US11310951B2

A substrate working device includes a working unit that performs work on a substrate on which a component is mounted, an imager capable of imaging a correction mark for position correction, and a mark projector that projects the correction mark. The correction mark includes a first correction mark and a second correction mark. The mark projector projects the first correction mark to a first height and projects the second correction mark to a second height.
US11310947B2

A camera module (1) for a motor vehicle, in particular for driver monitoring in the passenger compartment, including at least one printed circuit board (2) and a shield for enclosing the printed circuit board (2). The shield includes at least a first shielding part (7) and a second shielding part (10). The first shielding part (7) is a ring shaped part and the second shielding part (10) is a hat shaped part put over, enclosing, and contacting the first shielding part (7).
US11310943B1

A system to improve cooling of rack mounted components may include a first rack mounted component including a first motherboard, the first motherboard having a first edge and a second rack mounted component disposed above the first rack mounted component; the second rack mounted component having a second motherboard having a first edge, wherein the second motherboard is similar to the first motherboard. The second motherboard may be disposed above the first motherboard, and wherein the second motherboard is angled with respect to the first motherboard so that the first edge of the second motherboard is non-aligned with the first edge of the first motherboard. In addition, the first motherboard may be arranged horizontally in a first plane and the second mother board may be arranged horizontally in a second plane that is parallel to the first plane.
US11310938B2

Systems and methods are provided for a leak sensor drip tray. In some embodiments, an Information Handling System (IHS) may include: a component; a cold plate disposed above the component; a leak sensor board disposed above the cold plate; and a drip tray disposed above the leak sensor, wherein the drip tray is configured to capture a fluid leak from a fitting coupled to the cold plate.
US11310934B2

A power transmitter includes a transmitter antenna includes at least one coil configured to transmit the power signal to the power receiver, the at least one coil and a shielding comprising a ferrite core and defining a cavity, the cavity configured such that the ferrite core substantially surrounds all but the top face of the at least one coil. The power transmitter includes a housing configured for housing, at least, the transmitter antenna. The housing defines an airflow opening configured to provide an airflow to a first airflow channel and to a second airflow channel. The first and second airflow channels configured to provide the airflow to one or more of a top face of a mobile device thereon and a bottom face of the mobile device.
US11310931B2

A waterproof membrane of the present disclosure has an insertion loss of 5.0 dB or less for sound with a frequency of 1 kHz, and an insertion loss of 5.0 dB or less for sound with a frequency of 10 kHz when a permeation region for sound of the waterproof membrane has an area of 1.3 mm2. The waterproof membrane of the present disclosure can cope with further size reduction of the permeation region. A waterproof member of the present disclosure includes the above-mentioned waterproof membrane of the present invention and a support member joined to the waterproof membrane.
US11310928B2

The present disclosure provides an LED display waterproof structure including a display bottom case, a first sealing ring and a waterproof cover. A side surface of the display bottom case is provided with a first U-shaped ring groove, a side surface of the first sealing ring towards the waterproof cover is provided with a second U-shaped ring groove, a first surface of the waterproof cover is provided with a ring protrusion matching the second U-shaped ring groove, the waterproof cover is provided on the first U-shaped ring groove through the first sealing ring, the ring protrusion is connected to the second U-shaped ring groove through interference fit, and the second U-shaped ring groove is connected to the first U-shaped ring groove through interference fit.
US11310922B2

A board-to-board connecting structure which adds no significant thickness to a single printed circuit board includes a first circuit board and a second circuit board. The first circuit board includes first circuit substrate, adhesive layer, and second circuit substrate. The first circuit substrate includes first base layer, first inner wiring layer with first pad, and first outer wiring layer defining a receiving space. The second circuit substrate includes insulating layer and two second outer wiring layers. A conductive via in the second circuit substrate connects the two second outer wiring layers. The second circuit board includes second base layer and also two third outer wiring layers each with a second pad. The second circuit board is laterally disposed in the receiving space and one second pad connects to the conductive via and the other to the first pad.
US11310915B2

A method of manufacturing a curved electronic device (100) and resulting product. A patterned layer of non-conductive support material (12m) is printed onto a thermoplastic substrate (11) to form a support pattern. An electrical circuit (13,14) is applied onto the support pattern (12), wherein the electrical circuit (13,14) comprises circuit lines (13) comprising a conductive material (13m) applied onto support lines (12b) of the pattern and electrical components (14) applied onto support islands (12a) of the pattern. A thermoforming process (P) is used for deforming (S) the substrate (11) while a relatively high resistance of the support material (12m) to the deforming maintains a structural integrity of the electrical circuit (13,14).
US11310912B2

High-current circuit having a printed circuit board comprising a non-conductive substrate 2, a conductor layer 4 applied to the substrate 2 and an insulation layer 6 applied to the conductor layer, contact pads 8, 10, 12, 20, 22, 24 in each case interrupting the insulation layer 6 being arranged on both sides of the conductor plate, and the contact pads 8, 10, 12, 20, 22, 24 making contact with one another via vias 14 through the substrate 2, and the vias 14 being arranged in the area of the contact pads 8, 10, 12, 20, 22, 24, 10, 12, 20, 22, 24, characterized in that at least a first one of the contact pads 8 is arranged on a first side of the printed circuit board and a first semiconductor switch 28 is connected directly to at least a second one of the contact pads 20 on a second side of the printed circuit board, and in that the semiconductor switch 28 is connected to the first contact pad 8 directly via the vias 14 and the second contact pad 20, without further conductor tracks.
US11310910B2

A resin composition for use in a dielectric layer of a capacitor device or a capacitor-embedded printed circuit board is provided in which the resin composition can improve stability in capacitance and insulation properties of the capacitor device under high temperature and high humidity and ensures high adhesion of the dielectric layer to the device. The resin composition comprises a resin component and a dielectric filler. The resin component comprises an epoxy resin, an active ester resin, and an aromatic polyamide resin.
US11310902B2

The present disclosure provides a self-contained system that contains a plurality of target cartridges, automatically inserts a selected target cartridge into position for irradiation, advances a foil to facilitate irradiation over the target chamber, replaces the foil for additional irradiation (if desired), serves as a dissolution cell for retrieval of the irradiated material, removes the used target cartridge and inserts a new cartridge for subsequent cycles of operation. Consequently, only the dissolved target material and dissolution medium are transferred between the target system and any post processing cells/labs. Accordingly, a system is disclosed for processing a target material without disturbance to irradiated material (thereby eliminating risk of impurities) and without requiring manual access/intervention (thereby eliminating risk of exposure).
US11310898B2

A apparatus may include a power supply to receive a first voltage potential and output a second voltage potential that is greater than the first voltage potential and a cathode emitter to emit ions in response to application of the second voltage potential. The apparatus may also include a step down transformer to receive the second voltage potential and output a third voltage potential that is less than the second voltage potential. The apparatus may also include a heating element to, in response to application of the third voltage potential, heat the cathode emitter and lower a work function of the cathode emitter.
US11310897B2

Various aspects of the disclosure provides for an ionized air blower that can be used to neutralize static charge on a target surface or provide a charge on the target surface. The ionized air blower may comprise a fan configured to generate airflow toward a target surface, an ionizer configured to produce positive ions and negative ions in the airflow, and control circuitry. The control circuitry is configured to control one or both of a speed of the airflow from the blower and ionization of the airflow. The ionization is performed by a selected one of ion imbalanced mode or ion balanced mode of the blower.
US11310895B2

A lighting system includes a plurality of lighting devices installed in a predetermined space and connected to one another to communicate with one another using at least one of a first communication method and a second communication method, and a mobile device directly connected to at least one of the plurality of lighting devices to communicate therewith according to the first communication method. The first communication method and the second communication method are different. Each of the plurality of lighting devices includes a communication module configured to support the first communication method and the second communication method, and a driver configured to drive a light source in response to a control command received by the communication module.
US11310889B2

Some embodiments are directed to a motion detector configured to classify an environment as quiet or motion. The motion detector is configured to estimate if the frequency bins in a motion signal correspond to a motion source in the environment or to a noise source in the environment. Some embodiments are directed to a luminaire comprising a motion detector.
US11310888B2

A method of controlling a lighting device is disclosed. The method comprises: detecting a first location of a user in an area, obtaining a second location of the lighting device and/or its light effect in the area, obtaining object information about an object, the object information comprising at least dimensions of the object and a third location of the object in the area, determining, based on the first, second and third location and the object dimensions, if the object is located between the user and the lighting device and/or its light effect, and controlling the lighting device based on the determination.
US11310875B2

A frangible laminate includes first, second and third webs, and the second web is positioned between the first and third webs. The forming of the frangible laminate includes adhesively bonding a first plurality of sections of the second web to the first web, applying release material in order to inhibit at least some of any bonding between the first plurality of sections of the second web and the third web, and adhesively bonding a second plurality of sections of the second web to the third web. The frangible laminate is separated into a first laminate and a second laminate, so that the first laminate includes the first web and the first plurality of sections of the second web, and the second laminate includes the third web and the second plurality of sections of the second web.
US11310874B2

An induction cooking apparatus includes a plurality of induction coils arranged in an array. The induction coils include conductive windings and at least one foil. The at least one foil includes magnetically permeable material extending beneath the plurality of induction coils.
US11310872B2

Various components and methods related to a leading edge assembly are disclosed. The leading edge assembly can include an outer strike shell and a foam core. The foam core can be located inside the outer strike shell. The leading edge assembly can include a heating element with a plurality of sensors and wires. A method of manufacturing a leading edge assembly can include forming a composite layer, applying a metallic layer to the composite layer, installing an electronic device, and inserting a foam core into a cavity bounded by the composite layer and/or the electronic device.
US11310869B2

A portable electronic device includes a baseband integrated circuit configured to generate communication data and control signals. The portable electronic device also includes an optical path configured to be coupled to the baseband integrated circuit to transmit the data signals from the baseband integrated circuit. The portable electronic device additionally includes a radiohead configured to be coupled to the optical path to receive the data signals transmitted along the optical path from the baseband integrated circuit.
US11310868B2

Systems and methods relating to selection of user plane functions in a core network and a radio access network of a cellular communications network that take into consideration information related to application server selection are disclosed. In some embodiments, a method of operation of a network node in a cellular communications network that comprises a radio access network and a core network comprises selecting a user plane function for a protocol data unit session for a wireless device based on information related to application server selection such that the protocol data unit session for the wireless device utilizes the selected user plane function. In this manner, optimal user plane connectivity between an application client in the wireless device and an application server is provided.
US11310865B1

A network system for accessing situation related information is disclosed. In one embodiment, the system includes a network connection for receiving an indication of an occurrence of a situation; a situational network formed based on the occurrence of the situation, the situational network including a plurality of participant devices determined to be geographically proximate to the situation, each of the participant devices corresponding to a participant in the situational network; a second network connection for presenting a roll call query to each of the plurality of participant devices soliciting a reply related to a status of the participant; a plurality of network connections established for receiving a status response from the participant devices; and a database for aggregating the status responses from responsive participants into a roll call list.
US11310861B2

