate the received signal based on the location of the receive detection window. A transmitting device includes at least one processor configured to estimate an equivalent channel frequency response based on characteristic information of a time-domain filter, estimate an inter-symbol interference based on the equivalent channel frequency response, and generate indication information regarding an adjustment of a location of a receive detection window.
US10348525B2
A system facilitating dynamic layer mapping with multiple downlink control channels wireless communication system is provided herein. In one example, a method, comprises: determining, by a BS device, for a selected mobile device, a type of downlink control channel configuration to transmit to a mobile device; and in response to determining to transmit multiple downlink control channels as the type of downlink control channel configuration, identifying a layer to couple to the downlink control channel configuration. Determining the type of downlink control channel configuration to transmit can comprise: determining to transmit multiple downlink control channels if a rank is higher than a defined value; and determining to transmit a single control channel in lieu of transmitting the multiple control channels if a rank is less than or equal to the defined value. The method can also include scheduling the layer for transmission to the mobile device.
US10348524B2
A wireless device, method, and signal for use in communication of a wireless packet between transmitting device and a wireless receiving device via a plurality of antennas, wherein a signal generator generates wireless packet including a short-preamble sequence used for a first automatic gain control (AGC), a first long-preamble sequence, a signal field used for conveying a length of the wireless packet, an AGC preamble sequence used for a second AGC to be performed after the first AGC, a second long-preamble sequence, and a data field conveying data. The AGC preamble sequence is transmitted in parallel by the plurality of antennas.
US10348521B2
A system comprises a first network to which at least one user device and a gateway device are connected, which gateway device is also connected to a second network and is configured to cooperate with a virtual gateway application accommodated in the second network. A method of managing the system comprises the step of accommodating an auxiliary virtual gateway application in the at least one user device, which auxiliary virtual gateway application is configured for providing at least some functionalities of the virtual gateway application when communication between the gateway device and the virtual gateway application is lost. Although the virtual gateway application and the auxiliary gateway application may have distinct sets of functionalities, it is preferred that these applications each have DHCP functionality. This allows the auxiliary virtual gateway application to take over DHCP functions when communication with the second network is lost.
US10348514B2
A lighting system includes lighting devices and an update manager. The lighting devices include various hardware versions and/or functionalities. The lighting devices are queried to determine existing hardware versions and/or functionalities. The query is sent via a wireless mesh network of the lighting system. An Over-The-Air (OTA) update includes multiple different lighting device programming images, where each image corresponds to one of the existing hardware versions and/or functionalities. The OTA update is delivered via point-to-point connections between the update manager and some number of lighting devices and/or between the lighting devices. Upon receipt, individual lighting devices determine whether a lighting device programming image is needed and/or which of the lighting device programming images is appropriate.
US10348513B2
A node within a wireless mesh network is configured to forward a high-priority message to adjacent nodes in the wireless mesh network by either (i) transmitting the message during successive timeslots to the largest subset of nodes capable of receiving transmissions during each timeslot, or (ii) transmitting the message on each different channel during the timeslot when the largest subset of nodes are capable of receiving transmissions on each of those channels.
US10348512B2
A computer-implemented process for groups includes forming a group using a series of invitation, acceptance and confirmation handshake messages. A location center for the group is calculated as an average location for all members of the group as calculated by the computer from data included in at least one message of the messages. The computer calculates a perimeter for the group from the data. The computer calculates a time decay parameter for the group from the data. The computer calculates a group profile for the group based on at least the location center, the perimeter and the time decay parameter. The computer adds a new member to the group, by any member triggering an invitation process with the new member. The computer recalculates the group profile on acceptance by the new member and transmits the recalculated group profile to all members including a confirmation message to the new member.
US10348506B2
An instruction to be used to produce a message digest for a message is executed. In execution, a padding state control of the instruction is checked to determine whether padding has been performed for the message. If the checking indicates padding has been performed, a first action is performed; and if the checking indicates padding has not been performed, a second action, different from the first action, is performed.
US10348499B2
Various embodiments are directed to techniques for controlling access to data in a decentralized manner. An apparatus includes an apportioning component to divide an item of data into multiple portions based on an organizational structure of the item of data; a tree component to generate a PRN tree including a multitude of nodes and a branching structure based on the organizational structure, the multitude including at least one branching node and multiple leaf nodes that correspond to the multiple portions; a PRN component to generate a PRN for each node of the multitude, the PRN component to use a PRN of a branching node of the PRN tree to generate a PRN for a leaf node that depends therefrom; and a communications component to transmit the multiple portions and multiple addresses based on PRNs of leaf nodes of the PRN tree to a server. Other embodiments are described and claimed.
US10348498B2
A system for generating a symmetric encryption key, said system comprising a first terminal, a second terminal and a server, wherein the server is configured to generate a first processing file for the first terminal based on a combination of key data for the first terminal and key data for the second terminal and the key data for the first terminal; generate a second processing file for the second terminal based on a combination of key data for the first terminal and key data for the second terminal and the key data for the second terminal; and send the first processing file to the first terminal and the second processing file to the second terminal; wherein the first terminal is configured to receive the first processing file; extract the combined key data; generate a first random key seed and send it to the second terminal; receive a second random key seed from the second terminal; wherein the second terminal is configured to receive the second processing file; extract the combined key data; generate the second random key seed and send it to the first terminal; receive the first random key seed from the first terminal; whereby the first terminal and the second terminal are each configured to: input the combined key data and the first random seed into a function; input the combined key data and the second random seed into the same function; concatenate the results of the functions into the symmetric encryption key, each terminal thereby generating each copy of the symmetric encryption key.
US10348495B2
Apparatuses and methods associated with configurable crypto hardware engine are disclosed herein. In embodiments, an apparatus for signing or verifying a message may comprise: a hardware hashing computation block to perform hashing computations; a hardware hash chain computation block to perform successive hash chain computations; a hardware private key generator to generate private keys; and a hardware public key generator to generate public keys, including signature generations and signature verifications. The hardware hashing computation block, the hardware hash chain computation block, the hardware private key generator, and the hardware public key generator may be coupled to each other and selectively cooperate with each other to perform private key generation, public key generation, signature generation or signature verification at different points in time. Other embodiments may be disclosed or claimed.
US10348488B1
A method of combining chains of blocks in a network. The method comprising, creating a plurality of birth blocks of a plurality of chains of blocks by a block foundry application in a network, where each birth block is associated with a chain of blocks that records events of a network entity, creating blocks by a plurality of nodes in the network, wherein the current block and the previous block are linked, terminating the chain of blocks by the network entity, wherein the entity sends a termination request to create an end block, creating the end block, wherein the end block is the final block of the chain of blocks, and in response to the creation of the end block, sending a request by the network entity to create a block of a meta-chain of blocks, and creating the block of the meta-chain of blocks by the plurality of nodes.
US10348486B2
A method for at least partially updating encrypted data stored on one or more servers includes dividing the encrypted data into equal sized chunks; encrypting each chunk using an all-or-nothing encryption scheme (AONE) with an encryption key, wherein an additional randomness per chunk is embedded into the AONE; outputting a plurality of ciphertext blocks for each chunk; storing the encrypted chunks on the one or more servers such that an i-th ciphertext block of each encrypted chunk is stored on an i-th server, wherein a result of a predetermined function performed on the randomness for all encrypted chunks is stored with each encrypted chunk; determining one or more chunks to update; reverting the predetermined function by accessing all the encrypted chunks; decrypting the one or more chunks to update based on the result of, updating the decrypted chunks; re-encrypting the updated decrypted chunks, and storing the re-encrypted chunks.
US10348469B2
Embodiments of a high-efficiency WLAN (HEW) master station and method for communicating in accordance with a scheduled OFDMA technique on secondary channels are generally described herein. An access point is configured to operate as part of a basic-service set (BSS) that includes a plurality of high-efficiency WLAN (HEW) stations and a plurality of legacy stations. The BSS operates on a primary channel and one or more secondary channels. In accordance with some embodiments, the access point may communicate with one or more of the HEW stations on one or more of the secondary channels in accordance with a scheduled OFDMA communication technique when the primary channel is utilized for communication with one or more of the legacy devices.
US10348468B2
Provided are a method for transmitting and receiving signals in a wireless communication system including machine type communication (MTC), and a base station and a terminal therefor. The method for transmitting and receiving signals comprises the steps of: receiving repeatedly reference signals from a plurality of resource units; determining whether to perform bundling for the reference signals transmitted from at least one resource unit among the plurality of resource units; and, when it has been decided to perform bundling, estimating a channel by assuming the same precoding for the reference signals transmitted from the at least one resource unit. Whether to perform bundling is determined on the basis of the number of repetition of the reference signals and/or the number of antenna ports.
US10348466B2
Methods, systems, and devices for wireless communication are described. A method may include identifying a reference number of tones for an overhead channel of a transport block and segmenting the transport block into a code block based at least in part on the reference number of tones for the overhead channel. In some examples, a code block indicator or the reference number of tones may be transmitted on a control channel. Another method may include receiving a code block size indicator associated with a code block of a transport block, decoding the code block based at least in part on the code block size indicator and assembling the transport block based at least in part on the decoded code block. In some examples, the code block size indicator may be received using a control channel.
US10348454B2
An error resilience method comprising: using a computer, creating and storing, in computer memory, one or more FEC filter tables for use by the FEC filter for selectively forwarding a FEC packet; selectively forwarding a request for the FEC packet through a FEC filter based on the FEC table and a dynamic packet loss level at a receiver; limiting a re-transmission request for a particular packet through the FEC filter based on a number of re-transmission requests for the particular packet; and selectively skipping a key frame request based on a number of key frame requests received from a plurality receiver devices, wherein the method is performed by one or more special-purpose computing devices.
US10348451B2
Certain aspects of the present disclosure relate to techniques and apparatus for improving decoding latency and performance of Polar codes. An exemplary method generally includes generating a codeword by encoding information bits, using a multi-dimensional interpretation of a polar code of length N, determining, based on one or more criteria, a plurality of locations within the codeword to insert error correction codes generating the error correction codes based on corresponding portions of the information bits, inserting the error correction codes at the determined plurality of locations, and transmitting the codeword. Other aspects, embodiments, and features are also claimed and described.
US10348448B2
A transmitter is provided. The transmitter includes at least one processor configured to implement: a Low Density Parity Check (LDPC) encoder which encodes input bits to generate an LDPC codeword including the input bits and parity bits; a puncturer which calculates a number of bits to be punctured in the parity bits and punctures the parity bits based on the calculated number of bits; and a repeater which selects at least a part of bits of the LDPC codeword based on a repetition pattern, and repeats the selected bits after the parity bits, wherein the repetition pattern is a pattern for selecting at least one bit group including the selected bits among a plurality of bit groups configuring the LDPC codeword.
US10348445B2
A method performed in a base station includes the base station determining a level of interference in a channel between the base station and the wireless communication device based on a signal-to-noise-ratio (SNR) in the channel. The base station determines, in accordance with the determined interference, whether to use a predetermined power level to transmit a message to the wireless communication device. In response to determining to use the predetermined power level, the base station further determines whether the wireless communication device requires downlink signal radio bearer (SRB) assignments. In response to determining that the wireless communication device requires the downlink signal radio bearer assignments, the base station transmits the message to the wireless communication device using a downlink control information (DCI) message format having a same size as a message format used for uplink messages.
US10348432B2
Embodiments of the invention are directed to a cellular communication network that can determine whether communications between one base station-UE pair may interfere with another UE that is in the same cell or a different cell. The network identifies interference parameters associated with interference signals that may be received by a UE. The interference signals may be generated by the base station itself, such as communications with other UEs, or by a neighboring base station. The base station transmits the interference parameters to the UE. The UE receives the one or more parameters comprising information about signals expected to cause intra-cell or inter-cell interference. The UE then processes received signals using the one or more parameters to suppress the intra-cell or inter-cell interference.
US10348424B2
One embodiment is directed to a distributed antenna system (DAS) comprising a plurality of nodes, including a head-end unit and a plurality of remote units that are communicatively coupled to the head-end unit. The head-end unit is configured to receive uplink received signals from remote units that wirelessly transceive signals in a coverage area. The head-end unit is configured to sum two or more of the uplink received signals to produce a summed uplink received signal. At least one of the nodes of the DAS includes a processing device configured to determine a transfer function and apply the transfer function to signals in the DAS to cancel, reduce, attenuate, or eliminate intermodulation byproducts in the summed uplink received signal.
US10348420B2
An antenna monitoring unit for monitoring an RF transmission line and RF signal path to an antenna unit used in a distributed antenna system in a structure. The antenna is DC isolated from the RF transmission line through a current injector, allowing testing by sending a code from a base station to a remote antenna location and using a monitoring module to confirm reception of the code and transmit data to the base station relating to the antenna unit.
US10348418B1
An improved filter for communications over a power bus may provide it to or minimize the effect of voltage spikes on a power line and/or may filter a power line signal with high pass and low pass filters to allow communicative signal reception on noisy power lines, and/or may filter a communicative signal transmitted from a radio modem with low pass filters to prevent high frequency harmonics and spurious signals from being conducted into and thereafter radiated from the power line.
US10348414B2
A CDR circuit for use in an optical receiver is provided that performs automatic rate negotiation. The CDR circuit is configured to determine whether the incoming data signal has a first, second or third data rate. If the CDR circuit determines that the incoming data signal has the first data rate, the CDR circuit places itself in a bypass mode of operations so that CDR is not performed. If the CDR circuit determines that the incoming data signal has the second or third data rates, the CDR circuit places itself in a CDR mode of operations and performs CDR on the incoming data signal.
US10348412B1
An apparatus comprises an optical signal generator configured to provide a first radiation comprising a first nominal carrier frequency and a second nominal carrier frequency, and provide a second radiation comprising a third nominal carrier frequency and a fourth nominal carrier frequency; an optical to electrical converter coupled to the optical signal generator and configured to: generate a first electrical current based on the first radiation and the second radiation without the second radiation passing through the Device under Test (DUT); and generate a second electrical current based on the first radiation and the second radiation after the second radiation passes through the DUT; and a data processor configured to determine a transfer function of the DUT at the third nominal carrier frequency and the fourth nominal carrier frequency based on the first electrical current and the second electrical current.
US10348408B2
A method and an apparatus for transmitting frame data between a near-end device and a remote device are provided. The method includes: generating, by the near-end device, a base frame in a user-defined frame format, wherein a PHY converting chip is built in the near-end device, the base frame includes a first number of super groups, each super group includes a second number of base groups, and each base group includes media access control (MAC) frame structure data and an interframe gap; matching duration of the MAC frame structure data and the interframe gap with an output timing sequence of the PHY converting chip; and converting the base frame into an optical fiber signal through the PHY converting chip, and sending the optical fiber signal to the remote device.
US10348405B2
Multi-functional units incorporating lighting capabilities in converged networks, and related networks and methods are disclosed. The multi-functional units are configured to be included at end points in a wireless communications network to serve as distribution points for distribution of communications services. Each multi-functional unit includes a plurality of wireless communications circuits in a single unit or housing to support multiple communications services. Thus, a single multi-functional unit can be installed in a location to support the multiple communications services to minimize installation footprint. To further conserve installation footprint, the wireless communications network can be provided as a converged network that includes a single communications backbone to converge multiple networks for the multiple communications services supported by the multi-functional units. Further, by the multi-functional units also supporting lighting capabilities, the multi-functional units may be installed in lighting fixture locations to minimize the footprint.
US10348377B2
According to one embodiment of the present disclosure, a communication method of an AP using multiple antennas can be provided, comprising the steps of: setting two or more transmission descriptors including unit transmission information in which antenna combination information and transmission rate information are defined; transmitting a packet using one of the set transmission descriptors; receiving information indicating whether the transmitted packet is a success or not; and collecting the information indicating whether the transmitted packet is a success or not for a predetermined period to reset the transmission descriptors. In addition, an apparatus using the method can be provided.
US10348370B2
One example discloses an apparatus for wireless communication, including: a first wireless device configured to communicate with a second wireless device over a first wireless link, according to a first wireless link protocol; wherein the first wireless link protocol defines communications between the first wireless device and the second wireless device; wherein the first wireless device is configured to monitor communications on a second wireless link between the second wireless device and a third wireless device; wherein the second wireless link is configured according to a second wireless link protocol that defines communications between the second wireless device and the third wireless device; and wherein the first wireless device is configured to spoof the second wireless device in response to an error condition or signal degradation on the second wireless link.
US10348366B2
A networking device is described the device comprising a processor, memory, at least one network device, and a plurality of capacitive and/or inductive based circuits, the circuits being usable for coupling aerials and accessories to the networking 5 device and capable of being used for user input.
US10348362B2
The present disclosure provides a method for fusion and inference with per-hop link quality measurements in frequency hopping satellite communication (SATCOM) systems. The method includes: grouping hops having a same SATCOM link set into one hop group such that the one hop group contains a plurality of same SATCOM link sets; grouping the measurement sets into one or more first measurement groups, based on a link identification; in the each first measurement group having the same link identification, further grouping the measurement sets having a same range of the signal amplitude measurements into one or more second measurement groups; obtaining interference conditions by associating second measurement groups of all links in each hop group based on hop identifications belonging to the second measurement groups.
US10348360B2
A method and a device are described for determining data from a signal spread over at least one frequency base band representing the data. The method for generating a signal has a step of using at least one highly auto-correlated spread code sequence (1C, 2C) associated with the frequency base band for determining a delay with which a modulated portion (1P, 2P) of the data is spread on the signal. The method has further steps of determining said modulated portion from the signal using the delay and the spread code sequence (1C, 2C), of demodulating the modulated portion (1P, 2P) using phase shift keying, and of determining a remainder (1R, 2R) of the data using the delay.
US10348354B1
An explosion proof assembly that includes a first portion with a window; an outer touchscreen adhesively sealed around a perimeter of a first portion rear face; and a second portion releasably coupled to the first portion. The second portion has a second portion inner surface defined by a second portion inner edge that transitions into a second portion dissipation wall. The second portion has a second portion window sealed off by a rear element sealingly engaged around a perimeter of a second portion shoulder surface. The assembly includes a mobile device operable via a mobile device touchscreen. Upon assembly, the outer touchscreen is transmissive to the mobile device touchscreen, and the rear element is inductive to an electromagnetic signal.
US10348353B2
An electronic device protection system can include: a back side surface, a right side surface, a left side surface, a top side surface, a bottom side surface, and a front side surface, the front side surface configured to wrap around onto a front side display of an electronic device, and the back side surface configured to conform to the electronic device; a first surface protrusion having a first outer perimeter, the first surface protrusion located on the back side surface; a second surface protrusion having a second outer perimeter, the second outer perimeter larger than the first outer perimeter; and a connection cutout formed within the top side surface or the right side surface.
US10348337B2
A data read method for a memory storage device is provided. The data read method includes: receiving a first read command from a host system for reading first data; calculating an error bit number of the first data; and performing a correction of the first data. If the error bit number is not greater than a predetermined number, finishing the correction of the first data and returning the corrected first data at a pre-defined timing. If the error bit number is greater than a predetermined number, finishing the correction of the first data and returning the corrected first data after the pre-defined timing. In addition, a memory storage device using the data read method is also provided.
US10348333B2
Apparatus, methods, and systems are disclosed for performing bit error correction on a data stream. In some aspects, the described systems and methods may include a plurality of memory devices, a first interface, and a field programmable gate array. The field programmable gate array may include a memory controller and a plurality of re-programmable gates. At least one of the re-programmable gates may be configured as a read-only memory (ROM) to store a syndrome decode memory table, wherein the syndrome decode memory table may be configured to perform bit error correction on the data stream being read and/or written to at least one memory device of the plurality of memory devices via the first interface.
US10348324B2
A digital-to-analog converter including a resistor string configured to provide a plurality of gradation voltages formed by receiving a top voltage at one end thereof and a bottom voltage at the other end; a plurality of pass transistors including a pass transistor having one end which is electrically connected to the resistor string and outputting any one among the plurality of gradation voltages; and a decoder configured to control the plurality of pass transistors. The plurality of the pass transistors are included in any one among a plurality of groups according to values of the gradation voltages, and the pass transistors included in the any one group are divided into a first group and a second group according to output gradation voltages, and pass transistors included in the first group and pass transistors included in the second group are different types of pass transistors.
US10348323B2
An analog-to-digital converter (110) comprises an analog signal input (122) for receiving an analog signal and an amplifying stage (160) configured to generate a set of N amplified analog signals, where N is an integer ≥2. The set of N signals have different gains. The ADC has a ramp signal input (121) for receiving a ramp signal and a clock input (143) for receiving at least one clock signal. A comparison stage (120) is connected to the set of amplified analog signals (SigG1, SigG2) and to the ramp signal input (121). The comparison stage (120) is configured to compare the amplified analog signals with the ramp signal to provide comparison outputs during a conversion period. A control stage is configured to control the counter stage (140) based on the comparison outputs and a selection input indicative of when at least one handover point has been reached during the conversion period.
US10348322B1
A semiconductor device includes a trimming circuit for a power management circuit. The trimming circuit includes an analog to digital converter (ADC) circuit with a comparator circuit, a successive approximation register (SAR) circuit having an input coupled to an output of the comparator circuit, a control circuit coupled to the SAR circuit, a digital to analog converter (DAC) circuit having inputs selectively couplable to digital output signals of the SAR circuit and an output coupled to a first input of the comparator circuit, and a variable resistance circuit configured to be selectively coupled to output signals of the ADC circuit.
US10348300B2
A method for adiabatic charging of a capacitive load sequentially connects outer switches between a voltage VDD and ground and inner switches to at least one capacitance that self-balances between VDD and ground. A voltage waveform is provided to the capacitive load from a common node of the outer switches and the inner switches. An adiabatic charging circuit includes outer transistor switches between a voltage VDD and ground. Inner transistor switches are connected to at least one capacitance that self-balances between VDD and ground. A control signal generating circuit generates control signals for the inner and outer transistor switches that sequentially turn the inner and outer switches on and off to create a multi-level voltage staircase waveform at a common node of the inner and outer transistor switches.
US10348297B2
The present invention relates to a high power compact alternate current voltage reducing power strip which comprises an input end and an output end; a high power bidirectional thyristor circuit is positioned between the input end and the output end; the high power bidirectional thyristor circuit controls output voltage at the output end according to voltage level at the input end; the high power bidirectional thyristor circuit performs control by a relay control circuit in cooperation with a sampling drive trigger circuit; the relay control circuit is controlled by a rectifier filter comparison sampling circuit; the rectifier filter comparison sampling circuit performs rectification, filter, sampling and comparison on power supply from the input end, so that power fulfilling the voltage requirement is directed to the operating sockets at the output end, thereby ensuring power.
US10348295B2
A packaged unidirectional power transistor comprises a package with a number of pins which provide a voltage and/or current connection between the outside and the inside. Inside the package, a bidirectional vertical power transistor is present with a controllable bidirectional current path, through a body of the bidirectional vertical power transistor, between a first current terminal of the bidirectional vertical power transistor connected to the first current pin and a second current terminal of the bidirectional vertical power transistor connected to the second current pin. A control circuit connects the control pin to the body terminal and the control terminal to drive the body and the control terminal, which allows current through the body in a forward direction, from the first current terminal to the second terminal, as a function of the control voltage, and to block current in a reverse direction regardless of the voltage.
US10348282B1
This application relates to time-encoding modulators (TEMs). A TEM (100) receives an input signal (SIN) and outputs a time encoded signal (SPWM). A comparator (101) is located within a forward signal path of a feedback loop of the TEM. Also in the feedback loop are a filter (104) and a delay element (106) for applying a controlled delay. In some embodiments a latching element (101, 302; 106, 402) is located within the forward signal path to synchronize any signal transitions output from the latching element to a received first clock signal. Any signal transitions in the output (SOUT) from the modulator are thus synchronized to the first clock signal. In some embodiments the delay element (106) is a digital delay element which is synchronized to the first clock signal.
US10348278B2
An apparatus of performing a clock skew adjustment between at least first and second clock signals includes first and second skew sensors and a skew controller. The first skew sensor receives a third clock signal obtained by delaying the first clock signal by a first delay and a fourth clock signal obtained by delaying the second clock signal by a second delay, and generates first information based on the third and fourth clock signals. The second skew sensor receives a fifth clock signal obtained by delaying the first clock signal by a third delay and a sixth clock signal obtained by delaying the second clock signal by a fourth delay, and generates second information based on the fifth and sixth clock signals. Each of the first and second information varies depending on the clock skew. The skew controller performs the clock skew adjustment based on the first and second information.
US10348277B2
There is provided an oscillator which includes a current source, a capacitor coupled between the current source and a reference ground, a first switch coupled to the capacitor in parallel, an error amplifier, a comparator and a one-shot circuit. The error amplifier is coupled to the capacitor and configured to generate a regulation voltage based on a reference voltage and the voltage across the capacitor. The comparator is configured to compare the voltage across the capacitor with the regulation voltage and generate a comparison signal. The one-shot circuit is coupled to the comparator, wherein based on the comparison signal, the one-shot circuit generates a trigger signal to control the first switch.
US10348255B1
A wideband transimpedance amplifier circuit is provided. The wideband transimpedance amplifier circuit includes a common-gate transistor, a bias current controlling circuit and an amplifier circuit. The bias current controlling circuit is coupled to a source of the common-gate transistor. The amplifier circuit is coupled to a drain of the common-gate transistor. The bias current controlling circuit adjusts the input impedance of the wideband transimpedance amplifier circuit according to the output signal of the amplifier circuit.
US10348252B2
An amplifier circuit includes: a first inverter and a second inverter coupled in a cross-coupled form during an amplification operation and suitable for amplifying a voltage difference between a first line and a second line; a first isolation switch suitable for electrically connecting the first line and an output terminal of the first inverter to each other; a second isolation switch suitable for electrically connecting the second line and an output terminal of the second inverter to each other; and an equalizing switch suitable for electrically connecting the output terminal of the first inverter and the output terminal of the second inverter to each other, wherein before the amplification operation, a first offset compensation operation for turning on the second isolation switch and the equalizing switch and a second offset compensation operation for turning on the first isolation switch and the equalizing switch are performed.
US10348249B2
A method can be used to measure a load driven by a switching amplifier having a differential input, an LC output demodulator filter and a feedback network between the amplifier output and the differential input. The amplifier is AC driven in a differential and in a common mode by applying a common. The feedback network provides feedback towards the differential input from downstream the LC demodulator filter by computing the impedance of the load as a function of the differential mode output current and the common mode output current. The feedback network provides feedback towards the differential input from upstream the LC demodulator filter by measuring the impedance value of the inductor of the LC demodulator filter, and computing the impedance of the load as a function of the differential mode output current, the common mode output current and the impedance value of the inductor of the LC demodulator filter.
US10348244B2
A method and a circuit for exciting a crystal oscillation circuit are disclosed herein. The crystal oscillation circuit comprising: charging, with a charging circuit, a voltage-controlled oscillator; providing, with the voltage-controlled oscillator, an exciting signal; blocking, with a direct current blocking capacitor, direct current from the voltage-controlled oscillator to the crystal oscillation circuit; and exciting, with the exciting signal, the crystal oscillation circuit. The circuit for exciting a crystal oscillation circuit, comprising: a charging circuit; a voltage-controlled oscillator coupled to the charging circuit and configured to provide an exciting signal to the crystal oscillation circuit; and a direct current blocking capacitor connected between the voltage-controlled oscillator and the crystal oscillation circuit and configured to block direct current from the voltage-controlled oscillator.
US10348243B2
Embodiments of the present disclosure provide a circuit structure including: a switching transistor including a gate terminal, a back-gate terminal, a source terminal, and a drain terminal; a biasing node coupled to the back-gate terminal of the switching transistor, the biasing node being alternately selectable between an on state and an off state; a first capacitor source-coupled to the switching transistor; a second capacitor drain-coupled to the switching capacitor; and a first enabling node source-coupled to the switching transistor, the first enabling node being alternately selectable between an on state and an off state.
US10348236B2
A vehicle includes an electrically-driven motor configured to actuate a vehicle component and a power source configured to provide power to the motor over an electrical circuit. The vehicle also includes a controller programmed to monitor at least one signal indicative of motor output and store data indicative of a resistance in the circuit. The controller is also programmed to issue a resistance state of health signal in response to the resistance in the circuit exceeding a predetermined resistance threshold.
US10348235B2
A motor control unit includes a PWM count changer that when, out of all possible combinations of any two of three phases, at least one of the combinations has a difference in PWM count less than a threshold value, changes a PWM count of at least one of the two phases of the at least one of the combinations for each of PWM periods within a current control period, without changing the total of the PWM counts of the at least one of the two phases within the current control period, such that each of the combinations has a difference in PWM count greater than or equal to the threshold value.
US10348234B2
An electronic control unit is configured to perform pulse width modulation control. The pulse width modulation control is to generate signals of a plurality of switching devices of an inverter by comparing a modulation wave of a voltage command of each phase based on a torque command of the motor, with a carrier wave, and perform switching of the switching devices. The electronic control unit is configured to generate the carrier wave so that, in each unit interval, a required time in the unit interval is equal to a total time of a plurality of unit components, and, in at least one unit interval, durations of at least two unit components of a plurality of unit components are different from each other.
US10348230B2
A control device for an AC rotary machine includes a magnetic-pole-position correction amount calculation device that calculates a magnetic-pole-position correction amount based on a detection-current vector detected when a voltage application device applies a voltage to the AC rotary machine according to a voltage command and on the voltage command, and stores in a storage device the magnetic-pole-position correction amount as it is associated with the detection-current vector. At normal operation of the AC rotary machine, a voltage-vector command generation device generates a voltage command for normal operation based on the detection-current vector detected by a current vector detection device and the magnetic-pole-position correction amount associated with the detection-current vector.
US10348227B2
One aspect of the present disclosure relates to an electric power tool including a motor, an operation unit, a bridge circuit, and a control unit. The control unit performs a brake control when the motor is braked, and performs a regenerative current inhibition control before stopping the brake control when a drive command is inputted to the operation unit while the brake control is performed.
US10348220B2
A PWM modulation circuit controls low-side transistors of three phases to all be in an ON state when a brake current flows; controls, in a period in which a brake current flows in a first direction in one phase, a transistor for sensing in that one phase to be in an ON state; and controls, in a period in which a brake current flows in the first direction in two phases, transistors for three phases to be in an OFF state. When the brake current is to flow, sense-phase control circuits for the three phases control a transistor for sensing, in a phase in which the brake current flows in a sink direction, to be into an ON state, and controls the transistor for sensing in a phase in which the brake current flows in an opposite direction, to be into an OFF state.
US10348213B2
A DC-DC converter includes a voltage input portion that receives a DC voltage, a voltage output portion to which a load is connected, a transformer that includes at least a primary winding and a secondary winding, a main switch element between the voltage input portion and the primary winding of the transformer, a rectifier circuit between the voltage output portion and the secondary winding of the transformer, and a reset voltage suppressing circuit that detects a magnitude of a reset voltage generated when excitation energy accumulated in the transformer is reset and reduces a voltage which is applied to the main switch element when the magnitude of the reset voltage exceeds, for example, a predetermined threshold value.
US10348212B2
A synchronous rectification controller includes a first gate pin coupled to a gate of a first synchronous rectification transistor, a first drain pin coupled to a drain of the first synchronous rectification transistor, a second gate pin coupled to a gate of a second synchronous rectification transistor, a second drain pin coupled to a drain of the second synchronous rectification transistor, a source pin coupled to a ground, a multiplexer selecting a voltage applied to the first drain pin in a first state, and selecting a voltage applied to the second drain pin in a second state, a pulse generator generating a pulse signal based on an output voltage of the multiplexer, a driving circuit switching the first synchronous rectification transistor according to the pulse signal in the first state, and switching the second synchronous rectification transistor according to the pulse signal in the second state.
US10348211B2
In a power conversion device, a voltage at an input/output terminal of a primary-side circuit is divided by a first capacitor and a second capacitor, and a center tap provided to the primary winding of a transformer is connected to a node between the first capacitor and the second capacitor. With this, an intermediate voltage can be output. Further, transmission power can be controlled under a state where a voltage at the first capacitor and a voltage at the second capacitor are balanced, through adjustment of switching phases of a first full bridge circuit that is the primary-side circuit and a second full bridge circuit that is a secondary-side circuit.
US10348210B2
Circuits and devices are described that provide power to appliances and other devices via a power correction circuit and an LLC converter, which may for example include resonant series converters and flyback converters. The circuits and devices economize on board space, part size and power start up time by separately powering up the controller circuit portion prior to powering up the LLC converter.
US10348209B2
Provided is a DC/DC converter which has a full bridge configured in a switching unit and uses a half bridge, which is subordinate to the full bridge in view of circuit configuration, to automatically select such one of the multi-topologies. More particularly, the DC/DC converter uses multi-topologies, which receives, in real time, feedback of an output voltage charged to a battery, operates using the half bridge when the output voltage charged to the battery is lower than a reference voltage, and operates using the full bridge when the output voltage charged to the battery is equal to or higher than the reference voltage, so as to output a wider range of voltage.
US10348207B2
A control system for a DC-DC voltage converter includes a microcontroller having first and second applications. The first application commands the microcontroller to generate a first signal that is received at a first pin on a high side integrated circuit to transition a first plurality of FET switches to an open operational state, and that is received at a first pin on the low side integrated circuit to transition a second plurality of FET switches to the open operational state. The second application commands the microcontroller to generate a second signal that is received at a second pin on the high side integrated circuit to transition the first plurality of FET switches to the open operational state, and that is received at a second pin on the low side integrated circuit to transition the second plurality of FET switches to the open operational state.
US10348204B2
An electronic system, DC-DC voltage converter, method of operating a buck-boost DC-DC converter, and method for power mode transitioning in a DC-DC voltage converter are disclosed. For example, one method includes receiving a compensated error signal associated with an output voltage of the DC-DC voltage converter, determining a power mode of operation of the DC-DC voltage converter, and if the power mode of operation is a first mode, outputting a first control signal to regulate the output voltage of the DC-DC voltage converter. If the power mode of operation is a second mode, outputting a second control signal to regulate the output voltage of the DC-DC voltage converter, and if the power mode of operation is a third mode, outputting a third control signal to regulate the output voltage of the DC-DC voltage converter.
US10348202B2
A modular dc-dc boost converter system is provided that can substantially improve efficiency over a wide range of input and output voltages. The system includes three modules: a buck module, a boost module, and a dc transformer module. These modules are interconnected such that the system output voltage is equal to the sum of the output voltages of adc-dc converter module and a dc transformer module. Depending on the operating point, one or more modules may operate in passthrough mode, leading to substantially reduced ac losses. The required capacitor size and the transistor voltage ratings are also substantially reduced, relative to a conventional single dc-dc boost converter operating at the same input and output voltages.
US10348200B2
Described is an apparatus which comprises: an output node; a capacitor; an inductor having a first terminal coupled to the output node, and a second terminal coupled to the capacitor; a bridge to receive an input power supply and to generate a switching voltage signal at the output node; and a current sensor to determine slope of the switching voltage signal on the output node.
US10348188B2
When an abnormality occurs in a first voltage sensor that detects a voltage of a power line on a high voltage side or a second voltage sensor that detects a voltage of a power line on a low voltage side, an estimated voltage of the power line on the high voltage side is calculated based on a detected current of a reactor that is detected by a current sensor that detects a current of the reactor as the detected current, and a step-up converter is controlled using the estimated voltage of the power line on the high voltage side.
US10348185B1
A method for sensing an output current of a Direct Current-to-Direct Current (DC/DC) converter having an external power stage configured to supply a converted current to an external inductor. During a calibration phase at a first start-up of the DC/DC converter: the method includes injecting a calibration current through a switching node of the power stage and through the inductor; and determining a calibration gain of the DC/DC converter to compensate for DC Resistance (DCR) variation by comparing a gain-adjusted voltage across the inductor with a reference voltage. During a measurement phase, the method includes reducing ripple voltage of a switching voltage at the switching node to generate a ripple-reduced switching voltage; and sensing the output current based on a DCR-compensated voltage across the inductor, which is a difference between the ripple-reduced switching voltage and an output voltage of the DC/DC converter with compensation for the DCR variation based on the calibration gain.