Technology for a user equipment (UE) operable for bandwidth part (BWP) configuration is disclosed. The UE can decode, at the UE, a radio resource control (RRC) signal including BWP configuration information for one or more of downlink (DL) or uplink (UL) BWP configurations, wherein the BWP configuration information comprises: subcarrier spacing for the BWP, and location and bandwidth of the BWP. The UE can encode one or more of data or control information, using the BWP configuration information, for transmission to a next generation node B (gNB). The UE can decode one or more of data or control information, using the BWP configuration information, received from the gNB.
US11310856B2

The present disclosure relates to a communication method and system for converging a 4th-Generation (4G) communication system or a 5th-Generation (5G) communication system for supporting higher data rates beyond the 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a central unit-control plane (CU-CP) included in a secondary node (SN) (or secondary gNB (SgNB)) in a wireless communication system supporting evolved universal terrestrial radio access and new radio dual connectivity (EN-DC) includes receiving, from a master node (MN) (or master eNB (MeNB)), a first message for requesting the SgNB to allocate a radio resource for a bearer, and transmitting a second message, including indication information indicating whether a packet data convergence protocol (PDCP) version of the bearer has been changed, to the CU-UP included in the SgNB. The indication information is generated based on the first message.
US11310847B2

A method for multi-layered distributed GTP-processing for communication between user devices (2, 3) via a communication network (1), the network comprises clusters (4) each cluster (4) including gateways (7) and a loadbalancer (8), and a runtime database (5) storing load information of the gateways and a subscriber data-base (6) storing information on user preferences. The method comprises the loadbalancer (8), after receipt of a connection request, to choose the least loaded gateway (7), identifying if the cluster (4) is the preferred cluster of the user, and establishing, if the cluster is the preferred cluster, a connection between the user devices (2, 3) via the gateway (7) and in accordance with the user preferences or else, transmitting the connection request to the loadbalancer (8) of the preferred cluster (4), the loadbalancer identifying the least loaded gateway (7) in that cluster and establishing via the gateway (7) a connection between user devices by sending a response message in accordance with the user preferences to the first gateway in the first cluster.
US11310846B2

A method implemented by a user equipment (UE) in a cellular communication network to support incremental deployment of identifier locator network protocol (ILNP) breakout. The method includes receiving an advertisement for a first access point name (APN) and a second APN from a source eNodeB, where the first APN is associated with a user plane packet gateway (P-GWu) that is implemented at the source eNodeB, and where the second APN is associated with a packet gateway (P-GW) in a core of the cellular communication network, establishing a first PDN session associated with the first APN, establishing a second PDN session associated with the second APN, sending traffic destined for a first Correspondent Node (CN) that is determined to be ILNP capable via the first PDN session, and sending traffic destined for a second CN that is determined not to be ILNP capable via the second PDN session.
US11310845B2

A communication management resource receives notification of a request from user equipment to establish a wireless communication link with a remote communication device through a first private wireless network. The communication management resource resides in a second private wireless network to which the user of the user equipment is a member. The request requests use of services provided by the second private wireless network to connect the user equipment to a remote communication device. In response to receiving the request, the second private wireless network retrieves a unique network identifier value assigned to the first private network. Via the unique network identifier value, the communication management resource detects that the first private wireless network is associated with the second wireless network. Based on the association, the communication management resource support communications between the user equipment and the remote communication device.
US11310843B2

This application discloses a PDU session establishment method and apparatus. The method includes: receiving, by a terminal device in a process of establishing a PDN connection in a first system, an access type that is sent by a core network device and that corresponds to the PDN connection in a second system; and when the terminal device moves to the second system, establishing, by the terminal device, a PDU session in the second system via an access network indicated by the access type, where the PDU session is associated with the PDN connection. Implementation of the present invention can increase a success rate of establishing a PDU session.
US11310842B2

The present application discloses a method and an apparatus for network self-organization. The method comprises: a first node determining a second node of one or more transmission nodes according to a preset condition, the second node being a transmission node having the highest transmission level of the one or more transmission nodes, wherein a higher transmission level of a transmission node indicates fewer hops between the transmission node and an anchor node; and the first node establishing a connection to the second node. Thereby, each transmission node selects an appropriate node from a plurality of nodes on the basis of levels of different nodes and requests to establish a connection, thus realizing establishment of connections between different transmission nodes.
US11310841B2

Long-term evolution assisted new radio initial access and mobility for 5G or other next generation networks are provided herein. A method can include transmitting, by a first network device of a wireless network and comprising a processor, a first timing synchronization signal and first acquisition information of the first network device to a mobile device. In response to the transmitting and based on a transmission received from the mobile device, a connection between the mobile device and a radio resource control of the wireless network can be facilitated. In addition, in response to the mobile device determining the location of the second timing synchronization signal based on the data indicative of the location of the second timing synchronization signal, the second network device can transmit, to the mobile device, the second timing synchronization signal and second acquisition information of the second network device.
US11310830B2

A terminal is disclosed that includes a transmitter that transmits a physical uplink shared channel (PUSCH) and a measurement reference signal (sounding reference signal (SRS)) and a processor that performs sensing and controls to contiguously transmit the PUSCH and the SRS after the sensing. In other aspects, a radio communication method and a base station are disclosed.
US11310829B2

Provided are a method of transmitting information in an unlicensed band and a network device. The method includes: when there is a synchronized signal block to be transmitted, performing listen before talk (LBT) at an LBT position of a time-domain transmission unit where a candidate transmission position of the synchronized signal block is located, to obtain an LBT result of a channel; if the LBT result of the channel indicates that the channel is idle, then sending, at the candidate transmission position of the synchronized signal block, the corresponding synchronized signal block to UE.
US11310824B2

Apparatuses, methods, and systems are disclosed for scheduling of transmission time intervals. One apparatus includes a processor that determines a first semi-persistent scheduling resource assignment indicating a first set of resources including a first multiple time domain resources. Each time domain resource of the first multiple time domain resources has a first transmission time interval length. The processor also determines a second semi-persistent scheduling resource assignment indicating a second set of resources including a second multiple time domain resources. Each time domain resource of the second multiple time domain resources has a second transmission time interval length, and the first transmission time interval length is different from the second transmission time interval length. The apparatus includes a transmitter that transmits the first semi-persistent scheduling resource assignment using a first semi-persistent scheduling radio network identifier, and transmits the second semi-persistent scheduling resource assignment using a second semi-persistent scheduling radio network identifier.
US11310820B2

Provided in the present disclosure are a cross-carrier scheduling method and device, wherein the method comprises: sending scheduling information to a terminal, the scheduling information being used for cross-carrier scheduling a target bandwidth part on at least one target carrier by means of a scheduling carrier, wherein the target carrier is a carrier that is scheduled by the scheduling carrier and that is configured with at least one bandwidth part, the bandwidth part is a frequency domain resource pre-designated on a carrier, and the target bandwidth part is a bandwidth part that is scheduled by the scheduling carrier among all bandwidth parts on the target carrier. According to the present disclosure, a target bandwidth part on at least one target carrier may be scheduled by a scheduling carrier, and the target carrier configured with the at least one bandwidth part may be scheduled across bandwidth parts at the same time that cross-carrier scheduling is implemented, thereby achieving a more flexible scheduling mode. In addition, at the same time that cross-bandwidth part scheduling is implemented, resources of different bandwidth parts on a carrier may be fully utilized, thereby reducing the blocking probability of a control signaling.
US11310816B2

In an embodiment, a network entity schedules, as part of a positioning procedure for a UE, a first set of resources for transmission of DL RS(s) by at least one BS to the UE. The network entity associates the DL RS(s) with UL RS(s) for transmission by the UE on a second set of resources to one or more BSs as part of the positioning procedure for the UE. The network entity transmits, to the UE, an indication of the association between the DL RS(s) and the UL RS(s). The UE receives the indication along with the DL RS(s) from the at least one BS. The UE transmits the UL RS(s) to the one or more BSs on the second set of resources in response to the received indication.
US11310808B2

A method, performed by a user equipment (UE), in a wireless communication system includes: obtaining sidelink logical channel configuration information corresponding to a logical channel and including a sidelink logical channel priority (sl-priority) parameter; selecting a destination associated with one of unicast, groupcast, and broadcast, based on the sidelink logical channel configuration information and sl-priority configured for each of at least one logical channel including sidelink data available for transmission; allocating sidelink resources to at least one logical channel corresponding to the destination based on the sl-priority configured for each of the at least one logical channel corresponding to the destination; multiplexing sidelink data included in the at least one logical channel corresponding to the destination to a medium access control (MAC) protocol data unit (PDU); and transmitting the MAC PDU to another UE using the sidelink resources.
US11310807B2

Implementations of the present application relate to a resource allocation method, a network device and a communication device. The method comprises: determining a quality of service (QoS) attribute of a first terminal device; and allocating, according to the QoS attribute, a transmission resource to the first terminal device, the transmission resource being used by the first terminal device to send data to a second terminal device.
US11310800B2

A method and system/circuit for multi-beamforming signal processing are provided. The circuit includes a plurality of basic modules associated with a plurality of transducers. Each basic module includes a first and second processing stages operative for introducing time delays of higher and lower temporal resolutions to the signals processed thereby respectively, and a path selector multiplexer module managing the signal coupling between the first and second stages. The first processing stage is connectable to one of the transducers via a first port and includes a network of first type time delay channels defining L signal paths operative at a relatively high sampling rate and adapted for providing L respectively different time delays of high temporal resolution. The second processing stage includes an array of N second type time delay channels operable for shifting signals processed thereby by any number up-to K samples of a lower sampling rate.
US11310794B2

The disclosure provides a data transmission method and a terminal in an Internet of Vehicles (IoV) system. In the embodiment of the present disclosure, the terminal may implement the data transmission method in the IoV system by determining a data transmission mode of a first carrier, then obtaining the multi-carrier transmission parameter of the first carrier if the data transmission mode of the first carrier is a multi-carrier transmission mode, and transmitting data on the first carrier using the multi-carrier transmission parameter.
US11310793B2

A subscriber unit and a method for receiving data at a subscriber unit for wireless communications are provided. A subscriber unit includes a receiver and at least one processor configured to monitor and receive forward control information within a first time interval of a first slot of a plurality of slots. Each slot of the plurality of slots includes the first time interval and a second time interval subsequent to the first time interval. The receiver and the at least one processor are further configured to receive forward traffic data in the first time interval of a second slot of the plurality of slots in accordance with the forward control information, where the second slot is contiguous to the first slot.
US11310789B2

In a terminal, a control unit transmits a bundle response signal using a resource in a basic region of an uplink control channel in an uplink unit band of a unit band group when no error is detected in each of a plurality of pieces of downlink data of the unit band group, the uplink control channel in the uplink unit band being associated with a downlink control channel in a basic unit band that is a downlink unit band in which a broadcast channel signal including information relating to the uplink unit band is transmitted, and the control unit transmits the bundle response signal using a resource in an additional region of the uplink control channel when an error is detected in each of the plurality of pieces of downlink data.
US11310782B2