US10348184B2
A power system is presented. The power system includes a first converter including a first output terminal a first control unit coupled to the first converter, a second converter including a second output terminal, where the second converter is coupled in parallel to the first converter, and a second control unit coupled to the second converter. The second control unit is configured to measure a plurality of phase currents at the second output terminal, determine a harmonic current transmitted by the second converter based on single phase current of the plurality of measured phase currents, and change a time-period of at least one switching cycle of a carrier wave of the second converter based on the determined harmonic current to synchronize with a carrier wave of the first converter.
US10348182B2
A switching converter with quasi-resonant control having a switch and an energy storage component, comprising a peak current regulating circuit configured to provide a peak current regulating signal to regulate a peak current signal or a current sense signal, wherein the peak current regulating signal is adjusted when non-CCM (Current Continuous Mode) and non-valley-switching are detected.
US10348174B2
An electric motor includes a rotor and a stator including a stator core, a plurality of armature windings, a plurality of field windings, and a plurality of bonded magnets. The stator core has a plurality of teeth alternately defining field slots and armature slots along a circumferential direction, and a stator yoke magnetically coupling the plurality of teeth opposite the rotor. Each armature winding is wound around two of the teeth sandwiched between an adjacent pair of the armature slots. Each field winding is wound around two of the teeth sandwiched between an adjacent pair of the field slots. The magnets are individually located in the field slots while opposing the field windings in the radial direction. Each adjacent pair of the magnets along the circumferential direction respectively has an adjacent pair of pole surfaces, with the adjacent pair of pole surfaces having a same polarity.
US10348172B2
A motor including a sealed rotor with at least one salient rotor pole and a stator comprising at least one salient stator pole having an excitation winding associated therewith and interfacing with the at least one salient rotor pole to effect an axial flux circuit between the at least one salient stator pole and the at least one salient rotor pole.
US10348165B2
A noise suppression circuit for use with a noise source connected to ground may include a first capacitor having a first terminal and a second terminal, the first terminal of the first capacitor being connected to the noise source; and a first impedance element having a first terminal and a second terminal, the first terminal of the first impedance element being connected to the second terminal of the first capacitor and the second terminal of the first impedance element being connected to the ground.
US10348162B1
A generator includes a housing, a rotor within the housing and rotatable about an axis of rotation, and a coolant sump within the housing and arranged axially parallel with the axis of rotation, wherein an aeroline of the generator can at least partially limit an aeroline of an engine cowling.
US10348153B2
A blower motor assembly including a blower motor case for housing a blower motor therein. A controller retention portion of the blower motor case is configured to accommodate a controller within the blower motor case. An airflow inlet is defined by the blower motor case at an exterior of the blower motor case. An airflow passageway of the blower motor case extends from the airflow inlet to the controller retention portion to direct airflow to the controller. A flange of the blower motor case is at an end of the airflow passageway that is opposite to the airflow inlet. The flange is arranged opposite to the controller retention portion and to the controller to direct to the controller airflow that has passed through the airflow inlet and the airflow passageway.
US10348148B2
A stator includes an annular stator core and a multi-phase stator coil. The stator core has slots arranged in a circumferential direction thereof. The stator coil is comprised of phase windings that are mounted on the stator core so as to be received in the slots of the stator core. The stator coil has an annular coil end part protruding axially outward from an axial end face of the stator core. The stator coil includes, at least, two lead wires and a joint. Each of the lead wires is connected with one of the phase windings of the stator coil and led out from a radially inner periphery of the coil end part. At the joint, distal ends of the lead wires are joined to each other. Adjoining portions of the lead wires, which adjoin each other, are arranged radially inside a radially-inner peripheral surface of the coil end part.
US10348146B2
A permanent magnet motor, generator or the like that is liquid cooled using glycol or similar fluid with the cooling applied directly in the winding slots of the stator and in self contained loops such that no adverse loops are formed.
US10348142B2
A stator of an electric machine has an annular stator body with a multiplicity of winding slots. The winding slots protrude into the stator body in the manner of a pocket from a ring interior. Respective windings are disposed in the winding slots and the slots are sealed toward the ring interior with slot-liner elements. The slot-liner elements of all the winding slots are combined to form a slot-liner cage. The slot-liner cage is formed with circumferential cage rings at the ends of the slot-liner elements. The cage rings have an interruption at a circumferential point. The circumferential point has a self-retaining lock geometry which prevents an autonomous opening of two intermeshing ring ends of the cage rings.
US10348137B2
A power supply apparatus comprises: a power supply unit configured to perform wireless power supply to an electronic device; a communication unit configured to communicate with the electronic device using power for the wireless power supply; one or more processors; and a memory storing instructions which, when the instructions are executed, cause the power supply apparatus to function as: an acquisition unit configured to acquire information for performing communication using the power; and a control unit configured to control communication with the electronic device based on the information, wherein in a case where the electronic device can perform communication using the power, the control unit controls the communication unit such that a modulation degree indicating a degree to which an amplitude changes in amplitude modulation for the communication is smaller the higher the power transmitted is.
US10348134B2
Methods and apparatuses for performing wireless charging are disclosed. One of the disclosed apparatuses is a wireless power receiver which can receive charging power from a wireless power transmitter. When the wireless power receiver receives, through a power receiving circuit, from a wireless power transmitter, a first power for initiating a communication unit; establishes a communication connection with the wireless power transmitter while receiving the first power; performs, by the communication unit, communication with the wireless power transmitter; receives, through the power receiving circuit, from the wireless power transmitter, a second power for charging; transmits, by the communication unit, to the wireless power transmitter, a message indicating a mode transition of the communication unit; terminates the communication with the wireless power transmitter; performs the mode transition for a time period while receiving the second power; and resumes the communication with the wireless power transmitter, after performing the mode transition.
US10348128B2
A voltage control device includes a fluctuation calculating unit that calculates voltage tolerance, which is a difference between a voltage measured by a voltage control apparatus and a proper voltage upper limit value or a proper voltage lower limit value, and voltage sensitivity, which is a ratio of a fluctuation amount of active power and a fluctuation amount of the voltage, a change-request-information generating unit that generates information for requesting a change of a limit value of a control target range of other voltage control devices, a change processing unit that performs a change of a limit value of a control target range of the voltage control device according to content of the change request information, and a communication processing unit that transmits the change request information to the voltage control devices other than the voltage control device. The change request information includes information indicating voltage tolerance and voltage sensitivity.
US10348126B2
A battery switching method applicable to an electronic device is provided. The electronic device comprises a first battery and a second battery. The method comprises: (a) switching the electronic device to a sleep mode from a normal mode; (b) switching a power supply of the electronic device to the second battery according to a removing signal triggered by removing the first battery; (c) switching the power supply of the electronic device to the first battery according to an inserting signal triggered by inserting the first battery; (d) updating parameters of the first battery; and (e) switching the electronic device to the normal mode from the sleep mode.
US10348122B2
One or more techniques and/or systems are provided for providing power to a plurality of dispensers. For example, a supply coupler, such as an alternating current to direct current power converter, is coupled to an energy storage component and/or a load coupler of a power distribution apparatus. The supply coupler provides power over the load coupler to one or more dispensers for operation. The supply coupler provides power to the energy storage component for energy storage. Responsive to a load on the power distribution apparatus exceeding a supply current of the power provided by the supply coupler (e.g., multiple dispensers may attempt to perform concurrent dispense events), the energy storage component may discharge energy to provide additional power to one or more dispensers to facilitate concurrent dispense events. Because the power distribution apparatus may connect to multiple dispensers, a cord management device may be used for power cord management.
US10348121B2
The present disclosure discloses a charging system, a lightning protection method for a terminal during charging and a power adapter. The charging system includes a power adapter and a terminal. The power adapter includes a first rectifier, a switch unit, a transformer, a second rectifier, a first charging interface, a second voltage sampling circuit, and a control unit. The control unit adjusts a duty ratio of a control signal such that a third voltage with a third ripple waveform outputted by the second rectifier meets a charging requirement, and controls the switch unit to switch on for a first predetermined time period for discharging when the voltage value sampled is greater than a first predetermined voltage value. The terminal includes a second charging interface and a battery. When the second charging interface is coupled to the first charging interface, the second charging interface applies the third voltage to the battery.
US10348113B2
An electronic apparatus including a power supply circuit and an electronic apparatus body is provided. The power supply circuit includes a power input port, a first power circuit, a battery module, a reset circuit and a second power circuit. The power input port receives an input power. The first power circuit converts the input power and outputs a first power to charge the battery module. The reset circuit generates a reset pulse signal responding to that the input power starts to be provided. The battery module is controlled by the first power circuit to provide the first power to the second power circuit if the input power is not provided. The second power circuit converts the first power, accordingly provides an output voltage signal to the electronic apparatus body, and resets the electronic apparatus body by disabling the output voltage signal responding to the reset pulse signal.
US10348110B2
A battery pack (30) is configured to couple to a power tool (10) by sliding in a sliding direction and it contains a plurality of cells (31). A pair of battery-side, electric-power terminals (312a, 312b, 314a, 314b) and a battery-side signal terminal (313) can be electrically connected to a pair of tool-side, power-supply terminals (212, 214) and a tool-side signal terminal (213), respectively, which are provided on the power tool (10). The pair of battery-side, electric-power terminals (312a, 312b, 314a, 314b) and the battery-side signal terminal (313) are disposed in parallel adjacently in a direction that intersects the sliding direction.
US10348106B2
A wireless charging device includes a plurality of charging coils, a plurality of position detection coils corresponding respectively to the charging coils, and a voltage monitoring circuit for measuring a coil-end voltage of each of the position detection coils. A comparison is performed between a coil-end voltage of a first position detection coil corresponding to a charging coil used for charging and a coil-end voltage of a position detection coil adjacent to the first position detection coil, and, depending on a result of the comparison, a charging coil to be used for charging is switched to an adjacent charging coil.
US10348103B2
A portable electric vehicle support equipment (EVSE) unit is formed as a cord of plural insulated conductors and a flexible outer sheath enclosing said plural insulated conductors. The cord includes an EVSE docking connector on a docking end of the cord and a utility plug on a utility end of the cord, said cord being divided into a docking section terminated at said docking connector and a utility section terminated at said utility connector. The cord further includes an in-line EVSE controller and a housing enclosing said controller, said housing sealed with said flexible outer sheath and disposed at an intermediate section of said cord between said docking and utility sections.
US10348101B2
A battery system comprising multiple battery packs. A battery pack of the battery packs includes a battery, voltage sense circuitry, a control circuit, a control switch and current regulation circuitry. The voltage sense circuitry senses a battery voltage of the battery and an input voltage of the battery pack. The control circuit is coupled to the sense circuitry and is operable for adjusting a level of a reference signal based on attribute data associated with the battery pack and a difference between the battery voltage and the input voltage. The control switch is operable for passing a battery current flowing through the battery. The current regulation circuitry is coupled to the control circuit and the control switch, and is operable for controlling the control switch to regulate the battery current according to the reference signal.
US10348092B1
The electrical power distribution control device controls the flow of electricity between the electric grid and one or more alternate sources, including, but not limited to, back-up generators, photovoltaic cells or wind turbines. The electrical power distribution control device monitors the status of the one or more alternate sources, an optional battery, and the electric grid and switches and balances the electric load between the one or more alternate sources and the electric grid to minimize power costs. The electrical power distribution control device comprises a controller, a plurality of relays, and a plurality of sensors.
US10348091B2
A method for operating an energy supply network, wherein energy generation is decentralized, the energy supply network has three supply levels, and energy is generated in each supply level and is fed into the particular supply level, where the three supply levels each form an independent control unit that is connectable or disconnectable via interfaces between the control units as needed, an operator region is associated with each of the control units, in which operator region an energy feed-in and an energy consumption for the respective associated control unit are combined and controlled, and where an exchange of energy amounts between the control units is then controlled, such as in a demand-oriented manner, by the respective operator areas via the interfaces between associated control units by the control of parameters defined between the control units, such that the entire energy supply network can be dynamically controlled in a simple manner.
US10348088B2
In at least one embodiment, a bi-directional power conversion device including a DC/DC converter, an inverter, and a bi-directional store device is disclosed. The DC/DC converter is configured to generate a first direct current (DC) output in response to a first DC input in a consumer mode and to receive a second DC input to power the low voltage zone in a vehicle charge mode. The inverter is configured to generate an alternating current (AC) output to power at least one consumer device in response to the first DC output in the consumer mode and to provide the second DC input to the DC/DC converter in response to an AC input signal from an AC power source in the vehicle charge mode. The bi-directional storage device is configured to store the first DC output in the consumer mode and to store the second DC input in the vehicle charge mode.
US10348082B2
According to one aspect, a thermal protection device is provided having an electrical input for receiving input DC power and an electrical output for connection to a load. A heating circuit is coupled to the electrical input for developing one of first and second different heat magnitudes depending upon a temperature magnitude in the housing. An additional circuit is in thermal communication with the heating circuit for providing output DC power to the electrical output when the first heat magnitude is developed and for interrupting the output DC power when the second heat magnitude is developed.
US10348080B1
A method and system for monitoring fuses in a vehicle are provided. The method includes receiving data from a fuse monitor coupled to one or more fuses. Each fuse associated with one or more electronic devices of the vehicle. The method also includes analyzing the data to determine whether a faulty fuse is detected and outputting an alert to a display of the vehicle in response to detecting a faulty fuse. The alert includes at least one of a fuse location, a fuse type, or fuse replacement information and activates a fuse application of the display of the vehicle to cause the alert to output on the display.
US10348078B2
A dispenser apparatus for a curable liquid material is disclosed. The apparatus comprises a flexible bag defining a first compartment for accommodating a first component of a curable liquid material, and a second compartment for accommodating a second component of the curable liquid material and adapted to communicate with the first chamber to enable mixing of the first and second components to initiate curing of the curable liquid material. A first clamp temporarily prevents mixing of the first and second components, and an elongate nozzle communicates with the second compartment to dispense the mixed curable liquid material therefrom. A second clamp temporarily prevents passage of the curable liquid material from the second compartment to the nozzle.
US10348076B2
A mounting assembly including a mount member having a head portion and a stud portion extending downwardly from the head portion, and a clip member affixed to the stud portion of the mount member. The head portion may include slot which interacts with a flexible tie for bundling elongate items. The flexible tie may be integrally formed with the assembly or may be provided as a separate piece. A clip member for use with the assembly clip member includes at least one extending arm portion for engaging a reentrant bore and preventing axial withdrawal of the assembly. The arm portion may have a bifurcated end. A diaphragm spring extending downwardly from the head portion may also be provided.
US10348066B2
An apparatus includes a cell pan that supports a circuit breaker within a switchgear cell, and a lift pan that carries a circuit breaker outside of the switchgear cell. The lift pan has a track for a roller on the circuit breaker. The apparatus further includes an extension rail that interconnects the lift pan with the cell pan in an aligned position. With the lift pan in aligned position, the track on the lift pan can receive the roller upon horizontal draw-out movement of the circuit breaker from the cell pan. A latch on the extension rail has a blocking position in which it blocks the roller from rolling outward off the cell pan, and has a non-blocking position in which it does not block the roller from rolling outward off the cell pan. The latch automatically moves from the blocking position to the non-blocking position under the influence of the lift pan upon movement of the lift pan into the aligned position.
US10348064B2
A submodule includes a power pack including a plurality of switching modules, first and second input bus bars connected with the switching modules to protrude toward a first outside of the power pack and a bypass switch provided at the first outside of the power pack and coupled to the first and second input bus bars.
US10348056B2
Laser diode comprises an active layer; a waveguiding region at least partially surrounding the active layer; a rear facet; a front facet designed for outcoupling laser radiation, wherein the active layer extends at least partially along a first axis (X) between the rear facet and the front facet; and a grating operatively connected to the waveguiding region, wherein the grating comprises a plurality of bridges and trenches designed such that an average increase of a coupling parameter P for the plurality of trenches along the grating is non-zero, wherein the coupling parameter P of a trench is defined by the equation, wherein dres is a distance of the trench to the active layer, w is a width of the trench and Δn is the refractive index difference between a refractive index of the trench and a refractive index of a material surrounding the trench.
US10348055B2
A laser apparatus is provided, comprising a semiconductor substrate, an active layer disposed on the semiconductor substrate, a folded waveguide disposed on the active layer and forming a resonant structure, the folded waveguide comprising at least two substantially straight waveguide portions coupled by a connecting waveguide structure, with the folded waveguide having a first end and a second end located at one or more edges of the semiconductor substrate, wherein at least one of the ends includes a mirror, and an electrode coupled to the folded waveguide and configured to create photons in the folded waveguide when receiving electrical power. The waveguide emits laser light comprising the photons, with the laser light emitted at an edge of the semiconductor substrate.
US10348051B1
In one embodiment, a fiber-optic amplifier includes an optical gain fiber configured to amplify input light received from a seed laser. The optical gain fiber includes a first gain section configured to: receive the seed-laser input light and co-propagating pump light; and amplify the seed-laser input light as it propagates along the first gain section. The seed-laser input light and the co-propagating pump light propagate along the first gain section in a same direction. The optical gain fiber also includes a second gain section configured to: receive the amplified input light from the first gain section; receive counter-propagating pump light; and further amplify the amplified input light as it propagates along the second gain section. The amplified input light and the counter-propagating pump light propagate along the second gain section in opposite directions. The fiber-optic amplifier also includes a first pump laser diode and a second pump laser diode.
US10348050B2
An Nd3+ optical fiber laser and amplifier operating in the wavelength range from 1300 to 1450 nm is described. The fiber includes a rare earth doped optical amplifier or laser operating within this wavelength band is based upon an optical fiber that guides light in this wavelength band. The waveguide structure attenuates light in the wavelength range from 850 nm to 950 nm and from 1050 nm to 1150 nm.
US10348047B2
A brush holder assembly for use in an electrical generator having a moving conductive surface may include a brush holder, such as a brush box, that is configured to be removably mounted to a mounting element on the electrical generator. A carbon brush may be slidingly disposed with the brush holder and may be biased into sliding contact with the moving conductive surface. The brush holder assembly includes a handle that is moveable between an unlocked position in which the brush holder is removable from the mounting element and a locked position in which the brush holder is secured relative to the mounting element. A circuit board is disposed within the handle and includes a sensor that provides an indication of an occurrence of an anomalous and/or threshold condition of the carbon brush.
US10348045B2
An electrical connector for use with wires is disclosed that includes an electrical contact and an insulated housing. The electrical contact includes a wire contact portion and a connector contact portion. The wire contact portion connects the electrical connector to a wire. The connector contact portion includes a male contact prong and a female contact socket. The electrical contact may be positioned within an insulated housing that is designed to connect both the male contact prong and the female contact socket when mated with another electrical device.
US10348021B2
An explosion proof connector is provided with first and second electrical connectors and first and second threaded sidewalls that surround the electrical connectors. The threaded sidewalls engage to secure the electrical connectors in electrical connection. Either the first threaded sidewall is rotatable relative to the first electrical connector or the second threaded sidewall is rotatable relative to the second electrical connector. A ratchet lock is carried by the first sidewall, and a ratchet surface is carried by the second sidewall, the ratchet lock being releasable and biased toward engagement with the ratchet surface. The ratchet lock permits rotation of the second sidewall relative to the first sidewall in a first direction and prevents rotation of the second sidewall relative to the first sidewall in a second direction. A release mechanism disengages the ratchet lock and permits the second sidewall to rotate in the second direction relative to the first sidewall.
US10348018B2
A fork type electrical connector for use in providing an electrical joint includes a first connector part having a body that supports two spaced prongs; a second connector part including a conductive element with a first face and a second opposing face and which is shaped so as to define a rail flanked on opposing sides by respective spaces; and a pair of outer legs which extends on opposite sides of the element containing the first face from a respective outer edge of a respective space. In a position of use, the prongs extend through respective spaces in the element with the inner edges engaging the edges of the rail to provide an electrically conductive connection and the outer edge of the prongs engaging the legs to apply a force to the prongs that resists the reaction force generated between the prong and the rail.
US10348015B2
A socket connector includes a socket substrate having first socket substrate conductors and second socket substrate conductors, receptacle contacts electrically coupled to corresponding first socket substrate conductors and socket contacts electrically coupled to corresponding second socket substrate conductors. The receptacle contacts have receptacles receiving pin contacts of an electronic package and the socket contacts have terminating ends and mating ends with deflectable spring beams terminated to package contacts of the electronic package. At least one of the first socket substrate conductors and the second socket substrate conductors are configured to electrically connect the electronic package with the host circuit board.
US10348013B2
A card tray for holding a card in a mobile terminal, a method for preparing the card tray, and a mobile terminal are disclosed. The card tray includes a card tray base, a first insulation layer disposed on the card tray base, and a second insulation layer covering the first insulation layer. Hardness of the first insulation layer is higher than hardness of the second insulation layer. When inserting a card to a mobile terminal, burrs or sharp parts on the card may pierce the second insulation layer, whereas the first insulation layer can block the burrs or the sharp parts, preventing an insulation coating on the card tray base from being scratched.
US10348009B2
Provided are electrical harness assemblies and methods of forming such harness assemblies. A harness assembly comprises a conductor trace, comprising a conductor lead with a width-to-thickness ratio of at least 2. This ratio provides for a lower thickness profile and enhances heat transfer from the harness to the environment. In some examples, a conductor trace may be formed from a thin sheet of metal. The same sheet may be used to form other components of the harness. The conductor trace also comprises a connecting end, monolithic with the conductor lead. The width-to-thickness ratio of the connecting end may be less than that of the conductor trace, allowing for the connecting end to be directly mechanically and electrically connected to a connector of the harness assembly. The connecting end may be folded, shaped, slit-rearranged, and the like to reduce its width-to-thickness ratio, which may be close to 1.
US10348008B2
The contact includes a base portion, a contact portion, and a spring portion integrally molded with a thin metal plate. The spring portion includes a first bending portion, a flat plate portion, and a second bending portion. The first bending portion is bent such that a first surface of the thin plate is on an outer peripheral side, and the second bending portion is bent such that a second surface of the thin plate is on an outer peripheral side. The thin plate has a thickness t of from 0.10 to 0.15 mm, a curvature radius R1 of the first bending portion is from 0.6 to 1.0 mm, and a ratio L/R1 of a length L between the first bending portion and the second bending portion of the flat plate portion to the curvature radius R1 is configured to satisfy 0
US10347990B2
A low-profile dual-band filtering patch antenna and its application to LTE MIMO system are disclosed. By using two embedded U-shaped radiating patches and a multi-stub microstrip feed-line, two operating bands and four radiation nulls can been generated and individually controlled, the design is thus very simple and flexible. Based on the proposed low-profile dual-band filtering patch antenna, a MIMO antenna with a very low profile, low mutual coupling and low ECCs has been presented.
US10347987B2
A satellite communication system includes a satellite configured to provide a first plurality of spot beams adapted for communication with subscriber terminals using time domain beam hopping and a second plurality of spot beams adapted for communication with gateways. The satellite includes a spectrum routing network that is configured to time multiplex spot beams of the second plurality of spot beams with spot beams of the first plurality of spot beams so that a spot beam that is implementing beam hopping for communication to subscriber terminals communicates with different feeder beams (and, therefore, different gateways) at different times during a hopping period.
US10347983B2
A wireless device operates in multiple frequency bands via a multi-structure arrangement that optimizes the electromagnetic performance at each frequency range of operation. The device includes a radiating system comprising a ground plane layer, a multi-structure antenna system that comprises at least two structural branches and at least a radiation booster, and a radiofrequency system. The radiofrequency system comprises an element inserted in the branch structure, connected at a point within the structure. The radiofrequency system may include an additional matching network that fine tunes the impedance of the device to match all the frequency ranges of operation.
US10347982B2
Provided are methods for hermetically sealing the surfaces of the CMC structures with the capping layers, comprising depositing a slurry onto the surface of a CMC structure and treating the CMC structure with the deposited slurry in an oxygen containing environment, thereby forming a stack. These stacks may be used to construct walls of radomes that enclose antennas and other equipment of aerospace vehicles. The capping layers may form smooth external surfaces of the radomes and may hermetically seal the underlying CMC structures. The dielectric properties of these stacks may be configured to minimize interference with operations of the antennas and other equipment deposited within the radome.
US10347979B1
Disclosed herein is a mobile network concealment system or assembly which provides for aesthetic modification without impairing, diminishing, or otherwise affecting radio frequency (RF) transmission/reception. Said mobile network concealment system or assembly improves accessibility to encased mobile network devices well after installation in a manner such that (i) materials can be tailored, colored, molded, or otherwise formed or manipulated to be aesthetically pleasing, and (ii) a technician has the ability to remove, alter, or otherwise modify or access the devices in a way that allows the technician to service or troubleshoot the mobile network devices in situ (i.e., without removing the concealment system).
US10347974B1
A radio frequency (RF) satellite antenna may include an antenna housing to be carried by the satellite and having first and second opposing antenna element storage compartments. The antenna may further include a first plurality of self-deploying conductive antenna elements moveable between a first stored position within the first antenna element storage compartment, and a first deployed position extending outwardly from the canister and defining a first conical antenna. The antenna may also include a second plurality of self-deploying conductive antenna elements moveable between a second stored position within the second antenna element storage compartment, and a second deployed position extending outwardly from the canister and defining a second conical antenna. The first and second conical antennas may extend in opposing directions and defining a biconical antenna when in the first and second deployed positions.
US10347972B2
The present disclosure provides an antenna structure for use in an implantable medical device. The antenna structure includes a first antenna configured to receive wireless signals within a first frequency band, a second antenna configured to receive wireless signals within a second frequency band lower than the first frequency band, and a common output connector. The first antenna includes a first end and a second, free end opposite the first end. The second antenna is connected to the first antenna at a location between the first and second ends. The common output connector is disposed at the first end of the first antenna, and is electrically coupled to the first and second antennas such that signals received by the first and second antennas are output through the common output connector.
US10347970B2
An instrument includes a housing that defines a handle for a user of the instrument, and a circuit disposed within the housing, the circuit being configured to implement wireless communications. The housing includes a conductive shaft. The circuit is electrically connected to the conductive shaft such that the conductive shaft is configured as an antenna element for the wireless communications or as a ground plane for the antenna element.
US10347968B2
Methods, systems, and devices are disclosed for implementing a compact wireless communications base station. In one aspect, a small cell base station device configured in a street cabinet unit for wireless communication includes a radio unit and/or a baseband unit to reside within the street cabinet unit, a pole attached to the exterior of the street cabinet unit, in which the pole structured to include an orifice, an antenna attached to the pole such that the antenna is at a height above the top surface of the street cabinet unit, and a feeder cable that electrically couples the antenna to the radio unit and/or the baseband unit, the feeder cable at least partially contained within the orifice.
US10347967B2
Certain aspects of the present disclosure relate to methods and apparatus for wireless communication, and more particularly, to using a flexible printed circuit board (PCB) to convey signals between a radio frequency (RF) module and a baseband module. The flexible PCB can then be used as a medium for deploying antennas or creating arrays of multiple RF modules.
US10347957B2
A hollow conductor system is described which comprises at least two hollow conductor bundles and at least two connecting members. Each hollow conductor bundle comprises at least two hollow conductors separated by each other via a common intermediate wall. Each connecting member connects one hollow conductor of one hollow conductor bundle with a corresponding hollow conductor of the other hollow conductor bundle such that a void is provided between the connecting member and the adjacent connecting member and/or an adjacent hollow conductor. Further, a method for assembling a hollow conductor system is described.
US10347954B2
A cell retainer assembly (130) for a battery powered, outdoor power equipment device includes a plurality of cell reception slots (140) configured to receive and retain respective ones of battery cells (120) and a plurality of cell retention structures (180). At least some of the cell reception slots (140) are formed by corresponding ones of the cell retention structures (180). At least one cell retention structure (180) are configured to extend around a periphery of a portion of a corresponding battery cell (120) inserted therein. The cell retention structure includes a series of cell engaging portions (184) separated from each other by respective spacing portions (188). The at least one cell retention structure (180) may be formed of flexible material.
US10347951B2
In accordance with at least selected aspects, objects or embodiments, optimized, novel or improved membranes, battery separators, batteries, and/or systems and/or related methods of manufacture, use and/or optimization are provided. In accordance with at least selected embodiments, the present invention is related to novel or improved battery separators that prevent dendrite growth, prevent internal shorts due to dendrite growth, or both, batteries incorporating such separators, systems incorporating such batteries, and/or related methods of manufacture, use and/or optimization thereof. In accordance with at least certain embodiments, the present invention is related to novel or improved ultra thin or super thin membranes or battery separators, and/or lithium primary batteries, cells or packs incorporating such separators, and/or systems incorporating such batteries, cells or packs. In accordance with at least particular certain embodiments, the present invention is related to shutdown membranes or battery separators, and/or lithium primary batteries, cells or packs incorporating such separators, and/or systems incorporating such batteries, cells or packs.
US10347947B2
A lithium-ion battery includes a cell placed into an electrically non-conducting box filled with an electrolyte. The cell includes an intercalation cathode and an electroconductive anode separated from each other by a porous separator. The cell is submerged into the electrolyte. The electrolyte includes an aqueous solution of metals salts. The aqueous solution includes metals ions of the metals salts. A pH value of the aqueous solution being adapted to prevent a hydrolysis of the metal ions in the electrolyte.
US10347946B2
An electrode body includes: a positive electrode that includes a positive electrode active material layer; a negative electrode that includes a negative electrode active material layer; and a separator that electrically separates the positive electrode and the negative electrode from each other, in which the positive electrode active material layer and the separator contain N-methylpyrrolidone (NMP). A N-methylpyrrolidone (NMP) content in the positive electrode active material layer is 54 ppm to 602 ppm with respect to a total solid content of the positive electrode active material layer, and a N-methylpyrrolidone content (NMP) in the separator is 10 ppm to 26 ppm with respect to the total solid content of the positive electrode active material layer.
US10347945B2
A passively impact resistant composite electrolyte composition includes an aprotic electrolyte solvent, from 0.5 to 6M of an electrolyte salt, and shear thickening particles having a polydispersity index of no greater than 0.1, an average particle size in a range of 50 nm to 1 um, and an absolute zeta potential of greater than ±40 mV. The shear thickening particles have thereon an electrochemical double layer. The composition further includes a stabilizing surfactant. The stabilizing surfactant includes a first portion for adsorbing to the particles, and a second portion that is absorbed in the solvent. The length of the surfactant from the first portion to the second portion is greater than twice the thickness of the electrochemical double layer. Batteries and electrochemical devices incorporating the electrolyte composition are disclosed. Methods of making the electrolyte composition and of operating a battery are also disclosed.
US10347944B2
An electrolytic solution containing a heteroelement-containing organic solvent at a mole ratio of 3-5 relative to a metal salt, the heteroelement-containing organic solvent containing a specific organic solvent having a relative permittivity of not greater than 10 and/or a dipole moment of not greater than 5D, the metal salt being a metal salt whose cation is an alkali metal, an alkaline earth metal, or aluminum and whose anion has a chemical structure represented by general formula (1) below: (R1X1)(R2SO2)N general formula (1).
US10347939B2
An electrolyte membrane for an energy storage device, the membrane including a matrix including a first ionically conductive polymer; an alkali metal salt, an alkaline earth metal salt, or a combination thereof; a metal-organic framework; and a second ionically conductive polymer miscible with the first ionically conductive polymer, wherein the second ionically conductive polymer is covalently bound to a portion of or the entire surface of the metal-organic framework through at least one amide bond.
US10347937B2
The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, wherein these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li7La3Zr2O12.
US10347935B2
A solid electrolyte composition includes an inorganic solid electrolyte having conductivity of metal ion belonging to Group 1 or 2 of the periodic table; and a multibranched polymer, in which the multibranched polymer is an amorphous polymer and includes a core portion and at least three polymeric arm portions that bond to the core portion.
US10347927B2
A fuel cell assembly including a plate assembly having an anode inlet, a cathode inlet, a first coolant inlet, and a second coolant inlet is provided. The first coolant inlet is located adjacent the anode inlet on a first plate side. The second coolant inlet is located adjacent the cathode inlet on a second plate side. The inlets are arranged such that coolant influences reactant temperature at the anode and cathode inlets to encourage formation of a membrane uniform hydration distribution during fuel cell operation. The fuel cell assembly may include a hydrogen channel, an oxygen channel, and a coolant channel. The coolant channel may extend between the hydrogen channel and the oxygen channel to draw heat from hydrogen and oxygen flowing therethrough and such that the hydrogen and oxygen are close enough to one another for chemical reaction therebetween.
US10347921B2
Systems and methods including a header flange to evenly distribute contact pressure across seals include, in some aspects, a plate including a bead and a flange edge. The bead includes a bead-side and a bead-corner. The flange edge defines an aperture through the plate. The flange edge also includes a first edge-portion proximate the bead-side and a second edge-portion proximate the bead-corner. The bead-side and the first edge-portion define a first edge-distance therebetween. The bead-corner and the second edge-portion define a second edge-distance therebetween. The second edge-distance is greater than the first edge-distance.
US10347913B2
The present invention provides a method for preparing a core-shell structured particle, the method using a continuous Couette-Taylor crystallizer in which a core reactant inlet, a shell reactant inlet, and a product outlet are sequentially formed on an outer cylinder along a flow direction of a fluid flowing in a Couette-Taylor fluid passage between the outer cylinder and an inner cylinder, wherein a core particle is primarily formed in the fluid passage by a core reactant supplied through the core reactant inlet; a shell layer is formed on a surface of the core particle to cover the core particle by a shell reactant supplied through the shell reactant inlet; and a core-shell structured particle in which the shell layer is formed on the circumference of the core particle, is discharged to the outside through the product outlet.
US10347908B2
A lithium ion secondary battery having a negative electrode includes a negative electrode active material containing at least one of two material of silicon and a silicon compound and carbon, a weight mixing ratio of at least one of two material of the silicon and the silicon compound and the carbon is 20:80 to 50:50, when D90 of particles of at least one of two material of the silicon and the silicon compound is x, D50 of particles of the carbon is y, and the weight mixing ratio of the carbon is z, y≤−1.17x+0.45z is satisfied, the x is between 2 μm and 10 μm, the y is between 10 μm and 23 μm, and the z is between 50% and 80% by weight, and a coefficient of expansion when the negative electrode is fully charged is 110% or more and 140% or less.
US10347904B2
A lithium metal anode includes a lithium metal layer and a multi-layer polymer coating disposed over the lithium metal layer. The multi-layer polymer coating includes a first outer polymeric crosslinked gel layer positioned for contact with a battery electrolyte and a second inner polymer layer disposed between the lithium metal layer and the first outer polymeric crosslinked gel layer. The first outer polymeric crosslinked gel layer includes a first polymer, a soft segment polymer, and an electrolyte. The second inner polymer layer includes a second polymer. The second inner polymer layer provides mechanical strength and serves as a physical barrier to the lithium metal layer.
US10347902B2
The present invention provides a fabricating method of a lithium electrode, a lithium electrode, and a lithium secondary battery including the same, the fabricating method including: a) forming an active material layer on one surface or active material layers on both surfaces of a current collector; b) forming a conductive fiber structure layer in a frame form on a surface of the active material layer; and c) pressing the current collector on which the conductive fiber structure layer in a frame form is formed. Since breakage of the active materials caused by pressing is prevented by the conductive fiber structure layer in a frame form, the present invention provides a lithium electrode capable of maintaining electronic conductivity between active material particles and having a long lifespan and high-rate charge and discharge characteristics.
US10347896B2
A battery pack includes a pouch cell having electrode tabs extending therefrom, each of the tabs defining perforations, a bus bar in contact with the tabs, and respective agglomerations of mechanically bound solid metal particles each filling one of the perforations to mechanically bind and electrically connect the tabs to the bus bar.