A first apparatus may receive, on a first control channel, information indicating a first set of resources allocated on a second control channel; send, to a second UE based on the first set of resources allocated on the second control channel, information associated with communication on a data channel; and send data to the second UE on the data channel based on the information associated with the communication on the data channel. A second apparatus may receive, on a first control channel, information indicating a first set of resources allocated on a second control channel; receive, from a second UE based on the first set of resources allocated on the second control channel, information associated with communication on a data channel; and receive data from the second UE on the data channel based on the information associated with the communication on the data channel.
US11310780B2

A bandwidth scheduling method. The method includes a bandwidth allocation apparatus receives a bandwidth request message sent by a message conversion apparatus, where the bandwidth request message includes a bandwidth requirement, and the bandwidth requirement is a bandwidth required by a user-side apparatus for completing transmission of a service. The bandwidth allocation apparatus calculates first bandwidth grant information and second bandwidth grant information based on the bandwidth requirement, where the first bandwidth grant information is information about a bandwidth that is allocated to the user-side device, and the second bandwidth grant information is information about a bandwidth that is allocated to a second access device. The bandwidth allocation apparatus sends the first bandwidth grant information to the user-side device, and the bandwidth allocation apparatus sends the second bandwidth grant information to the second access device by using a first access device.
US11310775B2

A wireless device receives an indication for activation of packet data convergence protocol (PDCP) packet duplication of a radio bearer associated with a first radio link control (RLC) entity and a second RLC entity. A packet of the radio bearer is duplicated. The packet to the first RLC entity is provided. A duplicate packet to the second RLC is provided. The packet of the first RLC entity is transmitted. An acknowledgement of a successful delivery for the packet of the first RLC entity is received. In response to the acknowledgement, the duplicate packet of the second RLC entity is discarded.
US11310766B2

This disclosure describes signal transmission methods and apparatus. On example method includes: receiving, by a terminal device, a paging indication sent by a network device, where the paging indication carries information about a plurality of paging groups; and sending, by the terminal device to the network device based on an association relationship between a paged paging group in the plurality of paging groups and a random access preamble, a random access preamble associated with a paging group in which the terminal device is located.
US11310763B2

A method and a device for indicating and receiving paging control information, a storage medium, a base station, and a user equipment are provided, and the method for indicating paging control information includes: determining whether a first type of paging control information and a second type of paging control information are to be carried, wherein the first type of paging control information includes a system information update notification indicator, an ETWS notification indicator, and a CMAS notification indicator, and the second type of paging control information includes a paging message scheduling information indicator; and configuring a first predetermined bit field in DCI in accordance with a determined result, wherein the first predetermined bit field includes 2 bits. Embodiments of the present disclosure may support UEs in different states to simultaneously receive and acquire their required paging control information, which saves resources and improves paging efficiency.
US11310762B2

A method includes receiving positioning configuration information from a base station or location server while in an RRC_connected mode; transitioning to an RRC_idle or RRC_inactive mode, while saving the positioning configuration information; receiving a reference signal for positioning from the base station; performing positioning measurements, while in the RRC_idle or RRC_inactive mode; and sending a location report to the base station or location server while remaining in the RRC_idle or RRC_inactive mode. A related method includes sending positioning configuration information to a user equipment in an RRC_connected mode; sending the user equipment to RRC_idle or RRC_inactive mode by an RRC suspend procedure; sending a reference signal for positioning to the user equipment; receiving a location report from the user equipment in the RRC_idle or RRC_inactive mode; and forwarding the location report from the user equipment to a location server.
US11310748B2

Methods and systems for controlling uplink (UL) transmission power of a user equipment (UE) electronic device includes determining, using the UE electronic device, that a maximum power availability for a transmission between the UE and a wireless network node is not appropriate to current conditions. Based on the determination that maximum power availability is not appropriate the UE electronic device sends a request to the wireless network node to reduce power for communication with the wireless network node. Based on the request, the UE electronic device communicates at a reduced power level for communications with the wireless network node.
US11310747B2

Methods and apparatus for distinguishing between an antenna of a user equipment (UE) being blocked by a cover (e.g., a protective rubber or plastic case) or by human tissue (e.g., a finger or palm). The transmission power of uplink (UL) signals may be adjusted accordingly, with relatively higher transmission power for open space or a cover and relatively lower transmission power for human tissue. One example method for wireless communications by a UE generally includes transmitting a first signal from the UE, receiving a plurality of signals at the UE based on the transmitted first signal, determining values for at least two different types of parameters based on the received plurality of signals, determining an environmental scenario for the UE based on the values for the at least two different types of parameters, and transmitting a second signal using a transmission power based on the determined environmental scenario.
US11310745B2

Disclosed is an operating method for a wirelessly communicating electronic device, including the following steps: a) acquisition of a radio-frequency frame representative of at least one data item intended to be transmitted by the radio-frequency transmitter in a radio-frequency message; b) determination of the amount of power available in the power storage; c) determination, by the control circuit, of the length of the radio-frequency message to be transmitted; d) determination of transmission parameters of the radio-frequency transmitter, according to the values determined for the length of the message and the amount of power available in the power storage; e) and transmission of the message by the transmitter, using the determined transmission parameters.
US11310741B2

A method for monitoring wireless data communication by a user equipment connected to a wireless data network is disclosed. The method, which is performed by the user equipment, comprises the a) receiving at least one signal, wherein the at least one signal comprises at least one characteristic of a wake-up signal, b) determining whether the at least one signal is a wake-up signal or a false alarm wake-up signal, and c) reporting, based on said determining, information on the at least one signal to the wireless data network.
US11310739B2

According to an embodiment, a method for use in a wireless device is provided. The method comprises waking up from a discontinuous reception (DRX) mode in a cell. The method further comprises determining whether the cell is the same as a previous cell of the wireless device. In response to determining that the cell is not the same as the previous cell, the method further comprises determining whether the wireless device missed a wake-up signal opportunity in the cell. The method further comprises monitoring each of the paging occasions associated with the wake-up signal opportunity if the cell is not the same as the previous cell and the wake-up signal opportunity was missed.
US11310737B2

A method for discontinuous reception (DRX) parameter configuration and a device are provided, including: determining, by a terminal, a target DRX parameter of a target DRX mechanism of the terminal when the terminal detects data of multiple services. Thereby a solution is provided for determining a DRX parameter of a target DRX mechanism when multiple services of a terminal are concurrent in a future communication system.
US11310736B2

Embodiments of the present invention provide a method and apparatus for providing wideband channel access to wireless devices, such as 20 MHz only wireless stations. A Target Wakeup Time (TWT) Channel field contains a bitmap indicating a temporary primary channel for using during a TWT Service Period (SP). The temporary primary channel is determined through a negotiation between a requesting STA and a responding STA, and the responding STA assigns resource units (RUs) to the requesting STA according to the temporary primary channel. After the TWT SP, the requesting STA switches back to a primary channel.
US11310724B2

When an access point associates with an electronic device, the access point may establish secure communication with the electronic device using a four-way handshake with the electronic device. Next, the access point may distribute secondary pairwise master keys (PMKs) to radio-frequency (RF)-neighbor access points of the access point in a wireless local area network, where the secondary PMKs facilitate fast basic service set (BSS) transitions with the electronic device when a handover occurs without using the four-way handshake to establish secure communication with the electronic device. Furthermore, when the access point receives information that indicates that the electronic device has associated with a second access point in the RF-neighbor access points of the access point, the access point provides instructions to delete the secondary PMKs at the RF-neighbor access points of the access point, and provides additional secondary PMKs to RF-neighbor access points of the second access point.
US11310683B2

Provided is a mobile terminal testing apparatus capable of executing a test for putting any pseudo base station out of service during state transition, such as during handover or during position registration. A mobile terminal testing apparatus includes a plurality of pseudo base station units 18-1, 18-2, and 18-3 that simulate a plurality of base stations, and a scenario processing unit 17 that controls the pseudo base station units 18-1, 18-2, and 18-3 in compliance with a set scenario to execute a test. The scenario processing unit 17 puts the pseudo base station units 18-1, 18-2, and 18-3 set as a base station executing an out-of-service test out of service in a case where a message set as a message to execute the out-of-service test is transmitted from the pseudo base station units 18-1, 18-2, and 18-3 set as a base station transmitting the message to execute the out-of-service test.
US11310674B2

A base station or other network node configures a network transmission in dependence on a directional scanning reception ability of a wireless communication device targeted by the transmission. An example transmission configuration is selecting or restricting which Transmission/Reception Point to use for the transmission or selecting or restricting the beamforming configuration to use for the transmission. The device complements operations in the wireless communication network by indicating its directional scanning reception ability in initial signaling, such as used for random access, or in Radio Resource Control signaling, or both.
US11310658B2

A method and an apparatus for determining a status of a terminal device, and a device are disclosed. The method includes: obtaining, by an access and mobility management network element, an access type used by the terminal device to access a network, where the access type includes at least one of 3rd generation partnership project (3GPP) access and non-3GPP access; and determining, by the access and mobility management network element based on a status of the terminal device in the access type, the status of the terminal device, where the status of the terminal device includes at least one of a loss-of-connectivity state and an available-to-connectivity state. By using the method according to the embodiments of the present disclosure, accuracy of determining the status of the terminal device is improved.
US11310656B2

The present invention discloses methods and systems for configuring at least one radio frequency (RF) module by a wireless communication apparatus. The wireless communication apparatus sends a first message to the at least one RF module, and the first message comprises a request for at least one international mobile subscriber identity (IMSI) of at least one subscriber identity module (SIM) card. A second message is then received from the RF module, and the second message comprises the at least one IMSI. The wireless communication apparatus determines which wireless network service provider(s) the at least one SIM card is associated with. The wireless communication apparatus identifies at least one configuration information. The wireless communication apparatus then sends a third message to the at least one RF module, and the third message comprises the at least one configuration information. The at least one RF module is then configured based on the at least one configuration information.
US11310650B2

This application provides a terminal policy sending method, an apparatus, and a terminal policy sending system, to help determine an execution result of a first terminal policy. The method performed by a visited policy control function network element includes: receiving a first message from a home policy control function network element, where the first message includes a first terminal policy; sending the first terminal policy and a first procedure transaction identity (PTI) to a mobility management network element; receiving an execution result of the first terminal policy and the first PTI from the mobility management network element; determining, based on the first PTI, whether the execution result is the execution result of the first terminal policy; and sending a second message to the home policy control function network element if the execution result is the execution result of the first terminal policy, where the second message includes the execution result.
US11310637B2

A method is provided that integrates a unique set of structural features for concealing self-powered sensor and communication devices in aesthetically neutral, or camouflaged, packages that include energy harvesting systems that provide autonomous electrical power to sensors, data processing and wireless communication components in the portable, self-contained packages. Color-matched, image-matched and/or texture-matched optical layers are formed over energy harvesting components, including photovoltaic energy collecting components. Optical layers are tuned to scatter selectable wavelengths of electromagnetic energy back in an incident direction while allowing remaining wavelengths of electromagnetic energy to pass through the layers to the energy collecting components below. The layers uniquely implement optical light scattering techniques to make the layers appear opaque when observed from a light incident side, while allowing at least 50%, and as much as 80+%, of the energy impinging on the energy or incident side to pass through the layer.
US11310634B2