US10347895B2
A conductive member module includes a flat cable that includes a plurality of conductors and an insulating coating covering the conductors, a distal end part of each of the conductors being exposed from the coating, and a plurality of conductive members each of which includes a plate-shaped main body and a conductor holding part, the main body being connected to a portion of each of the conductors exposed from the coating by welding, the conductor holding part being separated from the main body at other sides except for one side connected to the main body by cutting in the main body and being folded back toward the main body to hold a portion of each conductor closer to a base end side than a part welded to the main body, the conductive members being continuously arranged along an extending direction of the flat cable.
US10347882B2
An electronic apparatus from which a battery is detachable is disclosed. A battery includes a first surface including a first end portion and a second end portion in a direction parallel to the first surface, and a second surface opposite to the first surface. A battery accommodating part is configured to accommodate the battery with the first surface of the battery exposed from the battery accommodating part. A cover is configured to cover the battery in the battery accommodating part. A first restraint part is configured to restrain the first end portion from moving toward the cover and is covered with the cover. A second restraint part is configured to restrain the second end portion from moving toward the cover and is covered with the cover.
US10347877B2
Presented is battery packaging material which is made of a laminate including, as the essentials, a base material layer, a metal layer and a sealant layer in this order. When a product obtained by packaging a battery element with the packaging material in a hermetically sealed state through heat sealing is heated, the packaging material delaminates at least at a part of the interface between the metal layer and the outside surface of the sealant layer with the hermetically sealed state being kept, and thereafter works so as to make the product unsealed.
US10347871B2
An organic light emitting display device and a method for manufacturing the same are disclosed. The organic light emitting display device includes a substrate divided into an emission area and a non-emission area, an overcoat layer disposed on the substrate and including a plurality of micro lenses in the emission area, a first electrode disposed on the overcoat layer and disposed in the emission area, an organic emission layer disposed on the substrate and having at least one layer which is flatly formed in the emission area, and a second electrode disposed on the organic emission layer.
US10347863B2
Disclosed is an organic light-emitting display device capable of removing a void between a pad area and a display area. The display device having a display area and a non-display area includes a thin-film transistor array, an organic light-emitting array, a touch electrode array, and an adhesive layer between the touch electrode array and the organic light-emitting array. A lower pad portion having lower electrodes is provided in the non-display area of the thin-film transistor array, an upper pad portion having upper electrodes is provided in the non-display area of the touch electrode array, and both the pad portions are bonded to each other by a seal material having one side in contact with the adhesive layer. At least one groove is provided in the non-display area of the thin-film transistor array so as to correspond to the contact area of the seal material and the adhesive layer.
US10347859B2
An organic light-emitting device includes a first electrode, a second electrode facing the first electrode, and an organic layer disposed between the first electrode and the second electrode, the organic layer including an emission layer, a hole transport region between the first electrode and the emission layer, and an electron transport region between the emission layer and the second electrode, wherein the electron transport region includes a first layer that includes a metal oxide and a metal halide, and wherein the first layer is not in direct contact with the emission layer.
US10347857B2
A hybrid organic-inorganic thin film is provided. The hybrid organic-inorganic thin film comprising: an organic-phase comprising a porous organic nanostructure comprised of an interpenetrating network having at least one dimension between 0.1 and 100 nm; and an inorganic phase at least partially distributed within the porosity of the organic phase. In a first aspect, the organic phase has a first band gap and the inorganic phase has a second band gap different from the first band gap. A method of producing an organic-inorganic energy harvesting device and a device therefrom comprising the hybrid organic-inorganic thin film is provided.
US10347856B2
The present disclosure relates to a light detector. The light detector includes a first electrode, a second electrode, a current detector, a power source and a nano-heterostructure. The nano-heterostructure is electrically coupled with the first electrode and the second electrode. The nano-heterostructure includes a first carbon nanotube, a second carbon nanotube and a semiconductor layer. The semiconductor layer includes a first surface and a second surface opposite to the first surface. The first carbon nanotube is located on the first surface, the second carbon nanotube is located on the second surface.
US10347853B2
A display device including a base member, a circuit layer, a display layer, a thin film encapsulation layer, and a touch sensor layer. The base member includes a first area and a second area disposed adjacent to the first area. The circuit layer is disposed on the base member to cover the first area and to expose the second area. The display layer is disposed on the circuit layer to display an image. The thin film encapsulation layer is disposed on the display layer. The touch sensor layer is disposed on the thin film encapsulation layer and includes an organic layer extending from an upper portion of the thin film encapsulation layer to cover at least a portion of the exposed second area.
US10347849B2
A method is provided for producing phosphorescent emitter layers composed of at least one organic fluorescent emitter F and at least one metal complex K including organic complex ligands L and at least one heavy main group metal M selected from the group consisting of In, Tl, Sn, Pb, Sn and Bi. The organic fluorescent emitter F and the metal complex K may be individually deposited as layers on a substrate and subsequently reacted with each other, wherein the coordination sphere of the heavy main group metal M is changed by receiving the organic fluorescent emitter F.
US10347848B2
The present invention relates to a new amorphous material with advantageous properties as charge transport material and/or absorber material for various applications, in particular in photoelectric conversion devices, i.e. an amorphous material of the composition (R1NR23)5Me X1aX2b wherein R1 is C1-C4-alkyl, R2 are independently of one another hydrogen or C1-C4-alkyl, Me is a divalent metal, X1 and X2 have different meanings and are independently of one another selected from F, CI, Br, I or a pseudohalide, a and b are independently of one another 0 to 7, wherein the sum of a and b is 7.
US10347846B2
The present invention discloses an organic compound represented by the following formula (1), the organic EL device employing the organic compound as light emitting host of emitting lay and/or an electron transporting layer, and/or a hole blocking layer, and/or a delayed fluorescence material of emitting layer can display good performance. wherein A1 and A2 are acceptor, m, n, L1, L2, Y1, Y2 and X1 to X5 are the same definition as described in the present invention.
US10347845B2
The present specification provides a nitrogen-containing condensed cyclic compound of chemical formula 1 and an organic light emitting device comprising the same.
US10347839B2
The present disclosure relates to a manufacturing method of display panels. The method includes providing at least two glass substrate having a predetermined dimension, configuring the glass substrate to be spaced apart from a supporting substrate, configuring a bonding area on the glass substrate, conducting a cell-formation process or a package process of the display panel, and stripping the supporting substrate. In this way, the thicker supporting substrate is configured to support the glass substrate so as to avoid two ends of the thinner glass substrate from dropping and curing, which enhances the convenience and the precision of the manufacturing process of the display panel.
US10347835B2
A layer structure, a manufacturing method thereof, a display substrate, a backlight and a display device are provided. The manufacturing method includes forming a layer solution on a substrate (21); solidifying the layer solution by lowering the temperature of the layer solution; and forming the layer structure by removing a solvent in the solidified layer solution via a sublimation process.
US10347833B2
The present disclosure provides resistive random access memory and fabrication methods thereof. An exemplary fabrication method of the resistive random access memory includes providing a substrate; forming a bottom electrode on the substrate; forming a resistance switching layer on the bottom electrode; forming a barrier on the resistance switching layer; and forming a top electrode on the barrier layer. The barrier is used to prevent atoms in the top electrode from diffusing into the resistance switching layer.
US10347832B2
A memory device includes: a memory layer that is isolated for each memory cell and stores information by a variation of a resistance value; an ion source layer that is formed to be isolated for each memory cell and to be laminated on the memory layer, and contains at least one kind of element selected from Cu, Ag, Zn, Al and Zr and at least one kind of element selected from Te, S and Se; an insulation layer that isolates the memory layer and the ion source layer for each memory cell; and a diffusion preventing barrier that is provided at a periphery of the memory layer and the ion source layer of each memory cell to prevent the diffusion of the element.
US10347826B1
Methods of magnetically shielding a perpendicular STT-MRAM structure on all six sides within a flip-chip package and the resulting devices are provided. Embodiments include forming a passivation stack over an upper surface of a wafer and outer portions of an Al pad; forming a polymer layer over the passivation stack; forming a UBM layer over the Al pad, portions of the polymer layer and along sidewalls of the polymer layer; forming a T-shaped Cu pillar over the UBM layer; forming a μ-bump over the T-shaped Cu pillar; dicing the wafer into a plurality of dies; forming an epoxy layer over a bottom surface of each die; forming a magnetic shielding layer over the epoxy layer and along sidewalls of each die, the epoxy layer, the passivation stack and the polymer layer; and connecting the μ-bump to a package substrate with a BGA balls.
US10347823B2
A magnetoresistive element includes a channel layer, a first ferromagnetic layer, a second ferromagnetic layer, and a reference electrode. The first ferromagnetic layer, the second ferromagnetic layer, and the reference electrode are apart from each other and are electrically connected to each other through the channel layer. The average resistivity of a sixth region composed of a first region, a second region, and a fourth region is higher than the average resistivity of a seventh region composed of the second region, a third region, and a fifth region.
US10347815B1
Methods and apparatus related to arrays of piezoelectric strands. Some implementations are directed to using an array of piezoelectric strands, along with associated driving and sensing components, to enable determination of one or more properties of external force(s) applied to the array, such as what areas of the array have external force being applied, a measure of the applied external force(s), material properties of object(s) applying the external force(s), etc. Each of the piezoelectric strands of an array may include at least a longitudinally extending piezoelectric material and a longitudinally extending conductive electrode.
US10347811B2
Provided is a thermoelectric conversion module which is folded in a bellows-like shape and is capable of preventing a thermoelectric conversion layer from coming into contact with other member even in a state in which bellows is closed and performing highly effective power generation. This thermoelectric conversion module includes a bellows-like substrate, P-type and N-type thermoelectric conversion layers which are alternately provided on each sloped surface of the substrate on one surface of the substrate, a top portion electrode which connects the P-type and N-type thermoelectric conversion layers over a top portion and a bottom portion electrode which connects P-type and N-type thermoelectric conversion layers over a bottom portion, in which the P-type and N-type thermoelectric conversion layers do not extend over the top portion and the bottom portion, and positions of the P-type thermoelectric conversion layer and the N-type thermoelectric conversion layer which face each other are not overlapped as viewed in the arrangement direction.
US10347808B2
A method of manufacturing a light emitting device, the method includes providing a light emitting element. Each of first and second pad electrodes is provided on a second outer surface. A first conductive member is bonded to the first pad electrode and a second conductive member is bonded to the second pad electrode so that a portion of each of the first and second conductive members protrudes from a plane including a first outer surface. The light emitting element and the first and second conductive members are covered with a light-shielding member so as to expose at least a portion of the main light emitting surface. The first and second conductive members and the light-shielding member which protrude from the plane are cut off along a direction intersecting the main light emitting surface.
US10347802B2
An optoelectronic component includes an optoelectronic semiconductor chip and an optical element, wherein the optical element includes a prism structure configured to split light emitted by the semiconductor chip into two beams and deflect the beams in a first direction relative to one another, and the optical element includes a beam deflecting structure configured to deflect both beams jointly in a second direction perpendicular to the first direction.
US10347793B2
A contact to a semiconductor layer in a light emitting structure is provided. The contact can include a plurality of contact areas formed of a metal and separated by a set of voids. The contact areas can be separated from one another by a characteristic distance selected based on a set of attributes of a semiconductor contact structure of the contact and a characteristic contact length scale of the contact. The voids can be configured to increase an overall reflectivity or transparency of the contact.
US10347784B2
A semiconductor device includes a semiconductor structure formed on a substrate, a gate dielectric formed on a first side of the semiconductor structure, and a dielectric layer formed on a second side of the semiconductor structure.
US10347780B2
A method of treating a polycarbonate glass surface, such as a bisphenol A polycarbonate, whereby the glass surface is immersed in a liquid phase polar aprotic solvent, such as dichloromethane, and exposed to a vapor phase polar aprotic solvent, such as acetone thus obtaining a textured glass surface with a hierarchical patterned nanoporous structure wherein the textured glass surface has a higher surface hydrophobicity and a marginally reduced optical light transmittance relative to the polycarbonate glass surface prior to the immersion, the exposure, or both.
US10347759B2
Techniques relate to forming a vertical field effect transistor (FET). One or more fins are formed on a bottom source or drain of a substrate, and one or more fins extend in a vertical direction. Gate material is formed to be positioned on sides of the one or more fins. Gate encapsulation material is formed on sides of the gate material to form a trench, such that top portions of the one or more fins are exposed in the trench. A top source or drain is formed on top of the one or more fins such that the top source or drain is laterally confined by the trench in a lateral direction that is parallel to the one or more fins.
US10347758B2
A semiconductor packaging structure includes a chip, a first pin, a second pin, and a third pin. The chip includes a first surface, a second surface, a first power switch, and a second switch, and both the first power switch and the second switch include a first terminal and a second terminal. The second surface of the chip is opposite to the first surface of the chip. The first pin does not contact to the second pin. The first terminal of the first power switch of the chip is coupled to the first pin, and the second terminal of the first power switch of the chip is coupled to the third pin. The first terminal of the second power switch of the chip is coupled to the third pin, and the second terminal of the second power switch of the chip is coupled to the second pin.
US10347751B2
Semiconductor structures including active fin structures, dummy fin structures, epitaxy layers, a Ge containing oxide layer and methods of manufacture thereof are described. By implementing the Ge containing oxide layer on the surface of the epitaxy layers formed on the source/drain regions of some of the FinFET devices, a self-aligned epitaxy process is enabled. By implementing dummy fin structures and a self-aligned etch, both the epitaxy layers and metal gate structures from adjacent FinFET devices are isolated in a self-aligned manner.
US10347749B2
A first layer of a first material is deposited on a first structure and a second structure, a surface of the first structure being disposed substantially parallelly to a surface of the second structure in at least one direction. A selectively removable material is deposited over the first layer and removed up to a height of a first step. The first material is removed from a portion of the first layer that is exposed from removing the selectively removable material up to the height of the first step. A remainder of the selectively removable material is removed to expose a second portion of the first layer, the second portion of the first layer forming the first step. A second layer of a second material is deposited on the first structure, the second structure, and the second portion of the first layer, causing a formation of a stepped structure.
US10347747B2
The present disclosure provides semiconductor structures and fabrication methods thereof. An exemplary fabrication method includes providing a substrate having a first region and a second region; forming a trench in the substrate in the first region; forming a compensation doping region in a side surface of the trench adjacent to the second region; forming an isolation structure in the trench; forming a well region in the substrate in the second region; forming a drift region in the substrate in the first region; forming a gate structure over the substrate in a boundary region between the first region and the second region, and covering a portion of the isolation structure; and forming a source region in the well region at one side of the gate structure and a drain region in the drift region at another side of the gate structure.
US10347739B2
The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming a contact silicide on a source-drain (S-D) region of a field effect transistor (FET) having extensions by using an undercut etch and a salicide process. A method of forming a contact silicide extension is disclosed. The method may include: forming an undercut region below a dielectric layer and above a source-drain region, the undercut region located directly below a bottom of a contact trench and extending below the dielectric layer to a gate spacer formed on a sidewall of a gate stack; and forming a contact silicide in the undercut region, the contact silicide in direct contact with the source-drain region.
US10347735B2
A semiconductor device includes a semiconductor substrate, a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, a first semiconductor region of the first conductivity type, a second semiconductor region of the second conductivity type, a gate insulating film, and a gate electrode. The semiconductor device further includes, in a region of the first semiconductor layer across or adjacent to a p-n junction therein that does not overlap the second semiconductor region in a plan view except lateral edges thereof, a lifetime killer region having lifetime killers implanted therein.
US10347729B2
Devices and methods of fabricating integrated circuit devices for increasing performance through gate cut last processes are provided. One method includes, for instance: obtaining an intermediate semiconductor device having a substrate including a plurality of fins, an STI layer, an oxide layer, and a gate material over the oxide layer, the fins extending into the gate material; removing the gate material and the oxide layer; depositing a high k material on a top surface of the STI layer, surrounding the fins; depositing a gate stack over the high k material; filling the top of the device with a gate contact metal; etching a portion of the gate contact metal, the metal gate stack, and the high k material; and filling the portion with an inter-layer dielectric. Also disclosed is an intermediate device formed by the method.
US10347725B2
An emitter electrode includes a first electrode layer, a second electrode layer, and a third electrode layer. The first to third electrode layers are laid in this order on an emitter layer. A solder layer is further laid on the third electrode layer. The first electrode layer covers the emitter layer and a gate oxide film in a front surface of a semiconductor chip. A first electroconductive material forming the first electrode layer has AlSi as its main component. A second electroconductive material forming the second electrode layer has a linear expansion coefficient different from that of the first electroconductive material and is lower in mechanical strength than the first electroconductive material. A third electroconductive material constituting the third electrode layer has a linear expansion coefficient different from that of the first electroconductive material and has solder wettability higher than that of the first electrode layer.
US10347721B2
There is provided a method for making a device including at least a strained semiconductor structure configured to form at least a transistor channel, including: forming, on a semiconductor layer, a sacrificial gate block and source and drain blocks on either side of the block, the semiconductor layer being a strained surface semiconductor layer disposed on an underlying insulating layer, with the underlying layer being disposed on an etch-stop layer; removing the block to form a cavity revealing a region of the strained surface layer configured to form the transistor channel; and etching, in the cavity, one or more portions of the region to define one or more semiconductor blocks and holes on either side, respectively, of the one or more blocks, the etching of holes extending into the underlying layer to form one or more galleries therein, etching of the galleries being stopped by the etch-stop layer.
US10347716B2
A method for fabricating semiconductor device includes the steps of: providing a substrate having a first region and a second region; forming a plurality of fin-shaped structures and a first shallow trench isolation (STI) around the fin-shaped structures on the first region and the second region; forming a patterned hard mask on the second region; removing the fin-shaped structures and the first STI from the first region; forming a second STI on the first region; removing the patterned hard mask; and forming a gate structure on the second STI.
US10347714B2
A semiconductor device includes a semiconductor layer of a first conductivity type, an impurity region of a second conductivity type formed in a surface layer portion of the semiconductor layer, a terminal region of the second conductivity type that is formed in the surface layer portion of the semiconductor layer along a peripheral edge of the impurity region and that has a second conductivity type impurity concentration higher than a second conductivity type impurity concentration of the impurity region, and a surface electrode that is formed on the semiconductor layer and that has a connection portion connected to the impurity region and to the terminal region.
US10347711B2
A method for fabricating a capacitor includes: forming a bottom electrode; forming a dielectric layer on the bottom electrode; forming a metal oxide layer including a metal having a high electronegativity on the dielectric layer; forming a sacrificial layer on the metal oxide layer to reduce the metal oxide layer to a metal layer; and forming a top electrode on the sacrificial layer to convert the reduced metal layer into a high work function interface layer.
US10347708B2
An OLED display panel is provided which can control the problem of shedding even in high definition panels. Metal wiring 5 which conducts with an earth line of a flexible printed substrate 15 is provided on a substrate 1. A display area 2 comprised from a plurality of OLED elements is provided at the center of the substrate 1 and four low resistance metal films 3 are provided along each of four edges of the display area 2 on a surface of insulation films 8, 10 at the periphery of the display area 2. Among these, one low resistance metal film 3 conducts with the metal wiring 5 via a contact 3a.
US10347696B2
The present disclosure proposes an OLED display device, a manufacturing method thereof and an OLED Display. The OLED display device includes a substrate and a color conversion layer and a blue-green light emitting layer disposed in a stack on the substrate. The color conversion layer includes blue filter units, green conversion units and red conversion units disposed apart from one another. Both the green conversion units and the red conversion units are film layers made of an organic metal halide perovskite material. The green conversion units and the red conversion units respectively absorb blue-green light emitted from the blue-green light emitting layer, and convert the blue-green light into green light and red light, the blue filter units filter the blue-green light to obtain blue light so as to achieve color display.
US10347695B2
A display panel composed of red, green, blue, and white subpixels which avoids imaging artifacts is provided. The display panel defines a plurality of pixel units. Each pixel unit includes a complete red sub-pixel, a complete green sub-pixel, and a half-sized blue sub-pixel, and a half-sized white sub-pixel.
US10347694B2
Disclosed is a pixel arrangement with a shared blue light emitting layer (7), comprising m rows and n columns of first pixel units, the first pixel units are blue light sub-pixels (B), m is a non-zero natural number, n is a natural number larger than or equal to 2, wherein, two columns of second pixel units are arranged between neighboring first pixel units, each of the second pixel units comprises a red light sub-pixel (R), a green light sub-pixel (G) and a yellow light sub-pixel (Y) that are arranged in a juxtaposed manner. By properly modifying the pixel arrangement of the device configuration, light emitting in four colors can be achieved by using only two or less sets of low precision masks in the preparation process, so that the resolution is increased with reduced cost, and as compared to conventional pixel arrangement, the PPI can be doubled, reaching 600 PPI.
US10347692B2
An organic light emitting display device in an embodiment of the present invention comprises a display panel equipped with a plurality of pixels each including an OLED and a driving TFT for driving the OLED and a sensing circuit connected to pixels through a sensing line and detecting driving characteristics of a corresponding pixel. The sensing circuit may comprise a plural sensing units including an integrator for integrating currents respectively flowing two adjacent sensing lines connected to inverting and non-inverting input terminals of a fully differential amplifier, a sampling unit for respectively sampling two integral outputs of the integrator and a scaler for regulating an operating range of outputs of the sampling unit, a differential amplifier for differentially amplifying one or more outputs of the scaler, and an ADC for converting an output of the differential amplifier into a digital sensing value.
US10347673B2
The present disclosure relates to a solid-state imaging device and an electronic device that are configured to suppress the occurrence of noise and white blemishes in an amplification transistor having an element separation region which is formed by ion implantation. An amplification transistor has an element separation region formed by ion implantation. A channel region insulating film which is at least a part of a gate insulating film above a channel region of the amplification transistor is thin compared to a gate insulating film of a selection transistor, and an element separation region insulating film which is at least a part of a gate insulating film above the element separation region of the amplification transistor is thick compared to the channel region insulating film. The present disclosure can be applied to, for example, a CMOS image sensor, etc.
US10347670B2
A photodetection element according to an embodiment includes: a photodiode cell, the photodiode cell including: a semiconductor substrate; a first semiconductor layer disposed on the semiconductor substrate; a second semiconductor layer disposed in a region including an interface between the semiconductor substrate and the first semiconductor layer, the second semiconductor layer being of the same conductivity type as the semiconductor substrate; and a third semiconductor layer disposed in a surface region of the first semiconductor layer.
US10347667B2
A method is presented for forming a monolithically integrated semiconductor device. The method includes forming a first device including first hydrogenated silicon-based contacts formed on a first portion of a semiconductor material of an insulating substrate and forming a second device including second hydrogenated silicon-based contacts formed on a second portion of the semiconductor material of the insulating substrate. Source and drain contacts of the first device are formed before a gate contact of the first device and a gate contact of the second device is formed before the emitter and collector contacts of the second device. The first device can be a heterojunction field effect transistor (HJFET) and the second device can be a (heterojunction bipolar transistor) HBT. The HJFET and the HBT are integrated in a neuronal circuit and create negative differential resistance by forming a lambda diode.
US10347662B2
The present disclosure discloses an array substrate comprising: a substrate; a gate electrode; a gate insulating layer formed on one side of the substrate facing the gate electrode, the gate insulating layer covering the gate electrode; an active layer formed on one side of the gate insulating layer away from the gate electrode and made of an indium gallium zinc tin oxide material; an ohmic contact layer formed on one side of the active layer away from the gate insulating layer and made of a conductive indium gallium zinc oxide material, the ohmic contact layer covering both ends of the active layer; and a source electrode and a drain electrode formed on one side of the ohmic contact layer away from the active layer, the source electrode and the drain electrode being electrically connected to both ends of the active layer by the ohmic contact layer, respectively.
US10347658B2
A pixel driving circuit and an OLED display are provided. The pixel driving circuit includes a first TFT, a second TFT, a third TFT, a fourth TFT, a capacitor, and an OLED. A gate of the third TFT is coupled to the scanning signal. A source of the third TFT is coupled to a drain of the fourth TFT. A gate of the fourth TFT is coupled to a data signal and a source of the fourth is coupled to a second reference voltage signal. The fourth TFT controls the electric current of the first TFT with the data signal and the second reference signal during the compensation stage of threshold voltage. Further, the compensation voltage of the first TFT is compensated.
US10347649B2
In some embodiments, a semiconductor substrate includes first and second source/drain regions which are separated from one another by a channel region. The channel region includes a first portion adjacent to the first source/drain region and a second portion adjacent the second source/drain region. A select gate is spaced over the first portion of the channel region and is separated from the first portion of the channel region by a select gate dielectric. A memory gate is spaced over the second portion of the channel region and is separated from the second portion of the channel region by a charge-trapping dielectric structure. The charge-trapping dielectric structure extends upwardly alongside the memory gate to separate neighboring sidewalls of the select gate and memory gate from one another. An oxide spacer or nitride-free spacer is arranged in a sidewall recess of the charge-trapping dielectric structure nearest the second source/drain region.
US10347644B2
The present invention provides a semiconductor device and a manufacturing method thereof. The semiconductor device includes a semiconductor substrate with a memory cell region and a peripheral region, a gate line in the peripheral region, an etch-stop layer covering the gate line and the semiconductor substrate, a first insulating layer covering the etch-stop layer, two contact plugs disposed on the semiconductor substrate in the peripheral region, two pads disposed on the contact plugs respectively, and a second insulating layer disposed between the pads. The contact plugs are located at two sides of the gate line respectively, and the contact plugs penetrate through the etch-stop layer and the first insulating layer to contact the semiconductor substrate. The second insulating layer is not in contact with the etch-stop layer.
US10347638B2
The present invention is generally directed to a method of forming contacts for a memory device. In one illustrative embodiment, the method includes forming a layer of insulating material above an active area of a dual bit memory cell, forming a hard mask layer above the layer of insulating material, the hard mask layer having an original thickness, performing at least two partial etching processes on the hard mask layer to thereby define a patterned hard mask layer above the layer of insulating material, wherein each of the partial etching processes is designed to etch through less than the original thickness of the hard mask layer, the hard mask layer having openings formed therein that correspond to a digitline contact and a plurality of storage node contacts for the dual bit memory cell, and performing at least one etching process to form openings in the layer of insulating material for the digitline contact and the plurality of storage node contacts using the patterned hard mask layer as an etch mask.
US10347627B2
Semiconductor devices are provided. A semiconductor device includes a gate structure and an adjacent contact. The semiconductor device includes a connector that is connected to the contact. In some embodiments, the semiconductor device includes a wiring pattern that is connected to the connector. Moreover, in some embodiments, the connector is adjacent a boundary between first and second cells of the semiconductor device.
US10347625B2
Methods for providing improved isolation structures in a SiGe BiCMOS process are provided. In one method, an n-type epitaxial layer is grown over a p-type high-resistivity substrate. A mask covers a first region, and exposes a second region, of the epitaxial layer. A p-type impurity is implanted through the mask, counter-doping the second region to become slightly p-type. Shallow trench isolation and optional deep trench isolation regions are formed through the counter-doped second region, providing an isolation structure. The first region of the epitaxial layer forms a collector region of a heterojunction bipolar transistor. In another method, shallow trenches are etched partially into the epitaxial layer through a mask. A p-type impurity is implanted through the mask, thereby counter-doping thin exposed regions of the epitaxial layer to become slightly p-type. The shallow trenches are filled with dielectric material and a CMP process is performed to form shallow trench isolation regions.
US10347619B2
Disclosed is a semiconductor device having an electrostatic discharge protection structure. The electrostatic discharge protection structure is a diode connected between a gate electrode and a source electrode of the semiconductor device. The diode comprises a diode body and two connection portions connected to two ends of the diode body and respectively used for electrically connecting to the gate electrode and the source electrode. Lower parts of the two connection portions are respectively provided with a trench. An insulation layer is provided on an inner surface of the trench and the surface of a substrate between trenches. The diode body is provided on the insulation layer on the surface of the substrate. The connection portions respectively extend downwards into respective trenches from one end of the diode body. A dielectric layer is provided on the diode, and a metal conductor layer is provided on the dielectric layer.
US10347616B2
A chip package includes a sensing chip, a computing chip, and a protective layer annularly surrounding the sensing chip and the computing chip. The sensing chip has a first conductive pad, a sensing element, a first surface and a second surface opposite to each other. And the sensing element is disposed on the first surface. The computing chip has a second conductive pad and a computing element. The protective layer is formed by lamination and at least exposes the sensing element. The chip package further includes a conductive layer underneath the second surface of the sensing chip and extending to be in contact with the first conductive pad and the second conductive pad.
US10347603B2
A semiconductor device manufacturing apparatus includes a stage, a head section facing the stage and configured to hold a semiconductor element, a driving section configured to drive one of the head section and the stage to move in a first direction intersecting the head section and the stage and apply a load to the other one of the stage and the head section, a load sensor configured to sense a load value of the applied load, and a controller configured to control the driving section to move one of the head section and the stage, and then separate the head section from the stage in accordance with a change in the load value.
US10347594B2
A semiconductor device includes a wiring, a semiconductor chip above the wiring and a metal block above the semiconductor chip. The semiconductor chip includes a semiconductor substrate, a lower electrode, an upper large electrode and an upper small electrode. The semiconductor chip includes a first portion and a second portion, the first portion being on an upper small electrode side with respect to a centroid of the semiconductor chip, the second portion being on an opposite side of the upper small electrode with respect to the centroid. The lower electrode is connected to the wiring via a lower solder layer. The lower solder layer includes a solder base material and metal particles. A volume ratio of the metal particles occupying the lower solder layer under the second portion is higher than a volume ratio of the metal particles occupying the lower solder layer under the first portion.
US10347593B2
According to the present invention, a semiconductor device includes a substrate having a metallic pattern formed on a top surface of the substrate, a semiconductor chip provided on the metallic pattern, a back surface electrode terminal in flat plate form connected to the metallic pattern with a wire, a front surface electrode terminal in flat plate form, the front surface electrode terminal being in parallel to the back surface electrode terminal above the back surface electrode terminal, extending immediately above the semiconductor chip, and being directly joined to a top surface of the semiconductor chip, a case surrounding the substrate and a seal material for sealing an inside of the case.
US10347581B2
A technique relates to fabricating a semiconductor device. A contact trench is formed in an inter-level dielectric layer. The contact trench creates an exposed portion of a semiconductor substrate through the inter-level dielectric layer. A gate stack is on the semiconductor substrate, and the inter-level dielectric layer is adjacent to the gate stack and the semiconductor substrate. A source/drain region is formed in the contact trench such that the source/drain region is on the exposed portion of the semiconductor substrate. Tin is introduced in the source/drain region to form an alloyed layer on top of the source/drain region, and the alloyed layer includes the tin and a source/drain material of the source/drain region. A trench layer is formed in the contact trench such that the trench layer is on top of the alloyed layer. A metallic liner layer is formed on the trench layer and the inter-level dielectric layer.
US10347579B2
Aspects for reducing tip-to-tip distance between end portions of metal lines formed in an interconnect layer of an integrated circuit (IC) are provided. In one aspect, a method includes exposing a photoresist layer disposed over a hardmask layer to a light to form a metal line pattern on the photoresist layer. The metal line pattern includes metal line templates corresponding to tracks substantially parallel to an axis. The sections of the photoresist layer corresponding to the metal line pattern are removed to expose the hardmask layer according to the metal line pattern. The exposed portions of the hardmask layer are etched such that trenches are formed corresponding to the metal line pattern. The hardmask layer is directionally etched such that at least one trench is extended in a first direction along the axis. This allows the trenches to be spaced with a reduced pitch and reduced tip-to-tip distance.
US10347576B2
A semiconductor package includes a package substrate, the package substrate including a conductive plate, an insulating plate on the conductive plate, the insulating plate including a mounting region and a peripheral region surrounding the mounting region, and at least one capillary channel in the peripheral region, a semiconductor chip on the mounting region of the insulating plate, and a molding member on the insulating plate to cover the semiconductor chip, a portion of the molding member being in the at least one capillary channel.
US10347574B2
Integrated fan-out packages and methods of forming the same are disclosed. An integrated fan-out package includes a first semiconductor chip, a plurality of through integrated fan-out vias, an encapsulation layer and a redistribution layer structure. The first semiconductor chip includes a heat dissipation layer, and the heat dissipation layer covers at least 30 percent of a first surface of the first semiconductor chip. The through integrated fan-out vias are aside the first semiconductor chip. The encapsulation layer encapsulates the through integrated fan-out vias. The redistribution layer structure is at a first side of the first semiconductor chip and thermally connected to the heat dissipation layer of the first semiconductor chip.
US10347572B2
A device comprises a package component comprising a plurality of bumps formed on a first side of the package component, a semiconductor die mounted on the first side of the package component, a dielectric material formed over the first side of the package component, wherein four corners of the top surface of the package component are free from the dielectric material and a top package bonded on the first side of the package component, wherein the semiconductor die is located between the top package and the package component.
US10347557B2
The wiring board includes an insulating substrate having a main surface, an external electrode on the main surface and an outer edge portion of the insulating substrate, and a dissipating metal layer on the main surface of the insulating substrate, the dissipating metal layer having a greater area than the external electrode if viewed in a plan, the dissipating metal layer being adjacent to the external electrode and having a slit. The slit has an opening at an outer periphery of the dissipating metal layer. The external electrode faces the opening.
US10347555B2
An electronic device has a substrate 10, an electronic element 80 provided on the substrate 10 and a sealing part 20 for sealing the electronic element 80. The sealing part 20 has an insertion part 22 for inserting a fastening member 90. The insertion part 22 is provided in a sealing recessed part 25 recessed compared with a circumferential region. At least side surface and the sealing recessed part 25 of the sealing part 20 are exposed to the outside.
US10347554B2
An electronic component which comprises an electrically conductive carrier, an electronic chip on the carrier, an encapsulant encapsulating at least part of at least one of the carrier and the electronic chip, and a functional structure covering a surface portion of the encapsulant, wherein at least part of the covered surface portion of the encapsulant is spatially selectively roughened.
US10347553B2
Each of a plurality of ceramic substrate members includes a via reaching an other main surface from one main surface. A gap is formed in each of first and second ceramic substrate members of the plurality of stacked ceramic substrate members to penetrate each of the first and second ceramic substrate members, the first ceramic substrate member being arranged at an outermost surface on one side in a stacking direction of the ceramic substrate members, the second ceramic substrate member being arranged at an outermost surface on the other side opposite to the one side in the stacking direction. At least a portion of a side surface and a bottom surface within the gap are covered with a protection layer. The protection layer is made of a material having an etching rate lower than that of the ceramic substrate members.
US10347551B2
A semiconductor package comprises a resin material, a semiconductor chip in the resin material, and a metal member in the resin material. The metal member has a first surface that faces the semiconductor chip and a second surface that is opposed to the first surface. The first surface of the metal member has a plurality of first recess portions formed thereon. The first recess portions extend into the metal member and have an opening width that is less than a bottom width.
US10347550B2
The present disclosure provides a semiconductor device and a method of making the same for suppressing warpages of an article due to a difference of temperature strains during the process of making the semiconductor device. The semiconductor device of the present disclosure includes a substrate having a main surface and a recess recessed therefrom; a semiconductor element disposed in the recess; a wiring portion connected to the substrate and electrically connected to the semiconductor element; and a sealing resin filled in the recess. The substrate includes an electrical insulative synthetic resin. The recess has a bottom surface and a connecting surface connected to the bottom surface and the main surface. The connecting surface includes a first inclined surface connected to the bottom surface; a second inclined surface connected to the main surface; and an intermediate surface connected to the first inclined surface and the second inclined surface.
US10347540B1
Semiconductor devices and methods of forming the same include forming gate stacks across a semiconductor fin, each gate stack having a gate conductor. An interlayer dielectric is formed between the gate stacks. A protective layer is formed on the interlayer dielectric that leaves the gate stacks exposed. The gate conductor of at least one gate stack is etched away. A dielectric liner is formed in a gap left by the etched gate conductor.