Systems and methods for managing voice communication channels used by a group of people are disclosed. Exemplary implementations may: electronically store information, wherein the information represents associations of individual voice communication channels with one or more communication groups, wherein individual ones of the one or more communication groups are specific to one or more roles of the people; receive device-specific packets from end-user communication devices associated with people, wherein the packets include packetized uplink information based on audio information captured by the communication devices, wherein individual packets are targeted to individual communication groups; generate and transmit downlink packets that include packetized downlink information that is organized in a set of broadcast channels for audio information that was targeted to specific communication groups.
US11310633B2

A multicast control device capable of reducing the distribution time of multicast data is provided. A multicast control device (10) according to the present disclosure includes a determination unit (11) configured to determine whether the number of communication terminals joining a multicast service exceeds a predetermined threshold, and a session control unit (12) configured to start a multicast session for a plurality of communication terminals joining the multicast service when it is determined that the number of communication terminals joining the multicast service exceeds the predetermined threshold.
US11310632B2

A device connects to a standard channel of a multicast network based on entering a service area, and receives a service announcement (SA) file via the standard channel. The device parses the SA file to determine a list of services identified in the SA file, and receives a selection of a priority service from the list of services. The device updates a priority counter associated with the priority service based on the selection. The device receives, after the period of time, information indicating entry into the service area, and determines that the priority counter satisfies a threshold based on receiving the information indicating entry into the service area. The device automatically connects to a priority channel of the multicast network, associated with the priority service, based on the priority counter satisfying the threshold, and receives a priority SA file, associated with the priority service, via the priority channel.
US11310629B2

A computerized mapping system is provided, including a map server configured to, in a map serving phase, receive a request from a client device to view a portion of a map at least partially including a building for which an indoor map is available, at a requested level of detail that is outside a range for displaying the indoor map, and transmit a target tile with a prerendered bitmap image for the building, and a client-side renderable geometric element with a perimeter and a client-side renderable visual feature of the internal map feature of the indoor map selected according to a selection criterion set by an authorized user of the indoor map, to the client device for display.
US11310628B2

An object of the present invention is to secure a relative relationship when positions are displayed by use of position information transmitted from a plurality of wireless communication devices. Each of the wireless communication devices of the present invention includes a position information acquisition unit and a transmission unit. The position information acquisition unit acquires the position information of the wireless communication devices by the GPS, for example. At that time, the position information acquisition unit also acquires time information when the position information is acquired. The transmission unit transmits transmission data including the position information and the time information when the position information is acquired in a predetermined transmission slot.
US11310626B2

A solution for managing vehicles both individually and as a group of associated vehicles is provided. A vehicle node can be located on each vehicle in the group and obtain and process data from a plurality of sensors also located on the vehicle. The vehicle node can be configured to communicate, either directly or indirectly, with a group system assigned to the group using a wireless communications solution. The group system can acquire monitoring data for all of the group of associated vehicles, which can be used to manage the group of associated vehicles and/or one or more individual vehicles in the group. The group system can be located on a vehicle traveling as part of the group of associated vehicles or at a fixed location.
US11310624B2

According to various embodiments, systems, computer program products, and computer-implemented methods for cognitive location and navigation services for custom applications are disclosed. More specifically, the cognitive location and navigation services include, but are not limited to beacon-based communication with vehicles. For instance, a method includes: summoning a vehicle to a designated position; communicating with one or more location sensors deployed throughout a location including the designated position; determining a user has exited a building at the location based on the communication with the one or more location sensors; and transmitting a position of the user to the summoned vehicle. Notably, the position of the user is accurate to within 10 inches. Corresponding systems and computer program products are also disclosed.
US11310615B2

An audio encoding apparatus and method that encodes hybrid contents including an object sound, a background sound, and metadata, and an audio decoding apparatus and method that decodes the encoded hybrid contents are provided. The audio encoding apparatus may include a mixing unit to generate an intermediate channel signal by mixing a background sound and an object sound, a matrix information encoding unit to encode matrix information used for the mixing, an audio encoding unit to encode the intermediate channel signal, and a metadata encoding unit to encode metadata including control information of the object sound.
US11310614B2

An intelligent hub for interfacing with other devices and performing smart audio or video source selection.
US11310602B2

The present disclosure relates to a magnetic circuit assembly of a bone conduction speaker. The magnetic circuit assembly may generate a first magnetic field. The magnetic circuit assembly may include a first magnetic element, and the first magnetic element may generate a second magnetic field. The magnetic circuit may further include a first magnetic guide element and at least one second magnetic element. The at least one second magnetic element may be configured to surround the first magnetic element and a magnetic gap may be configured between the second magnetic element and the first magnetic element. A magnetic field strength of the first magnetic field within the magnetic gap may exceed a magnetic field strength of the second magnetic field within the magnetic gap.
US11310600B2

An acoustic transducer for generating electrical signals in response to acoustic signals includes a transducer substrate, a back plate, and a diaphragm assembly. The diaphragm assembly includes a first diaphragm and a second diaphragm coupled thereto. The second diaphragm is positioned closer to the back plate than the first diaphragm. The second diaphragm includes a plurality of diaphragm apertures configured to allow air to pass through the second diaphragm. Each of the back plate and the first diaphragm are coupled to the transducer substrate at their periphery. In an embodiment, the transducer includes a post coupled to the first diaphragm and the second diaphragm, the post configured to prevent movement of the second diaphragm relative to the first diaphragm in a direction substantially perpendicular to the second diaphragm.
US11310594B2

Various aspects include a speaker including: an acoustic transducer for providing an audio output; a set of microphones for detecting a user voice command; and a controller coupled with the acoustic transducer and the set of microphones, wherein the controller is configured to: in response to detecting a power down command, switch the set of microphones from an active listening mode to a standby mode for a parking period, in response to detecting a power up command during the parking period, switch the set of microphones from the standby mode to the active listening mode after a first time period, and in response to detecting the power up command after expiration of the parking period switch the set of microphones from the standby mode to the active listening mode after a second time period that is greater than the first time period.
US11310593B2

The present technology relates to a voice input device and method that facilitate estimation of an utterance direction. The voice input device includes a fixed part disposed at a predetermined position, a movable part movable with respect to the fixed part, a microphone array attached to the fixed part, an utterance direction estimation unit that estimates an utterance direction on the basis of a voice from an utterer that is input from the microphone array, and a driving unit that drive the movable part according to the estimated utterance direction. The voice input device can be used by installation in, for example, a smart speaker, a voice agent, a robot, and the like.
US11310591B2

An electronic device has an acoustic transducer with an acoustic diaphragm. The diaphragm has opposed first and second major surfaces. A front volume is positioned adjacent the first major surface. A back volume is positioned adjacent the second major surface. An elongated channel defines a barometric vent and extends from a first end fluidly coupled with the front volume to a second end fluidly coupled with the back volume, fluidly coupling the front volume with the back volume. The elongated channel may have a high aspect ratio (L/D), providing the vent with a substantial air mass. The elongated channel may be segmented to define a higher-order filter. For example, a segmented channel can have a cascade of repeating acoustic-mass and acoustic-compliance units, providing the barometric vent with additional degrees-of-freedom for tuning.
US11310589B2

An audiovisual device and a control method of the audiovisual device are provided, the audiovisual device includes a backboard, the backboard is provided with a directional speaker, a regulator component and a display component that is configured for providing visual content, the directional speaker is configured for emitting a directional sound to a display side of the display component, and the regulator component is configured for regulating an orientation of the directional speaker on the display side of the display component.
US11310582B2

The present disclosure discloses a loudspeaker apparatus. The loudspeaker apparatus may include an ear hook including a first plug end and a second plug end, a core housing for accommodating an earphone core, and a circuit housing for accommodating a control circuit or a battery. The ear hook may be surrounded by a protective sleeve which is made of an elastic waterproof material. The core housing may be fixed to the first plug end and elastically abutted against the protective sleeve. The core housing may include a housing panel facing human body and a housing back panel opposite to the housing panel. When the vibration frequencies of the housing panel and the housing back panel is within a range of 2000 Hz to 3000 Hz, an absolute value of a difference between the first phase and the second phase may be less than 60 degrees.
US11310574B2

Wireless-enabled loudspeaker includes a wooden capacitive touch user interface. The loudspeaker may comprise at least one electroacoustic transducer, a processor in communication with the at least one electroacoustic transducer, and a wooden exterior surface comprising a capacitive touch user interface that allows a user to control operation of the loudspeaker. The wooden exterior surface acts a dielectric for the capacitive touch user interface. The loudspeaker may comprise a wireless transceiver circuit for receiving and transmitting wireless communication signals via a wireless network. The wireless transceiver circuit may receive wirelessly audio content from streaming audio content servers that are connected to the Internet. The capacitive touch user interface comprises a plurality of user control icons etched in the wooden exterior surface, and a plurality of capacitive sense electrodes located under the wooden exterior surface.
US11310563B1

Embodiments are directed towards selecting content search results based on the age of the viewer. The content receiver receives search criteria for a viewer, which may include the age of the viewer. The content receiver obtains search results from a search of a plurality of content. The search results are prioritized based on the age of the viewer and presented to the viewer. In this way, searching for “dog” for a four year-old may provide or prioritize different results compared to search for “dog” for an eight year-old.
US11310556B2

There is provided a display apparatus which includes an input device having a plurality of video signal terminals including a digital video signal terminal, a display configured to display an input signal which is input from the input device, and a controller configured to set a search time of a digital video signal in accordance with presence or absence of power supply to a power supply terminal of the digital video signal terminal, and a connection status in a case in which the power supply is present, and configured to execute a search of the digital video signal in the search time.
US11310552B1

A television receiver assembly includes a disk that is positionable on a horizontal support surface such that the disk is visible to a user. A display is coupled to the disk and the display displays indicia comprising still imagery and video imagery. A camera is integrated into the disk to capture footage of an area proximate the disk. A pair of speakers is each of the speakers is coupled to the disk and each of the speakers is positioned on opposite sides of the display from each other. A locate button is incorporated into the disk and a remote control is in wireless communication with the display and the speakers. The remote control emits an audible alert when the locate button on the disk is depressed to facilitate the user to locate the remote control.
US11310542B2

System and method for facilitating advertisements within viewed content. The advertisements may be banner advertisements or other advertisement. The advertisements may be included in such a manner that if a user skips or otherwise fast forwards through the advertisements, the user if force to skip through at least a portion of the viewed content.
US11310538B2

Techniques have been developed to facilitate the livestreaming of group audiovisual performances. Audiovisual performances including vocal music are captured and coordinated with performances of other users in ways that can create compelling user and listener experiences. For example, in some cases or embodiments, duets with a host performer may be supported in a sing-with-the-artist style audiovisual livestream in which aspiring vocalists request or queue particular songs for a live radio show entertainment format. The developed techniques provide a communications latency-tolerant mechanism for synchronizing vocal performances captured at geographically-separated devices (e.g., at globally-distributed, but network-connected mobile phones or tablets or at audiovisual capture devices geographically separated from a live studio).
US11310529B2