US10347538B2
A semiconductor device includes a semiconductor fin protruding from a substrate, a gate electrode over the semiconductor fin, a gate insulating layer between the semiconductor fin and the gate electrode, source and drain regions disposed on opposite sides of the semiconductor fin, a first stressor formed in a region between the source and drain regions. The first stressor is a grading strained stressor including multiple graded portions formed at graded depths. The first stressor is configured to create one of a graded compressive stress or a graded tensile stress.
US10347532B2
The present disclosure provides a Low Temperature Poly Silicon (LTPS) backboard, a method for manufacturing the LTPS, and a light-emitting device. The LTPS backboard includes: a base substrate, and a thin film transistor (TFT) and a light blocking layer that are arranged above the base substrate, wherein the light blocking layer is arranged above the TFT, and the light blocking layer is configured for preventing an irradiation light from irradiating onto the TFT.
US10347529B2
The present disclosure generally relates to semiconductor structures and, more particularly, to interconnect structures and methods of manufacture. The structure includes a metallization feature comprising a fill material and formed within a dielectric layer; at least one cap covering the fill material of the metallization feature, the at least one cap is comprised of a material different than the fill material of the metallization feature; and an interconnect structure in electrical contact with the metallization feature.
US10347523B2
The invention relates to a retaining system for handling substrate stacks, including a retaining surface for retaining a first substrate, and one or more recesses provided relative to the retaining surface, for retaining first magnetic bodies for securing the first substrate relative to a second substrate that is aligned with the first substrate. Second magnetic bodies are applied on a holding side of the second substrate.
US10347521B2
A heating member includes a ceramic substrate having a structure in which a plurality of ceramic layers are laminated together; a resistance heat-generating element embedded in the ceramic substrate; an electricity supply element disposed on a surface of the ceramic substrate; and an electricity supply path embedded in the ceramic substrate and electrically connecting the resistance heat-generating element and the electricity supply element. The electricity supply path includes a plurality of conductive layers disposed along the planar direction of the ceramic layers at different positions in the thickness direction of the ceramic substrate, and a plurality of vias disposed along the thickness direction of the ceramic substrate. When the plurality of conductive layers are viewed from the thickness direction, their outer edges are positionally offset from one another.
US10347519B2
Various embodiments of aligning wafers are described herein. In one embodiment, a photolithography system aligns a wafer by averaging individual via locations. In particular, some embodiments of the present technology determine the center locations of individual vias on a wafer and average them together to obtain an average center location of the set of vias. Based on a comparison of the average center location to a desired center location, the present technology adjusts the wafer position. Additionally, in some embodiments, the present technology compares wafer via patterns to a template and adjusts the position of the water based on the comparison.
US10347511B2
Embodiments of the invention generally relate to a method of cleaning a substrate and a substrate processing apparatus that is configured to perform the method of cleaning the substrate. More specifically, embodiments of the present invention relate to a method of cleaning a substrate in a manner that reduces or eliminates the negative effects of line stiction between semiconductor device features. Other embodiments of the present invention relate to a substrate processing apparatus that allows for cleaning of the substrate in a manner that reduces or eliminates line stiction between semiconductor device features formed on the substrate.
US10347509B1
Disclosed is a method of manufacturing a semiconductor device that includes molding and curing a framing member having an upper side that defines an array of indentations. Semiconductor dies are then adhered to the framing member within respective indentations. The upper side of the framing member and the dies are covered with an RDL. Formation of the RDL includes deposition of a dielectric material that also fills gaps between the dies and the framing member within the indentations. The framing member can be molded to have a thickness that can provide mechanical strength to resist damage to the dies during the formation of the RDL or other manufacturing processes, for example due to warping of the dies. After the RDL is completed, this excess framing member material can then be removed from lower side of the framing member and the structure can be diced to separate the dies into respective semiconductor devices.
US10347504B2
A method and composition for removing bulk and/or ion-implanted resist material from microelectronic devices have been developed. The compositions effectively remove the ion-implanted resist material while not damaging the silicon-containing or germanium-containing materials.
US10347497B2
A method of catalyst-assisted chemical etching with a vapor-phase etchant has been developed. In one approach, a semiconductor substrate including a patterned titanium nitride layer thereon is heated, and an oxidant and an acid are evaporated to form a vapor-phase etchant comprising an oxidant vapor and an acid vapor. The semiconductor substrate and the patterned titanium nitride layer are exposed to the vapor-phase etchant during the heating of the semiconductor substrate. The vapor-phase etchant diffuses through the patterned titanium nitride layer, and titanium nitride-covered regions of the semiconductor substrate are etched. Thus, an etched semiconductor structure is formed.
US10347496B2
Semiconductor structures and fabrication methods are provided. The semiconductor structure includes a base including first, second, third, and fourth regions, used for first, second, third, and fourth transistors, respectively. A gate dielectric layer is on the first, second, third and fourth regions of the base. A first material layer is on the gate dielectric layer. A second material layer is on the first material layer above the fourth region. A third material layer is on the first material layer above the third region and on the second material layer above the fourth region. A fourth material layer is on the third material layer above the third and fourth regions and on the first material layer on the second region. The first material layer above the first region is used as a first work function layer for the first transistor.
US10347492B2
A sequential plasma process is employed to enable the modification of the work function of a p-type metal layer in a metal gate structure. The sequential plasma process includes a plasma hydrogenation and a plasma process that includes electronegative species. The sequential plasma process is performed on a p-type metal layer in a film stack, thereby replacing suboxides and/or other non-stoichiometrically combined electronegative atoms disposed on or within layers of the film stack with stoichiometrically combined electronegative atoms, such as O atoms. As a result, the work function of the p-type metal layer can be modified without changing a thickness of the p-type metal layer.
US10347490B2
Production of an integrated circuit including an electrical contact on SiC is disclosed. One embodiment provides for production of an electrical contact on an SiC substrate, in which a conductive contact is produced on a boundary surface of the SiC substrate by irradiation and absorption of a laser pulse on an SiC substrate.
US10347482B2
The present disclosure relates to a processing liquid supplying unit configured to supply a processing liquid that contains a removing agent of an adhered substance and a solvent having a boiling point lower than a boiling point of the removing agent to a substrate, a substrate heating unit configured to subsequently heat the substrate at a predetermined temperature that is equal to or higher than the boiling point of the solvent in the processing liquid and is lower than the boiling point of the removing agent, and a rinsing liquid supplying unit configured to subsequently supply a rinsing liquid to the substrate so as to remove the adhered substance from the substrate.
US10347477B2
A method of quantitative mass analysis of precursor ion species of different mass-to-charge (m/z) ratios from the same or common ion injection event is disclosed. A plurality of precursor ion species with different respective m/z ratios are introduced into an ion trap mass analyzer at the same time. The precursor ion species are isolated. A first subset of the isolated precursor ions, which are multiply charged and have a first m/z ratio range, is fragmented and scanned by dividing the scan into at least two separate scan windows. A first mass spectrum is generated for the fragment ions of the first subset of precursor ions. A second subset of the isolated precursor ions having a second m/z ratio is fragmented and scanned, and a second mass spectrum is generated for the fragment ions of the second subset of precursor ions.
US10347475B2
A holding assembly for retaining a deposition ring about a periphery of a substrate support in a substrate processing chamber, the deposition ring comprising a peripheral recessed pocket with a holding post. The holding assembly comprises a restraint beam capable of being attached to the substrate support, the restraint beam comprising two ends, and an anti-lift bracket. The anti-lift bracket comprises a block comprising a through-channel to receive an end of a restraint beam, and a retaining hoop attached to the block, the retaining hoop sized to slide over and encircle the holding post in the peripheral recessed pocket of the deposition ring.
US10347473B2
A method for forming a high purity, copper indium gallium selenide (CIGS) bulk material is disclosed. The method includes sealing precursor materials for forming the bulk material in a reaction vessel. The precursor materials include copper, at least one chalcogen selected from selenium, sulfur, and tellurium, and at least one element from group IIIA of the periodic table, which may be selected from gallium, indium, and aluminum. The sealed reaction vessel is heated to a temperature at which the precursor materials react to form the bulk material. The bulk material is cooled in the vessel to a temperature below the solidification temperature of the bulk material and opened to release the formed bulk material. A sputtering target formed by the method can have an oxygen content of 10 ppm by weight, or less.
US10347463B2
Method and system for enhanced charged particle beam processes for carbon removal. With the method and system for enhancing carbon removal, associated method and system for decreasing levels of carbon impurity in depositions, also using a precursor gas in charged particle beam processes (and particularly focused ion beam methodologies), are provided. In a preferred embodiment, the precursor gas comprises methyl nitroacetate. In alternative embodiments, the precursor gas is methyl acetate, ethyl acetate, ethyl nitroacetate, propyl acetate, propyl nitroacetate, nitro ethyl acetate, methyl methoxyacetate, or methoxy acetylchloride.
US10347453B2
Provided is a multi-pole molded case circuit breaker (MCCB) with an insulation barrier for a rotary pin, in which an insulation barrier is provided in a rotary pin for inter-phase power transmission to prevent dielectric breakdown. The multi-pole MCCB includes a shaft assembly having a movable contactor and having a plurality of rotary pin holes formed in a penetrating manner, a base assembly to which the shaft assembly is rotatably accommodated to be coupled, a switching mechanism coupled to an upper portion of the base assembly and rotating the shaft assembly, a plurality of rotary pins coupled to the plurality of rotary pin holes in a penetrating manner, and an insulation barrier formed of an insulating material and covering the plurality of rotary pins.
US10347446B2
To improve cooling performances of quenching gas in a gas blast switch comprising a gas channel connecting an arcing region to a gas storage chamber delimited by radially opposite inner and outer walls and axially opposite first and second end walls, a flow guiding radial wall extends in the gas storage chamber spaced from each wall delimiting the chamber, an opening of the gas channel into the gas storage chamber through the first end wall faces a space between the flow guiding radial wall and the inner wall, the outer wall includes a deflecting portion protruding in the gas storage chamber and facing the second end wall, and at least part of the deflecting portion is offset from the flow guiding radial wall in an axial direction oriented from the gas channel towards the gas storage chamber.
US10347445B2
An input device, including: a base, an upper cover, a lever assembly, a reset assembly, an electrical assembly, a spring switch, and a terminal assembly. The upper cover is disposed on the base and includes a central cavity. The lever assembly is disposed in the central cavity formed by the upper cover and the base, and includes a lever, an upper shoulder, and a lower shoulder. The lever includes an upper end and a lower end. The reset assembly is disposed below the lever assembly. The electrical assembly is electrically connected to the lever assembly, and includes a first slider, a second slider, a first carbon-film conductive dome, a first carbon-film resistor, a second carbon-film conductive dome, a second carbon-film resistor, and a trigger. The spring switch is disposed in the base and positioned below the trigger.
US10347439B2
An electric switch includes a first and a second connection terminal for connecting the switch to an external circuit; a first switch assembly, which includes two or more electric breaker elements connected in series to one another and to the first and the second connection terminal; a second switch assembly, which includes at least one delayed electric breaker element connected in parallel to the first switch assembly. A moving actuator is made of insulating material and is associated with the first and the second switch assembly to open or close them. The moving actuator is movable between a closed switch position in which electrical continuity is established between the first and the second connection terminal, and an open position in which current flow between said terminals is prevented.
US10347433B2
A Dense Energy Ultra Cell (DEUC), a dielectric energy storage device and methods of fabrication therefor are provided. A DEUC element is fabricated using print technologies that deposit dielectric energy storage layers (406) and insulating layers (404) together being interleaved between electrode layers (403). The dielectric energy storage layers are created from a proprietary solution to enable printing of dielectric energy storage layers with high permittivity and a high internal resistivity to retain charge. The insulating layers (404) can be applied within the dielectric energy storage layers (406) bifurcating the dielectric energy storage layers for increased resistivity. As part of the fabrication process, the material deposition printer can apply multiple print heads each with different inks and materials (1301, 1302) to form composite material (1303) in the printed layers.
US10347432B2
A method for recovering a degraded solar cell is disclosed. The method comprises radiating an ultraviolet (UV) light on the degraded solar cell for a period of time in a range from 30 seconds to 5 minutes.
US10347429B2
A capacitor includes a body including a dielectric layer and a plurality of first and second internal electrodes which are alternately disposed while having the dielectric layer therebetween, including first to sixth surfaces; a first external electrode disposed on the third surface and including a first extension portion extending from the third surface to portions of the first, second, fifth, and sixth surfaces, adjacent to the third surface; a second external electrode disposed on the fourth surface and including a second extension portion extending from the fourth surface to portions of the first, second, fifth, and sixth surfaces, adjacent to the fourth surface; and a plating prevention member covering the first and second extension portions disposed on the fifth surface and the sixth surface.
US10347426B2
An external electrode includes an underlying electrode layer on an end surface of a ceramic body and connected to an internal electrode, an external electrode layer located outside the underlying electrode layer, and an intermediate electrode layer including at least a portion between the underlying electrode layer and the external electrode layer. The intermediate electrode layer includes a conductive resin, and the underlying electrode layer and the external electrode layer include a material lower in electrical resistivity than the conductive resin. The intermediate electrode layer entirely or substantially entirely covers the end surfaces and extends from the end surfaces to portions, respectively, of one main surface, and the underlying electrode layer is partially exposed from the intermediate electrode layer to include an exposed surface and is in surface-contact with the external electrode layer at the exposed surface.
US10347422B2
Prismatic polymer monolithic capacitor structure operating at temperatures exceeding 140° C. and including multiple interleaving radiation-cured polymer dielectric layers and metal layers. Method for fabrication of same. The geometry of structure is judiciously chosen to increase sheet resistance of metal electrodes while reducing the capacitor's equivalent series resistance. Metal electrode layers are provided with a thickened peripheral portion to increase strength of terminating connections and are passivated to increase corrosion resistance. Materials for polymer dielectric layers are devised to ensure that the capacitor's dissipation factor remains substantially unchanged across the whole range of operating temperatures, to procure glass transition temperature that is no less than the desired operating temperature, and to optimize the absorption of ambient moisture by the polymeric layers.
US10347414B2
Methods and systems for winding transformers to maximize symmetry of the primary and secondary coils may comprise a transformer with a primary coil and a secondary coil. A first portion of the transformer has at least one turn around a core, and includes twisted pair sections of the primary coil and secondary coil. A second portion of the transformer may include a fractional turn extension of only the primary coil at one end of the first portion, and a third portion of the transformer may include a fractional turn extension of only the secondary coil at an opposite end of the first portion, where the fractional turn extensions area equal in length. A center tap may be coupled to the first portion of the transformer, which may be a balun. The transformer may comprise an off-chip transformer that includes wires wound around a magnetic core.
US10347407B2
A magnetic apparatus (1) comprising a magnetizable surface (2) configured to anchor a one or more ferromagnetic elements in a removable manner and a plurality of magnetic poles (3), each provided with a free surface (4) thereof, the magnetizable surface (2) being at least partially defined by the free surfaces (4) of said plurality of magnetic poles (3) placed side by side; one part of said magnetic poles (3) has at least two measuring areas (5) on the free surface thereof, each measuring area (5) being associated with at least one sensor (6) adapted to detect a magnetic flux exiting from said area.
US10347401B2
An electrified-cable system is disclosed herein. The system includes first and second wires each having a longitudinally-extending uninsulated region comprising at least a portion of the circumference of the first wire, and a longitudinally-extending insulated region comprising the remaining circumference of the first wire, and an insulating connector that couples the insulated region of the first wire to the insulated region of the second wire. The system is configured to form an electrical circuit from the first wire to the second wire through a carriage in electrical contact with the uninsulated region of the first wire and the uninsulated region of the second wire. A corresponding method is also disclosed.
US10347397B2
A cable for transmitting electrical signals including an outer casing made of an electrically insulating material and at least N lines n with N≥2 and N€N which are arranged within the outer casing, wherein each line m has a total of M wires made of an electrically conductive material with M≥1 and M€N, wherein the wire m with m€[1, M], m€N, the line n with n E [1, N], n€N is surrounded by a dielectric having a predetermined value for the relative permittivity er(m,n)>1, wherein for each line n the value for the relative permittivity of the dielectrics (24. 26. 28. 30) of the wires (16, 18, 20, 22) of this line n is identical, except for deviations resulting from the manufacturing process, so that er(p·n)=er(p+q,n), where q€[1, M−p], q€Np € [1, M−1], p€N.
US10347374B2
A system for preparing patient-specific compounded medication doses is disclosed. The system includes a computerized medication compounding workstation configured to receive a patient-specific compounded medication dose order over a network and retrieve an electronically stored protocol having a set of steps to prepare a patient-specific compounded medication dose specified by the patient-specific compounded medication dose order. The example workstation is also configured to display, on a graphical user interface to a pharmacy operator, information related to the set of steps for preparing the patient-specific compounded medication dose and receive input related to the preparation of the patient-specific compounded medication dose including at least medication information scanned from at least one source medication container and a digital image from a digital camera. The workstation verifies completion for each step before allowing the pharmacy operator to move to a next step to prepare the patient-specific compounded medication dose.
US10347371B2
A device for managing health data provides a first housing portion including a data storage system that stores health data and a second housing portion including a data communications element. The data communications element provides data communications between the data storage system and a processing device that processes the health data according to a data-management software. The first housing portion and the second housing portion are connected by a cable that communicates signals between the data communications element and other components in the first housing portion. Another device for managing health data provides a first housing portion including a health data management system and a data communications element that provides data communications between the health data management system and an external processing device. The second housing portion is removably coupled to the first housing portion, and includes at least one component used by the health data management system.
US10347365B2
A visualization system comprising a persistent memory, storing a dataset, and a non-persistent memory implements a pattern visualizing method. The dataset contains discrete attribute values for each first entity in a plurality of first entities for each second entity in a plurality of second entities. The dataset is compressed by blocked compression and represents discrete attribute values in both compressed sparse row and column formats. The discrete attribute values are clustered to assign each second entity to a cluster in a plurality of clusters. Differences in the discrete attribute values for the first entity across the second entities of a given cluster relative to the discrete attribute value for the same first entity across the other clusters are computed thereby deriving differential values. A heat map of these differential values for each first entity for each cluster is displayed to reveal the pattern in the dataset.