A method, computer program, and computer system is provided for coding video data. Video data is received and entropy-parsed into one or more components. The one or more entropy-parsed components are de-quantized. A joint component secondary transformation (JCST) is performed on the one or more components. The video data is decoded based on one or more residual components corresponding to the joint component secondary transformed components.
US11310528B2

A method and apparatus for coding information of a point cloud that includes obtaining the point cloud including a set of points in a three-dimensional space; determining whether a current node in the set of points is isolated; and coding the current node in isolation mode based on a determination that the current node is isolated and coding the current node in non-isolation mode, based on a determination that the current node is not isolated.
US11310522B2

A method for processing a video includes performing a conversion between a current block of visual media data and a corresponding coded representation of the visual media data, wherein the conversion of the current block includes determining whether a use of one or both of a bi-directional optical flow (BIO) technique or a decoder-side motion vector refinement (DMVR) technique to the current block is enabled or disabled, and wherein the determining the use of the BIO technique or the DMVR technique is based on a cost criterion associated with the current block.
US11310517B2

Disclosed herein are a video decoding method and apparatus and a video encoding method and apparatus. Coding decision information of a representative channel of a target block is shared as coding decision information of a target channel of the target block, and decoding of the target block is performed using the coding decision information of the target channel. Since the coding decision information of the representative channel is shared with an additional channel, repeated signaling of identical coding decision information may be prevented. By means of this prevention, the efficiency of encoding and decoding of the target block or the like may be improved.
US11310504B2

A method of coding image data performed by at least one processor, may include: receiving information regarding a data block of an image; determining whether at least one of a height or a width of a residual coding block corresponding to the data block of the image is greater than or equal to a pre-defined threshold; and based on determining that the at least one of the height or the width of the residual coding block is greater than or equal to the pre-defined threshold: identifying or generating a reduced-complexity residual coding block by reducing the number of non-zero coefficients in the residual coding block; and performing transform coding of the reduced-complexity residual coding block using a line graph transform (LGT) core to perform direct matrix multiplications for each of the horizontal and vertical dimensions of the reduced-complexity coding block.
US11310503B2

Provided are a video decoding method and apparatus including: in a video encoding and decoding process, determining parity information of a current block based on a width and a height of the current block; determining a lookup table of the current block from among a plurality of predefined lookup tables based on the parity information; determining a dequantization scale value of the current block based on the lookup table of the current block; and performing dequantization on the current block by using the dequantization scale value.
US11310500B2

An image decoding method which can improve both image quality and coding efficiency is an image decoding method for decoding a coded stream which includes a plurality of processing units and a header for the processing units, the coded stream being generated by coding a moving picture, the processing units including at least one processing unit layered to be split into a plurality of smaller processing units, the image decoding method including specifying a hierarchical layer having a processing unit in which a parameter necessary for decoding is stored, by parsing hierarchy depth information stored in the header, and decoding the processing unit using the parameter stored in the processing unit located at the specified hierarchical layer.
US11310499B2

An image decoding method includes reconstructing a current image by performing deblocking filtering on a boundary of at least one reconstruction block from among reconstruction blocks, wherein the reconstructing of the current image by performing the deblocking filtering on the boundary of the at least one reconstruction block from among the reconstruction blocks includes, when a prediction mode of at least one reconstruction mode from among blocks located on both sides of the boundary of the at least one reconstruction block is a combined inter-intra prediction mode, determining that a value of a boundary filtering strength applied to the boundary of the at least one reconstruction block is a predetermined value and performing deblocking filtering on the boundary of the at least one reconstruction block based on the determined value of the boundary filtering strength.
US11310495B2

A method of filtering reconstructed video data, the method comprising: determining whether one or more conditions associated with the adjacent reconstructed video blocks are satisfied; selecting a filter based on whether the one or more conditions are satisfied; modifying sample values in the adjacent reconstructed video blocks based on the selected filter.
US11310485B2

A goggle system is provided. The goggle system includes a computing device, a goggle device configured to be worn by a user and including a detector configured to simultaneously acquire image data of a subject in a first image mode and a second image mode, at least one eye assembly configured to display at least one of an image in the first image mode, an image in the second image mode, and a hybrid image including pixels of image data from the first image mode and pixels of image data from the second image mode, and a communications module configured to transmit acquired image data from the goggle device to the computing device.
US11310475B2

A computer-implemented method and related system for determining a quality of a synthesized video file. The method includes processing a reference video file and a synthesized video file associated with the reference video file to compare the original video file and the synthesized video file. The method also includes determining an extent of flicker distortion of the synthesized video file based on the processing.
US11310470B2

An imaging system includes a light source for emitting first light and second light and an image sensor for capturing first image data and second image data in response to the first and second lights. Data processing hardware performs operations that include determining a first light value associated with an amount of light captured by the image sensor in response to the first light and applying a color map to each first light value to generate first light selected color values. The operations also include weighting a first light chroma value with a second light chroma value to generate weighted chroma values and combining luma values of each pixel of the second image data to the weighted chroma values. The operations also include generating RGB values based on the luma values of the second image data and the weighted chroma values and transmitting the RGB values to the display.
US11310466B2

A device for monitoring occupants of seats in a passenger compartment of a vehicle comprises a heat sink divided into a plurality of sections. Each of the sections comprises a base and cooling fins. The bases extend along a common axis and define a central niche therebetween. Structured light sources are attached to the sections. The structured light sources have an optical element for forming a structured light pattern. The structured light sources are oriented along the common axis and at oblique angles to the central niche, such that the structured light patterns, in combination, are directed such that they would cover occupants of seats of the vehicle. A camera is attached to the niche and configured to capture image patterns resulting from distortion of the plurality of structured light patterns by the occupants of the seats.
US11310464B1

An information handling system executing a multimedia multi-user collaboration application (MMCA) including a memory; a power management unit; a camera to capture video of a user participating in a video conference session; a processor configured to execute code instructions of a trained intelligent collaboration contextual session management system (ICCSMS) neural network to receive as input: computations from an execution of a blur AV detection processing instruction module by the processor descriptive of a blur in an image frame received at a multimedia framework pipeline and infrastructure platform (MFPIP); computations from an execution of a compression artifact AV detection processing instruction module by the processor descriptive of compression artifacts present in the image frame received at the MFPIP; and computations from an execution of a color vector AV detection processing instruction module by the processor descriptive of color vector artifacts present in the image frame received at the MFPIP; the trained ICCSMS to provide, as output, processing instructions to remediate the occurrence of blur, compression, and color vector artifacts in subsequently-received image frames.
US11310462B2

A user engagement computer system for enhancing user engagement via video chats and methods of using same are disclosed. The system includes one or more modules that provide enhanced video chat features such as one of the following: detecting user presence at the user devices, automating the establishment and/or scheduling of video chat sessions based on user presence, controlling the available functionality of the video chat application during a video chat session based on user presence, providing a kids mode with safeguards for children who video chat, providing visualization of storytelling, providing shared digital interactions via a shared interactive digital screen overlaid onto the video chat display, providing user controls via unspoken words, motions and gestures, actively measuring user engagement during a video chat session, and utilizing state machines to dynamically change between system states.
US11310451B1

An apparatus includes an image sensor having a plurality of pixels that form regions of interest (ROIs), analog-to-digital converter (ADC) banks, and multiplexers. Each respective multiplexer is electrically connected to (i) a corresponding ADC bank and (ii) a corresponding subset of the ROIs. The apparatus also includes control circuitry configured to obtain a full-resolution image of an environment by electrically connecting, by way of the multiplexers, each respective ADC bank to the associated respective ROI. The control circuitry is also configured to select a particular ROI based on the full-resolution image and obtain a plurality of ROI images of the particular ROI by (i) electrically connecting, to the particular ROI, a first ADC bank associated with the particular ROI and a second ADC bank associated with another ROI and (ii) digitizing pixels of the particular ROI by way of parallel operation of the first and second ADC banks.
US11310450B2

In a solid-state imaging element in which an ADC is disposed, deterioration of conversion accuracy of the ADC caused by a dark current is inhibited. A signal voltage sample-and-hold circuit samples and holds, as a sample signal voltage, a voltage obtained by dividing a difference between a voltage of a vertical signal line corresponding to a light reception amount in a pixel and a predetermined variable reference voltage. An analog-to-digital converter converts an analog signal corresponding to the sample signal voltage to a digital signal. A reference voltage control section performs control to modulate a value of the variable reference voltage according to a dark current amount in the pixel.
US11310448B2

An imaging apparatus includes an optical low-pass filter that includes first, second, third, and fourth optical anisotropic elements configured to separate an incident ray into a plurality of rays, and a retardation plate disposed between two optical anisotropic elements adjacent to each other among the first to fourth optical anisotropic elements, and an image sensor configured to photoelectrically convert an optical image formed by light that has passed the optical low-pass filter. A predetermined condition is satisfied.
US11310442B2

A display control apparatus displays an image on a display unit in such a manner that, in a second shooting, the image to be displayed on the display unit is reduced to a smaller size in a case where a frame display setting is ON than in a case where the frame display setting is OFF, and, in a first shooting, the image to be displayed on the display unit in the case where the frame display setting is ON is not reduced to a size smaller than that of the image to be displayed on the display unit in the case where the frame display setting is OFF, the frame display setting being a display setting for information.
US11310440B2

An image processing apparatus includes an image processor. The image processor inputs image data, determines an amount of motion within an image on the basis of the image data, and corrects and outputs a luminance of the image data such that a contrast of an object whose amount of motion is large increases.
US11310439B2

The invention disclosed herein concerns a privacy enhancing device for use with IP cameras and related methods. The privacy device includes an adjustable light filter and is configured to be placed over the lens of an IP camera such that the image captured by the IP camera passes through the filter. The transparency of the light filter is controlled using a control module in response to user inputs received using an on-board user interface so as to provide varying levels of privacy ranging from an opaque state and a transparent state. Inputs that serve to facilitate and enhance operation of the device can also be received from other input sources such as connected computing devices. For security, the control path defined by the control module and the on-board user input device can be isolated from other more sophisticated control devices that can be prone to hacking and remote control.
US11310430B2

A method of providing a video in a portable terminal according to the present invention may include: monitoring whether an execution request event for a multi-camera mode of a portable terminal is generated; when the execution request event is generated, executing a virtual multi-preview menu including a plurality of pre-view regions, which is divided into independent separate regions and displays a plurality of different contents, respectively, and when the virtual multi-preview menu is executed, photographing a multi-preview image, so that different contents are displayed on the plurality of preview regions, respectively, with a virtual camera implemented in the portable terminal.
US11310427B2

Aerial camera systems are disclosed, including an aerial camera system that comprises at least one camera arranged to capture a plurality of successive images; the at least one camera being rotatable such that the field of view of the camera traverses across a region of the ground that includes multiple different swathes extending in different directions, the at least one camera having a steering mirror to direct light reflected from the ground onto a lens assembly, the lens assembly having a central longitudinal axis extending in a direction generally parallel to a direction of movement of a survey aircraft; and the system arranged to control the at least one camera to capture successive images at defined intervals as the at least one camera rotates.
US11310424B2