US10347360B2
Systems and method for identifying variants associated with a genetic disease can include obtaining calls for a plurality of individuals for a list of variant positions. The calls can be compared to identify variants that are found in affected individuals and absent in non-affected individuals. Such variants can include loss of heterozygosity, trans-phased compound heterozygotes, increased frequency mitochondrial variants, homozygous recessive variants, de novo variants, sex-linked variants, and combinations thereof.
US10347357B2
Systems, apparatuses and methods provide for technology that identifies a redundant portion of a packaged on-die memory and detects, during a field test of the packaged on-die memory, one or more failed cells in the packaged on-die memory. Additionally, the technology identifies whether the redundant portion includes one or more remaining memory cells, and in response to an identification that the redundant portion includes the one or more remaining memory cells, the one or more remaining memory cells in the redundant portion are substituted for the one or more failed memory cells.
US10347356B2
Memory devices and methods are described that include a stack of memory dies and a logic die. Method and devices described include those that provide for repartitioning the stack of memory dies and storing the new partitions in a memory map. Repartitioning in selected configurations allows portions of memory to be removed from use without affecting the rest of the memory device. Additional devices, systems, and methods are disclosed.
US10347354B2
A boundary scan chain for stacked memory. An embodiment of a memory device includes a system element and a memory stack including one or more memory die layers, each memory die layer including input-output (I/O) cells and a boundary scan chain for the I/O cells. A boundary scan chain of a memory die layer includes a scan chain portion for each of the I/O cells, the scan chain portion for an I/O cell including a first scan logic multiplexer a scan logic latch, an input of the scan logic latch being coupled with an output of the first scan logic multiplexer, and a decoder to provide command signals to the boundary scan chain.
US10347344B2
Devices and techniques for read voltage calibration of a flash-based storage system based on host IO operations are disclosed. In an example, a memory device includes a NAND memory array having groups of multiple blocks of memory cells, and a memory controller to optimize voltage calibration for reads of the memory array. In an example, the optimization technique includes monitoring read operations occurring to a respective block, identifying a condition to trigger a read level calibration based on the read operations, and performing the read level calibration for the respective block or a memory component that includes the respective block. In a further example, the calibration is performed based on a threshold voltage to read the respective block, which may be considered when the threshold voltage to read the respective block is evaluated within a sampling operation performed by the read level calibration.
US10347333B2
Methods, systems, and apparatus that support efficient utilization of die area for cross-point memory architecture are described. A memory array may include active memory cells overlying each portion of the substrate that includes certain types of support circuitry, such as decoders and sense amplifiers. Boundary tiles, which may be portions of an array having a different configuration from other portions of the array, may be positioned on one side of an array of memory tiles. The boundary tiles may include support components to access both memory cells of neighboring memory tiles and memory cells overlying the boundary tiles. Column lines and column line decoders may be integrated as part of a boundary tile. Access lines, such as row lines may be truncated or omitted at or near borders of the memory portion of the memory device.
US10347323B2
A semiconductor memory device includes a memory core that performs reading and writing of data, data delivery and training blocks that are connected between first pads and the memory core, and at least one data delivery, clock generation and training block that is connected between at least one second pad and the memory core. In a first training operation, the data delivery and training blocks output first training data, received through the first pads, through the first pads as second training data. In a second training operation, at least one of the data delivery and training blocks outputs third training data, received through the at least one second pad, through at least one of the first pads as fourth training data. The second training data and the fourth training data are output in synchronization with read data strobe signals output through the at least one second pad.
US10347318B2
A semiconductor memory device includes a memory cell array and a row decoder disposed in a first direction over a substrate and a plurality of coupling lines for electrically coupling the memory cell array and the row decoder. Each of the coupling lines includes a first conductive line disposed in the first direction; a second conductive line disposed parallel to the first conductive line; and a pad coupling the first conductive line and the second conductive line, and coupled to the memory cell array or the row decoder through a contact plug. The coupling lines are routed from both sides of the pad in the first direction.
US10347316B2
Apparatuses for receiving an input data signal are described. An example apparatus includes: a plurality of data input circuits and an internal data strobe generator. Each data input circuit of the plurality of data input circuits includes: an amplifier that receives data from a data terminal, and latches the data in an enable state and refrains from latching data in a disable state; and a voltage control circuit coupled to a tail node of the amplifier and provides a first voltage to the tail node during the enable state, and further provides a second voltage different from the first voltage to the tail node in a first mode and to sets the tail node in a floating state in a second mode during the disable state. The internal data strobe signal generator provides a plurality of internal data strobe signals to the plurality of corresponding data input circuits respectively.
US10347315B2
Apparatuses, systems, methods, and computer program products are disclosed for performing a group read refresh. An apparatus includes a plurality of memory groups. An apparatus includes an operation circuit that performs an operation on a selected memory group of a plurality of memory groups. An apparatus includes a remediation circuit that performs a countermeasure operation on an unselected memory group of a plurality of memory groups in response to an operation on a selected memory group.
US10347310B2
Apparatuses, systems, and methods are disclosed for magnetoresistive random access memory. A magnetic tunnel junction for storing data includes a fixed layer, a barrier layer, and a composite free layer. A barrier layer is disposed between a fixed layer and a composite free layer. A composite free layer includes an in-plane anisotropy free layer, a perpendicular magnetic anisotropy (PMA) inducing layer, and a ferromagnetic amorphous layer. A PMA-inducing layer may be disposed such that an in-plane anisotropy free layer is between a barrier layer and the PMA-inducing layer. A ferromagnetic amorphous layer may be disposed between an in-plane anisotropy free layer and a PMA-inducing layer.
US10347304B2
Apparatuses and methods for a multi-level communication architectures are disclosed herein. An example apparatus may include an input/output (I/O) circuit comprising a driver circuit configured to convert a first bitstream directed to a first memory device and a second bitstream directed to a second memory device into a single multilevel signal. The driver circuit is further configured to drive the multilevel signal onto a signal line coupled to the first memory device and to the second memory device using a driver configured to drive more than two voltages.
US10347302B1
A memory comprising substrates is provided. Each substrate comprises a through-hole area at center; a first contact area at a side of the through-hole area; and a second contact area at another side of the through-hole area. The substrate uses its first or second contact area to mutually electrically connects to the first or second contact area of the another substrate through the through-hole area. After the pins of the memory having at least PAR pin included are electrically connects to the first and second contact areas of the substrate, all the substrates obtain mutual connections across layers through signal lines with the guidance of the through-hole areas. Thus, on fabricating the memory, reference layer is effectively prevented from breaks with good power distribution and sufficient wiring space achieved while good signal integrity is further maintained.
US10347293B1
Provided is a process, including: obtaining screen-cast video; determining amounts of difference between respective frames; selecting a subset of frames based on the amounts; causing OCRing of each frame in the subset of frames; classifying text in each frame-OCR record as confidential or non-confidential; and forming a redacted version of the screen-cast video based on the classifying.
US10347286B2
Methods and apparatus for generation of session audit log displays are disclosed. Audit log data is captured in association with at least one session in a computerized system. A video presentation is generated based on the captured audio log data. A video presentation of at least a part of the at least one session can then be displayed based on the generated data.
US10347277B2
A magnetoresistance element has a pinning arrangement with two antiferromagnetic pinning layers, two pinned layers, and a free layer. A spacer layer between one of the two antiferromagnetic pinning layers and the free layer has a material selected to allow a controllable partial pinning by the one of the two antiferromagnetic pinning layers.
US10347275B2
A method for speech processing includes determining a first unvoicing parameter for a first subframe of a speech signal, and determining a smoothed unvoicing parameter for the first subframe according to a second unvoicing parameter of a second subframe prior to the first subframe of the speech signal. The first unvoicing parameter is determined according to a periodicity parameter and a spectral tilt parameter. The method further includes computing a difference between the first unvoicing parameter for the first subframe and the smoothed unvoicing parameter for the first subframe and determining a classification of the first subframe using the computed difference as a decision parameter. The classification indicates whether the first subframe is an unvoiced speech signal or not an unvoiced speech signal. Bandwidth extension is performed on the speech signal for the first subframe according to the classification of the first subframe.
US10347270B2
According to one embodiment, a computer program product for denoising a signal comprises a computer readable storage medium having program instructions embodied therewith, wherein the computer readable storage medium is not a transitory signal per se, and where the program instructions are executable by a processor to cause the processor to perform a method comprising creating, utilizing a processor, a clean dictionary, utilizing a clean signal, creating, utilizing the processor, a noisy dictionary, utilizing a first noisy signal, determining, utilizing the processor, a time varying projection, utilizing the clean dictionary and the noisy dictionary, and denoising, utilizing the processor, a second noisy signal, utilizing the time varying projection.
US10347264B2
Present disclosure provides a signal processing method and device. Spectral coefficients of a current frame of a frequency-domain audio signal are divided into N sub-bands. N is a positive integer greater than 1. According to an energy attribute and a spectral attribute of a first subset of the N sub-bands, whether to modify original envelope values of sub-bands in the first subset is determined. A frequency range of each of the M sub-bands in the first subset is lower than a frequency range of each of the K sub-bands. Based on a determination that the original envelope values of the M sub-bands need to be modified, the original envelope values of the M sub-bands are modified individually to obtain modified envelope values of the M sub-bands. Encoding bits are allocated to each of the N sub-bands according to the modified envelope values of the M sub-bands and original envelope values of the K sub-bands.
US10347261B2
Exemplary embodiments provide encoding and decoding methods, and associated encoders and decoders, for encoding and decoding of an audio scene which at least comprises one or more audio objects (106a). The encoder (108, 110) generates a bit stream (116) which comprises downmix signals (112) and side information which includes individual matrix elements (114) of a reconstruction matrix which enables reconstruction of the one or more audio objects (106a) in the decoder (120).
US10347258B2
A voice communication system is equipped with a voice encoder which classifies respective bits of a voice information bit string in accordance with the degree of importance which is the magnitude of auditory influence when there is an error therein, classifies a group of bits which are high in degree of importance into a core layer and classifies a group of bits which are not high into an extension layer and a voice decoder which decodes a voice by using the bit strings in both of the core layer and the extension layer on the basis of frequency that the error is detected by error detection processing and when the frequency is low and decodes the voice using all bits or only some bets in the core layer when the frequency is high.
US10347256B2
A system for generating channel-compensated features of a speech signal includes a channel noise simulator that degrades the speech signal, a feed forward convolutional neural network (CNN) that generates channel-compensated features of the degraded speech signal, and a loss function that computes a difference between the channel-compensated features and handcrafted features for the same raw speech signal. Each loss result may be used to update connection weights of the CNN until a predetermined threshold loss is satisfied, and the CNN may be used as a front-end for a deep neural network (DNN) for speaker recognition/verification. The DNN may include convolutional layers, a bottleneck features layer, multiple fully-connected layers and an output layer. The bottleneck features may be used to update connection weights of the convolutional layers, and dropout may be applied to the convolutional layers.
US10347254B2
Various arrangements for using an augmented reality device are presented. Speech spoken by a person in a real-world scene may be captured by an augmented reality (AR) device. It may be determined that a second AR device is to receive data on the speech. The second AR device may not have been present for the speech when initially spoken. Data corresponding to the speech may be transmitted to the second augmented reality device.
US10347253B2
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for hotword detection on multiple devices are disclosed. In one aspect, a method includes the actions of receiving, by a computing device, audio data that corresponds to an utterance. The actions further include determining a likelihood that the utterance includes a hotword. The actions further include determining a loudness score for the audio data. The actions further include based on the loudness score, determining an amount of delay time. The actions further include, after the amount of delay time has elapsed, transmitting a signal that indicates that the computing device will initiate speech recognition processing on the audio data.
US10347252B2
The present disclosure illustrates an electronic device with wake on voice function and an operating method thereof. The electronic device detects an audio signal in analog form by an additional pre-signal detector, and the pre-signal detector wakes up an analog-to-digital converter and a human voice detector when the audio signal in analog form is determined to satisfy a predetermined condition. When a host system of the electronic device enters into a sleep mode from an operation mode, the analog-to-digital converter and the human voice detector enter into a sleep mode together.
US10347249B2
The disclosed embodiments relate to the design of a system that uses an accelerometer in a mobile device to detect hotwords, which activate a voice interface to recognize subsequent voice input. During operation, the system gathers samples comprising readings from the accelerometer in the mobile device. Next, the system calculates features from the gathered samples. The system then classifies the calculated features using a classifier, which has been trained to detect hotwords based on calculated features. Finally, if the classifier detects one or more hotwords, the system causes the mobile device to launch a voice-control system that recognizes subsequent voice input received from an audio microphone.
US10347240B2
A device capable of splitting user input into phrases is presented. The disclosed device leverages multiple phrase splitting models to generate one or more possible split locations. The possible split locations can be derived based on leveraging multiple phrase splitting models. Each model contributes its suggested split locations to the set of possible split locations according to an implementation of a phrase splitting kernel algorithm that weights each model's suggestions.
US10347237B2
According to an embodiment, a device includes a table creator, an estimator, and a dictionary creator. The table creator is configured to create a table based on similarity between distributions of nodes of speech synthesis dictionaries of a specific speaker in respective first and second languages. The estimator is configured to estimate a matrix to transform the speech synthesis dictionary of the specific speaker in the first language to a speech synthesis dictionary of a target speaker in the first language, based on speech and a recorded text of the target speaker in the first language and the speech synthesis dictionary of the specific speaker in the first language. The dictionary creator is configured to create a speech synthesis dictionary of the target speaker in the second language, based on the table, the matrix, and the speech synthesis dictionary of the specific speaker in the second language.
US10347233B2
An adaptive active noise cancellation apparatus performs a filtering operation in a first digital domain and performs adaptation of the filtering operation in a second digital domain.
US10347231B2
A distortion device includes a transconductance stage, a current amplifier stage electrically coupled to the transconductance stage, and a transformer portion electrically coupled to the current amplifier stage. The transconductance stage includes a first capacitor to provide a ground to a resistor, and voltage across the resistor develops a current through a second capacitor to the current amplifier stage. The current amplifier stage includes a positive half cycle and a negative half cycle. The positive half cycle and the negative half cycle amplify the current from the transconductance stage and supply the amplified current to a primary winding of a transformer in the transformer portion, and the output of the transformer portion includes a low-level signal.
US10347227B1
A guitar pick holder includes a receptacle having an open top and a closed bottom. A piston is provided within the receptacle and a retainer is fitted over the receptacle wherein the piston is disposed between the closed bottom of the receptacle and the retainer. The retainer has a partially open top at a side thereof. A spring is disposed between the closed bottom of the receptacle and the piston such that the piston is biased into contact with the retainer.
US10347221B2
An electronic device is provided which includes a plurality of displays, a processor electrically connected to the plurality of displays, and a memory electrically connected to the processor, in which the memory stores a middleware, which when executed by a processor divides image data to be displayed on the plurality of displays, and transmits the divided image data to display drivers of the plurality of displays.
US10347219B2
A rendering method includes receiving an input including pixel pattern information of a device configured to display a rendered image, generating a pixel pattern of the rendered image using the received input indicating pixel pattern information, and outputting a pixel value of the rendered image into a frame buffer using the generated pixel pattern.
US10347218B2
Methods, systems, computer-readable media, and apparatuses for image processing and utilization are presented. In some embodiments, an image containing at a face of a user may be obtained using a mobile device. An orientation of the face of the user within the image may be determined using the mobile device. The orientation of the face of the user may be determined using multiple stages: (a) a rotation stage for controlling a rotation applied to a portion of the image, to generate a portion of rotated image, and (b) an orientation stage for controlling an orientation applied to orientation-specific feature detection performed on the portion of rotated image. The determined orientation of the face of the user may be utilized as a control input to modify a display rotation of the mobile device.
US10347216B2
The disclosure provides a head mounted display device, comprising a house and an optical glass, a telescope, an imaging lens assembly and a display screen located in the house. The house further comprises a display window and a view window. The telescope is located corresponding to the view window. The optical glass and the telescope are collocated along a first optical axis. The imaging lens assembly and the display screen are collocated along a second optical axis. Light emitted by the display screen passes through the imaging lens assembly and the optical glass and projects out the house through the display window. Or, light of outside world passes through the view window and the telescope and projects out the house through the display window. User can watch outside scenes through the head mounted display device.
US10347211B2
A display driving system includes a display driver integrated circuit, and the display driver integrated circuit includes a brightness calculating circuit, an image complexity calculating circuit, a weight calculating circuit and a look up table. The brightness calculating circuit calculates brightness of image data and generates brightness data. The image complexity calculating circuit calculates image complexity and generates weight data, based on a pattern of the image data. The weight calculating circuit receives brightness data and a weight data to generate brightness correction data.
US10347205B2
A data conversion method for converting display data of a display device includes detecting an ambient temperature of the display device; receiving a specific display data to be displayed by the display device, a previous display data in N row before the specific display data, and a next display data in N row after the specific display data; converting the specific display data into a display output data according to the previous display data, the next display data and the ambient temperature; and outputting the display output data to perform displaying.
US10347204B2
A dummy circuit and a driving circuit of a flat panel display device is provided in the present application, including: a plurality of dummy scanning lines extending in a row direction and separated from each other; a plurality of data lines extending in a column direction and separated from each other, the plurality of data lines including an outer dummy data line in the outermost side; the dummy scanning lines intersecting with the dummy data lines to form a plurality of dummy pixel regions, dummy pixel electrodes provided in the dummy pixel regions; a plurality of thin film transistors connecting the pixel electrode to the corresponding dummy scanning lines and the dummy data lines; and wherein the outer dummy data line corresponding to at least one end portion of the of the dummy scanning line outwardly avoidance disposed to make the projections of the both staggered.
US10347203B2
Disclosed is a GOA drive circuit, including a plurality of GOA drive units. Each trigger unit in first K GOA drive units includes a first thin film transistor, which has a gate connected to a trigger clock corresponding to the trigger unit. The trigger clock is configured to turn off the trigger unit when a scan clock of an output unit corresponding to the trigger unit is at a high level.