An image capturing device includes an imaging lens, an image capturing device main body including an imaging element that captures an optical image transmitting through the imaging lens, a first correction unit that performs correction of an image shake by a correction lens, and a second correction unit that performs correction of the image shake by the image capturing device main body, and performs a control of causing the first correction unit or the second correction unit to correct a low frequency portion of a shake amount of the image shake having a frequency lower than a predetermined frequency and causing the first correction unit and the second correction unit to share and correct a high frequency portion of the shake amount of the image shake having a frequency equal to or higher than the predetermined frequency.
US11310397B2

In an image forming apparatus, an arithmetic processing device functioning as a profile manager executes profile update processing: (a) by selecting one of a plurality of sheet types as a reference sheet type, allowing a printing device to print a colorimetric patch on a printing sheet of the reference sheet type to create an adjustment chart, generating a profile on the printing sheet of the reference sheet type based on a colorimetric result of the colorimetric patch, and updating the profile on the printing sheet of the reference sheet type stored in a storage device with the generated profile; and (b) by selecting each of the remaining sheet types as a target sheet type and calibrating the profile on a printing sheet of the target sheet type stored in the storage device, based on respective correspondence relation characteristics before and after the profile on the reference sheet type is updated.
US11310390B2

An information processing apparatus includes circuitry to, store, in a memory, received fax data as a stored document in a distribution destination folder corresponding to the fax data, in response to detection of a delete operation performed on the stored document, determine a state of the stored document to generate a first determination result, when the first determination result indicates that the stored document is in a read state, determine whether a period from a time at which the stored document was read to a time at which the delete operation was performed is within a preset period to generate a second determination result, and when the first determination result indicates that the stored document is in an unread state, or when the second determination result indicates that the period is within the preset period, copy the stored document to a specific folder and delete the stored document.
US11310389B2

An image reading apparatus includes an image sensor, a document feeder, and a processor. The document feeder includes a first driving device, a second driving device, a third driving device, a first sensor, and a second sensor. The first driving device includes a pick-up member to move documents from a tray to a document conveying path using a driving force through a first clutch. The second driving device is to move the tray with the documents to a side of the pick-up member using a driving force through a second clutch. The third driving device to move the documents along the document conveying path onto the image sensor using the driving force of the motor The first and second sensors detect the documents on the document conveying path. The processor controls an operation of the first clutch based on the signals of the first and second sensors.
US11310387B2

An image forming apparatus is provided, for which a color material cartridge that contains color material and has a storage unit can be attached/detached. The apparatus comprises an obtaining unit that obtains color material information related to a color of the color material stored in the storage unit, a generator that generates a color conversion parameter based on the color material information, and a color convertor that converts the input image signal into a color signal for the color material using the color conversion parameter. If the color material information is not changed, the generator does not generate the color conversion parameter, otherwise the apparatus generates the color conversion parameter based on the color material information after the change.
US11310384B2

An image processing apparatus includes a document reading section, a reading controller, an image transfer section, and a transfer controller. The document reading section reads documents. The reading controller controls the document reading section so as to read document images subsequent to a first sheet independently of a command from a host apparatus. The image transfer section transfers the document images which are read by the document reading section. The transfer controller controls the image transfer section based on the number of pages of the documents, which are read by the document reading section, and the number of pages of the document images, which are transferred by the image transfer section, in a case where the document images are transferred by the image transfer section whenever the document reading section reads one sheet of document.
US11310383B2

A first zone and a second zone of a scan surface may be scanned by an image sensor. A lid may be coupled to the scan surface and have an open position and a closed position, the lid being to cover the first zone and the second zone when in the closed position. The position of a lid may be determined based on a comparison of a scan of the first zone and a scan of the second zone.
US11310382B2

An image reading device includes a transparent member unit including a transparent member, an opposing member opposed to the transparent member, and a reading mechanism. The reading mechanism irradiates the opposing member and a medium being conveyed between the transparent member and the opposing member with light through the transparent member and receive reflected light from the opposing member and the medium. The reading mechanism includes a position adjuster to which the transparent member unit is secured and a guide to guide the transparent member unit in a direction intersecting a direction of conveyance of the medium to detachably attach the transparent member unit to the reading mechanism. The position adjuster changes a position at which the transparent member unit is secured with respect to the reading mechanism. The transparent member unit is secured to the position adjuster.
US11310381B2

An image forming apparatus includes a reader, a wait part, and a processor. The reader reads an image from a first sheet. In the wait part, the first sheet is made to wait. The processor is configured to make the first sheet wait in the wait part after the reading performed by the reader, and, after the first sheet is made to wait in the wait part, output the first sheet and a second sheet continuously. The second sheet records first information determined on the basis of an evaluation result obtained from evaluation of the first sheet.
US11310376B2

An information processing apparatus includes a processor. The processor changes darkness of an image presented in mid-air in response to a sensor detecting a user performing a mid-air gesture on the image.
US11310370B2

An image forming apparatus includes: an image forming unit that performs image forming processing on a recording sheet; a primary central processing unit (CPU) and a secondary CPU, where the primary CPU receives a job externally and instructs the secondary CPU to monitor and control the image forming unit to perform the image forming processing; sensors that sense a state of the image forming unit and output sensor data indicating the state of the image forming unit, a first transceiver; and a second transceiver. The secondary CPU monitors the sensor data to generate diagnostic data. The first transceiver performs duplex communication with the primary CPU to send and receive data other than the diagnostic data. The second transceiver sends the diagnostic data to the diagnostic server without relaying via the primary CPU.
US11310366B1

In some implementations, a cloud computing system that executes a function may receive an indication of an electronic communication to occur between a customer and an agent. The cloud computing system that executes the function may determine a classification of the electronic communication based on a first set of rules stored in a database of the cloud computing system and attributes associated with the electronic communication. The cloud computing system that executes the function may select, based on the classification of the electronic communication, a target queue from a plurality of potential queues to be associated with the electronic communication based on a second set of rules stored in the database. The cloud computing system that executes the function may select the agent from a plurality of potential agents for the electronic communication based on an association between the agent and the target queue.
US11310364B2

A computerized-method using a cloud-based computing environment for improving client service, in a contact center is provided herein. The computerized-method includes: retrieving a context of a query and a time-limit from a CTI event and attempting to retrieve data to evaluate average resolution time for the received context. When the data is found, comparing the evaluated average resolution time with the received time-limit and when the received time-limit is below the evaluated average resolution time, sending a delay notice and providing the client a menu of options for querying through other channels. When the data is not found, or when the received time-limit is above the evaluated average resolution time, presenting on an agent dashboard, the time-limit of the client and accordingly updating parameters in the agent dashboard during the inbound call, thus, improving client service, by considering the time-limit of the client before the agent addresses a query.
US11310361B1

Methods and systems are described for back-end failure redundancy in security and automation systems. According to at least one embodiment, an apparatus for back-end failure redundancy includes a processor, a memory in electronic communication with the processor, and instructions stored in the memory. The instructions are executable by a processor to detect an alarm event, and attempt to establish a connection between a control panel and a backend system. If no connection between control panel and backend system is made, the instructions may initiate a two-way cellular call between the control panel and a central station, and deliver a caller ID from the control panel to the central station via the two-way cellular call.
US11310348B2

Systems and methods for providing a remote access to a service in a client-server remote access system. The method includes selecting, by a scheduler, an application server hosting the service, the selecting being performed in accordance with a utilization of resources in the client-server remote access system. A session Uniform Resource Locator (URL) is created that includes a URL payload that uniquely identifies the service and being used to establish the remote access to the service by a client. The system may include a proxy server accessible at a resource URL. The proxy server receives a request from a client to connect to the service. An authentication component authenticates the request in accordance with a payload of the resource URL. A service manager establishes the session between the client and the service connected at the session URL.
US11310341B2

A method for fetching a content from a web server to a client device is disclosed, using tunnel devices serving as intermediate devices. The client device accesses an acceleration server to receive a list of available tunnel devices. The requested content is partitioned into slices, and the client device sends a request for the slices to the available tunnel devices. The tunnel devices in turn fetch the slices from the data server, and send the slices to the client device, where the content is reconstructed from the received slices. A client device may also serve as a tunnel device, serving as an intermediate device to other client devices. Similarly, a tunnel device may also serve as a client device for fetching content from a data server. The selection of tunnel devices to be used by a client device may be in the acceleration server, in the client device, or in both. The partition into slices may be overlapping or non-overlapping, and the same slice (or the whole content) may be fetched via multiple tunnel devices.
US11310339B2

A method includes obtaining a benchmark of an accuracy of at least one of a direct positioning technique or an indirect positioning technique for positioning of a mobile device. The method also includes, depending on the benchmark, selecting between positioning of the mobile device using the direct positioning technique and the indirect positioning technique.
US11310338B1

A method for generating recommendations involves selecting a first platform message, making a first determination that the first platform message is potentially associated with a plurality of topics including a first topic and a second topic, obtaining additional information associated with the first platform message including at least one of information about an account that authored the first platform message and information about third party accounts engaging with the first platform message, making a second determining that the first platform message is associated with the first topic using the plurality of topics and at least a portion of the additional information, wherein the first topic is an initial classification of the first platform message, generating a recommendation for at least one account based on the second determination, and providing the recommendation to at least one account.
US11310328B2

Methods and systems are used for providing a generic command line interface to an extensible list of cloud platform services. As an example, a generic command request including a command and command input data is received from a client. A platform service for the command is determined based on command metadata associated with the command. The command input data is mapped to a platform service application programming interface (API) associated with the platform service based on the command metadata associated with the command. The platform service API is called based on the mapping. Response data from the platform service API is mapped to command output data in a generic command response based on the command metadata associated with the command. The generic command response is transmitted to the client.
US11310322B2

A method for pairing a first computing device with a second computing device, the method including: detecting motion at the first computing device; determining, at the first computing device, that a pattern of the detected motion corresponds with a saved motion pattern; and activating a communications subsystem on the first computing device based on the determining to begin a pairing process.
US11310317B1

A storage system is provided. The storage system includes a first storage cluster, the first storage cluster having a first plurality of storage nodes coupled together and a second storage cluster, the second storage cluster having a second plurality of storage nodes coupled together. The system includes an interconnect coupling the first storage cluster and the second storage cluster and a first pathway coupling the interconnect to each storage cluster. The system includes a second pathway, the second pathway coupling at least one fabric module within a chassis to each blade within the chassis.
US11310310B2

A communication device can have a peer-to-peer communication application installed on it. The device can be configured to detect at least one other communication device including the peer-to-peer communication application, and may be configured to set up a connection with the detected communication device. The device can be configured to, in response to a request to set up peer-to-peer communication sent to the first device on a predetermined port and via a predetermined protocol by a second detected device exchange with the second device information required for setting up peer-to-peer communication with the second device, and to set up the peer-to-peer communication. The peer-to-peer communication application can be configured to send, on the predetermined port and via the predetermined protocol a request to set up peer-to-peer communication to a third detected communication device.
US11310302B2

A user equipment is provided for providing content. The user equipment comprising at least one memory and at least one processing device. The at least one process is configured to receive a data stream over a network, the data stream comprising un-segmented media data for the content. The at least one process is also configured to identify segment boundaries in the un-segmented media data to identify segments and determine a segment number for each of the identified segments from a media presentation description (MPD) based on the segment boundaries. The at least one process is also configured to retrieve a uniform resource locator (URL) associated with each of a plurality of dynamic adaptive streaming over hypertext transfer protocol (DASH) segments based on the segment number for each of the plurality of DASH segments and provide the URL associated with each of the plurality of DASH segments to a client player.
US11310300B2

Methods, systems, and computer programs are presented for streaming a video. One method includes an operation for initializing, at a client device, a hypertext transfer protocol (HTTP) server for processing streaming video requests from a streaming video application. Further; the method includes an operation for receiving a bundle that includes bundle files, which include manifest files of a manifest for streaming a video and video files having video data. The method further includes operations for caching the bundle files in memory, and for intercepting, at the HTTP server, a request for a file from the streaming video application. When the file is cached in the memory, the file is returned from the memory; otherwise, the HTTP server acts as a proxy by forwarding the request to a video server and then returning the file to the streaming video application after the file is received from the remote server.
US11310298B2

Technologies for providing hints for adjusting digital media properties include a destination computing device wirelessly coupled to multiple source computing devices. The destination computing device is configured to receive digital media streams from each of a multiple number of source computing devices, process each of the received digital media streams, and output one or more of the processed digital media streams based on one or more output settings and/or or more digital media properties of the digital media. The destination computing device is further configured to determine one or more performance metrics based on an analysis of the output digital media streams, determine one or more hints for one or more of the digital media streams based on the analysis, and transmit each of the hints to a corresponding one of the source computing devices. Other embodiments are described and claimed herein.
US11310292B2

An online collaborative session application executing on a processing device tracks a state of an application shared by the processing device over an online collaborative session. The online collaborative session application receives data indicative of an annotation made to an instance of the application as part of the online collaborative session. A first location of the annotation relative to the instance of the application is determined from the data indicative of the annotation and the state of the application. Based on the tracking, a change to the state of the application is determined. A second location of the annotation is determined based on the change of the state of the application.
US11310288B2

A method for initiating a Packet Switched emergency call using a user equipment (UE) is presented. The UE includes a plurality of protocol layers. The plurality of protocol layers including an IMS sublayer, a non-access stratum (NAS) layer and an access stratum (AS) layer. The method includes generating an ATTACH REQUEST using the UE. The ATTACH REQUEST has an attach type. The method includes retrieving the attach type of the ATTACH REQUEST using the NAS layer of the UE, and generating an RRC CONNECTION REQUEST. The RRC CONNECTION REQUEST includes an RRC establishment cause based upon the attach type of the attach request.
US11310267B2

A privacy-enhancing wireless communication method for use by a transmitting wireless device having a first location, the method comprising: obtaining a frame preamble using a transceiver device at a location, wherein the frame preamble includes a predetermined pattern and wherein movement information corresponding to the location is detectable based on channel state information of the transceiver device in accordance with the pre-determined pattern; modifying the predetermined pattern of the frame preamble to include amplitude or phase distortion; and masking the movement information by transmitting, using the transceiver device, a frame including the frame preamble with the modified predetermined pattern.
US11310266B2

The present disclosure relates to mobile communications technologies, and in particular, to a mobile communication method, apparatus, and device. The method includes: receiving, by user equipment UE, a non-access stratum NAS security mode command message from a mobility management entity MME, where the NAS security mode command message carries first verification matching information used to verify UE capability information received by the MME; determining, by the UE based on the first verification matching information, whether the UE capability information received by the MME is consistent with UE capability information sent by the UE to the MME; and if the UE capability information received by the MME is consistent with the UE capability information sent by the UE to the MME, sending, by the UE, a NAS security mode complete message to the MME.
US11310261B2

Various embodiments assess security risks of users in computing networks. In some embodiments, an interaction item is sent to an end user electronic device. When the end user interacts with the interaction item, the system collects feedback data that includes information about the user's interaction with the interaction item, as well as technical information about the electronic device. The feedback is compared to a plurality of security risk scoring metrics. Based on this comparison, a security risk score for the user with respect to a computing network.
US11310250B2

A system for machine learning-based real-time electronic data quality checks in online machine learning and AI systems is provided. In particular, the system may comprise a machine learning module which receives input data from a data quality learning module which serves to perform filtering or alteration functions on incoming data during the training and/or live phases of the machine learning module. Over time, the data quality module may increasingly become efficient and accurate at assessing incoming data to determine the data quality. In turn, improving data quality of input data may ensure that the various neural networks within the system produce adaptively accurate output values to drive the decisioning processes of the system.
US11310249B2

Mechanisms for defending a computing system from attack are presented. The mechanisms include: maintaining a round counter that tracks a round number for a local host; determining a location in a graph for each of a plurality of hosts including the local host; determining monitor hosts of the plurality of hosts that are monitoring the local host; determining monitoree hosts of the plurality of hosts that are being monitored by the local host; sending a message to each of the monitor hosts identifying a value of the round counter; forwarding a first set of heartbeat messages from previous monitoree hosts to the monitor hosts; attempting to receive messages from the monitoree hosts; determining whether any messages were not received from the monitoree hosts; and in response to determining that one or more messages were not received from the monitoree hosts, generating an alert.
US11310240B2

One or more embodiments of the disclosure include systems and methods that generate and utilize digital visual codes. In particular, in one or more embodiments, the disclosed systems and methods generate digital visual codes comprising a plurality of digital visual code points arranged in concentric circles, a plurality of anchor points, and an orientation anchor surrounding a digital media item. In addition, the disclosed systems and methods embed information in the digital visual code points regarding an account of a first user of a networking system. In one or more embodiments, the disclosed systems and methods display the digital visual codes via a computing device of the first user, scan the digital visual codes via a second computing device, and provide privileges to the second computing device in relation to the account of the first user in the networking system based on the scanned digital visual code.
US11310233B2

A method for authenticating smart glasses in a data network includes transmitting a message to an authentication computer of the data network, generating a first transaction code and transmitting to the smart glasses, reading authorization data of a user, without involving the smart glasses, into the data network and processing by the authentication computer, which carries out an authentication of the user on the basis of the authorization data, and in case of a successful authentication, reading a second transaction code into the data network, wherein if a check performed by the authentication computer shows that the second transaction code matches the first, an access right is provided for the smart glasses and stored in the smart glasses, the access right enabling the smart glasses to access one or a plurality of predetermined services in the data network.
US11310230B2

Systems, computer products, and methods are described herein for improved authentication utilizing two factor authentication of a user. The two factors include a verified identification and a liveness identification. The verified identification may be a governmental verified identification, and the liveness identification may be a video of the user. The user may capture the verified identification and the liveness identification using the user's mobile device. The organization may authenticate the user by identifying the user from the verified identification image and identifying that the user is active by identifying movement from the liveness identification image. Additional authentication may include requiring and/or identifying an identifier from the liveness identification image (e.g., movement, object, characters, or the like), and/or capture image data related to a time or a location at which the images were captured.
US11310229B2

Systems and methods of biometrically authenticating a user of a device. A biometric sample of a user can be analyzed to generate a user-specific biometric signature that is substantially unique to the specific user. To authenticate a user, a biometric sample can be obtained and analyzed to determine if the biometric signature is present in the sample. If so, the user can be biometrically authenticated to use the device. The device can provide a network with an indication of the authentication of the user to authenticate the device to the network. In response to the authentication, the network can provide the device access to the network, its resources, or portion(s) thereof.
US11310227B2

The embodiments described herein describe technologies for Module management, including Module creation and Module deployment to a target device in an operation phase of a manufacturing lifecycle of the target device in a cryptographic manager (CM) environment. One implementation includes a Root Authority (RA) device that receives a first command to create a Module and executes a Module Template to generate the Module in response to the first command. The RA device receives a second command to create a deployment authorization message. The Module and the deployment authorization message are deployed to an Appliance device. A set of instructions of the Module, when permitted by the deployment authorization message and executed by the Appliance device, results in a secure construction of a sequence of operations to securely provision a data asset to the target device.
US11310223B2

An identity authentication method, includes: at an electronic device having one or more processors and memory, the electronic device coupled with a display and one or more input devices: receiving an identity authentication request; in response to receiving the identity authentication request, performing an interactive authentication information exchange between the electronic device and a user, including: displaying, on the display, first visual information in a first manner; displaying, on the display, the first visual information in a second manner that is distinct from the first manner, wherein the first visual information displayed in the second manner includes a timing characteristic that is absent from the first visual information displayed in the first manner; receiving user input entered in accordance with the first visual information displayed in the second manner; and verifying that the user input conforms to the timing characteristic in the first visual information displayed in the second manner.
US11310218B2

Embodiments described herein are related to a method for password streaming. The method comprises: upon receiving, at the first device, a first entry corresponding to a password in the password user interface, the first entry adding a first character to the password: adding the first character to an editing placeholder stored in memory of the password user interface; transmitting a command to a password storage component separate from the memory of the password user interface, wherein the command represents the first entry, wherein the password storage component is configured to store the password and edit the password to include the first character based on the command; and overwriting the first character with a first masking character in the editing placeholder based on transmitting the command.
US11310211B2

The disclosed technology relates to securely sharing data between a hearing care professional (HCP) and a hearing device user. For example, the disclosed technology relates to securely accessing fitting data for a hearing device. The disclosed technology includes a hearing device that has a memory, where the memory stores a key that can be used for encryption and decryption. The key can be a symmetrical key. In addition to storing a key, the hearing device can store a uniform resource indicator (URI) in its memory.
US11310206B2

Systems, methods, and computer program products providing network security leveraging analytics and physical separation between computer systems and a network to prevent threats from infecting network devices. A specialized pluggable dongle like security device is inserted between ports of computer system(s) connecting to the network and port(s) of network hardware facilitating connections between the computer system and computer network. The security device uses a combination of onboard analytics and cloud-based analytic services to detect incoming threats from network traffic and whether to allow network traffic to pass through the security device and/or prevent network traffic from entering the computer system. In response to detected network threats, an out of band management network communicating with the security device can open or close a physical gate onboard the security device, which, when opened introduces an air gap between the network and computer system, preventing harmful network traffic from entering the computer system.
US11310200B1

A method and system for classifying malicious locators where a processor is trained on a set of known malicious locators using a non-supervised learning procedure. Once trained, the processor may classify new locators as being generated by a particular generation kit.
US11310194B2

Various systems, device and automated processes allow video streaming hosts or other server devices to publish their internal/local addresses (e.g., addresses used on a subnet or other local area network) to a backend address server operating on a wide area network (WAN) such as the Internet. Client devices attempting to subsequently contact server devices operating in the same local network can contact the address to obtain the internal address of the target server, thereby allowing direct LAN connections between clients and servers.
US11310193B2

An information processing apparatus includes: a notification unit that performs notification to a first person when the first person differs from a second person and refrains from performing the notification when the first person is the same as the second person, wherein the first person is one who instructs execution of an application for transmitting data to a preset transmission destination, the second person is one who has changed information on the transmission destination included in an address book, and the notification indicates that the information on the transmission destination has been changed.
US11310191B2

A receiving device according to the present invention includes: a packet receiving unit which receives a packet transmitted from a transmitting device which is a communication device transmitting the packet; and a transmitting device information acquiring unit which acquires, from an information providing device storing communication device information which is information concerning the communication device and information used for a purpose other than name resolution for the communication device, the communication device information corresponding to the transmitting device which is a source of the packet.
US11310178B2

Collaborating on documents by e-mail may be streamlined into a unified process. In one example, a user creates a document in an online document service, and sends the document to collaborators by mailing a link to the document. The document may have permissions set so that the creator of the document, and any user on the e-mail distribution list, can read and edit the document. When a user receives the e-mail, that user may open and edit the document. Upon closing the editing application, the user may be presented with an appropriate interface to create a reply e-mail.
US11310175B2

An apparatus, method, and computer program product are provided for the improved and automatic prediction of a relativistic, observer-specific perception and response to a potential event and, based at least in part on the predicted perception and response, generating and presenting observer-specific digital content items. Some example implementations employ predictive, machine-learning modeling to facilitate user-specific event perception and response prediction and the selection of particularized messages and other digital content items for presentation to the user.
US11310173B2

According to a computer-implemented method, a chat data set is received, which chat data set includes information indicative of a plurality of natural language chat transcripts of chats that occurred between a virtual agent and a human. Machine logic analyzes the chat data set to identify an error that occurred in the operation of the virtual agent. The machine logic updates a chat model based on the chat data set.
US11310171B2

A method and wireless communication device use a first processing unit to perform a first communication event within a first communication window by use of a first communication protocol, a second processing unit to perform a second communication event within a second communication window by use of a second communication protocol, and a wireless communication unit connected to a radio-frequency antenna to transmit and/or receive a packet wirelessly. The first and second processing units may perform the first and second communication events via the wireless communication unit. The second processing unit or the wireless communication unit may transmit an event signal to the first processing unit when performing the second communication event or receiving a packet, respectively, to allow the first processing unit to arrange the first communication window (or first communication event) with respect to the second communication window (or second communication event) to minimize interference.
US11310170B2

Some embodiments provide a novel method for deploying different virtual networks over several public cloud datacenters for different entities. For each entity, the method (1) identifies a set of public cloud datacenters of one or more public cloud providers to connect a set of machines of the entity, (2) deploys managed forwarding nodes (MFNs) for the entity in the identified set of public cloud datacenters, and then (3) configures the MFNs to implement a virtual network that connects the entity's set of machines across its identified set of public cloud datacenters. In some embodiments, the method identifies the set of public cloud datacenters for an entity by receiving input from the entity's network administrator. In some embodiments, this input specifies the public cloud providers to use and/or the public cloud regions in which the virtual network should be defined. Conjunctively, or alternatively, this input in some embodiments specifies actual public cloud datacenters to use.
US11310156B1

In accordance with one or more aspects, service requesters (e.g., advertisers) and/or affiliates (e.g., providing data traffic) may be set up for operation on a performance exchange. In accordance with other aspects, performance and monitoring may be carried out for such advertisers and/or affiliates. In some embodiments, a quality assessment module monitors resource distribution by affiliates (including user response characteristics), and assesses quality characteristics of the distribution and related responses based on the monitored performance and stored affiliate data. Affiliate performance metrics are generated based on the quality characteristics. A router establishes routing criteria for service requesters, which may include information for selecting data traffic resources to be routed and served by the affiliates for providing traffic. An exchange module operates with the router to serve requests from the service requesters by routing resources to affiliates based on data corresponding to the service requesters, the routing criteria, and the metrics.
US11310153B2

A packet processing method and a network device, where the method includes: receiving, by a network device, a packet, where the packet includes classification information, and the classification information includes M fields; determining, by the network device, K fields in the M fields according to indication information stored by the network device; determining, by the network device, a target classification rule based on a first classification rule set stored by the network device and the K fields, and processing the packet according to the target classification rule.
US11310147B2

In an example, when a network device receives a route advertised by a Border Gateway Protocol (BGP) neighbor, the network device distributes the route to hardware thereof, records the route into a linked list of routes to be advertised, and determines a BGP state of the device. If the BGP state indicates waiting to advertise a route, the network device updates the BGP state to advertising a route after a set time length and advertises a route in the linked list of routes to be advertised. If the BGP state indicates advertising a route, the network device advertises a route in the linked list of routes to be advertised.
US11310143B2

A method is disclosed for the collection of performance metrics by establishing service operations administration and maintenance (OAM) sessions between an actuator and a plurality of reflectors in a communication network. Test packets from an actuator simultaneously reach a plurality of reflectors along a test path. Each single test packet results into a plurality of test results, one per reflector, with quasi-synchronous performance metrics to sectionalize a network and more efficiently isolate fault or performance problems without the need for additional test packets to isolate the issue. Another method is disclosed wherein an actuator generates and transmits a plurality of simultaneous test packets, one per NID device, resulting into a plurality of test results, one per reflector, with quasi-synchronous performance metrics to sectionalize a network and more efficiently isolate fault or performance problems without the need for additional test packets to isolate the issue.
US11310133B2

Described embodiments provide systems and methods for using service graphs to compare performance of a plurality of versions of a microservice. A device may establish metrics from execution of a plurality of versions of a microservice of a service. The plurality of versions of the microservice are deployed concurrently for a portion of execution of the service. The device generates service graphs for each version of the plurality of versions of the microservice. The service graphs include metrics from monitoring execution of a respective version of the microservice. The device identifies differences in metrics between the service graphs for different versions of the microservice. The device requests a change in network traffic of the service between respective versions of the microservice based at least on the one or more differences.
US11310132B2

A method includes receiving a seed at a computing device. The method further includes identifying, based on first domain name system (DNS) data, first border gateway protocol (BGP) data, first whois data, or a combination thereof, a plurality of first internet-facing assets related to the seed. The method further includes identifying, based on second DNS data, second BGP data, second whois data, or a combination thereof, a plurality of second internet-facing assets related to at least one of the first internet-facing assets. The method further includes generating a graphical user interface (GUI) that includes a list of internet-facing assets related to the seed, where the list includes the plurality of first internet-facing assets and the plurality of second internet-facing assets.
US11310123B2

This application provides a method for managing a service in an NFV architecture, and an apparatus. The method includes: generating, by a first network element after receiving a network function virtualization NFV resource change notification sent by a virtualized infrastructure manager VIM, first constraint information used to modify NFVI software and/or hardware; and sending, by the first network element, a first notification message to the VIM, where the first notification message carries the first constraint information, and the first constraint information is used by the VIM to modify NFVI software and/or hardware based on the first constraint information.
US11310121B2

Systems and methods for electron flow rendering and visualization correction are disclosed. According to an aspect, a method includes detecting two or more entities connected in a computing network. The method also includes acquiring data attributes from the entities connected to each other within the computing network. Further, the method includes rendering a graphical depiction of the entities connected to each other in the form of a graphical object and graphical line curvature. The method also includes generating a graphical line curvature correction scheme based on a relationship between the graphical line curvatures and graphical objects. Further, the method includes applying the graphical line curvature correction scheme to the acquired data attributes from the entities connected to each other in the form of graphical objects and graphical line curvatures to produce a corrected electron flow expression of the entities.
US11310114B2

Techniques are described to provide industrial machine configurations using private wireless networking. In one example, a method includes provisioning a segmentation policy for a network area, wherein the segmentation policy identifies policy groups for the network area in which each policy group comprises a plurality of devices capable of inter-device communications; provisioning, at a proximity services controller, a connectivity policy for each policy group, wherein the connectivity policy for each of policy group identifies at least one proxy configuration for one or more types of information to be communicated among the plurality of devices of each policy group; establishing connectivity between each device of each of the policy groups and an access point; and communicating the one or more types of information to each of the policy groups based on the at least one proxy configuration for each policy group.
US11310106B2

Systems and methods include obtaining measurements from a Wi-Fi network that includes one or more access points; determining a configuration of the Wi-Fi network based on the measurements, wherein the configuration includes one or more of i) steering a client device to associate with a specific access point of the one or more access points and ii) steering the client device to connect to a specific frequency band of the one or more access points; and providing the configuration to the Wi-Fi network for implementation thereof.
US11310105B2

Certain embodiments disclose systems and methods for creating a user private network (UPN) based on 11ay technology. Methods of the present disclosure include creating a personal basic service set (PBSS) having a service device and one or more 11ay devices, the service device configured to wirelessly communicate with the one or more 11ay devices in the PBSS, creating a UPN having an access point located in communicative proximity with the service device, and associating at least one 11ay device of the one or more 11ay devices with the UPN, wherein the at least one 11ay device is configured to establish a wireless connection with the one or more 11ay devices using the service device when within a coverage area of the PBSS, and to establish a wireless connection with the one or more 11ay devices using the access point when outside the coverage area of the PBSS.
US11310103B2

Embodiments of the present application disclose a method for handling a radio link failure RLF and a terminal device. The method includes: in a case that data of a first radio bearer reaches a maximum number of retransmissions on a first radio link control RLC entity corresponding to the first radio bearer, deactivating, by a terminal device, a replication data transmission function of the first radio bearer, and/or, deactivating, by a terminal device, a replication data transmission function of a second radio bearer, where a carrier mapped by an RLC entity corresponding to the second radio bearer at least partially overlaps with a carrier mapped by the first RLC entity.
US11310102B2

A logical Network Interface Device (NID) includes a first NID connected to a peer NID; a second NID connected to the peer NID and communicatively coupled to the first NID, wherein the first NID and the second NID are each connected to a network element for redundant communication to the peer NID, and wherein the first NID actively operates an active maintenance endpoint in an Operations, Administration, and Maintenance (OAM) session with the peer NID, and wherein the active maintenance endpoint synchronizes OAM session data with a dormant maintenance endpoint at the second NID. The dormant maintenance endpoint becomes the active maintenance endpoint responsive to a protection switch, and the dormant maintenance endpoint has the OAM session data in a database based on synchronization with the first NID.
US11310101B1

An example operation may include a system, comprising one or more of receiving a virtual network function component instance (VNFCI) status notification resumption message with an active state when a peer VNFCI operational state is active, retrieving a timestamp of a VNFCI state change to an active state from an element VNFCI state database, retrieving a timestamp of a peer VNFCI state change to active from an element VNFCI state database, sending one or more of: a request to a virtual network function manager (VNFM) to determine if the VNFCI network is isolating while an operating state was active, and a request to the VNFM to determine if the peer VNFCI network is isolating while an operating state was active, sending a state change request with standby state to the peer VNFCI when the VNFCI is not network isolated and the peer VNFCI is network isolated, and a VNFM response is received regarding the VNFCI, a timeout response from the VNFM, and a VNFM response is received regarding the peer VNFCI, and sending a state change request with standby to the VNFCI with one or more of: the VNFCI network isolate and peer VNFCI is not network isolated, and the VNFCI is network isolated or the peer VNFCI is not network isolated, and the VNFCI is not network isolated and the peer VNFCI is network isolated and the VNFCI is in preferred standby.
US11310100B1

An example operation may include a system, comprising one or more of receiving a virtual network function component instance (VNFCI) status notification resumption message with an active state when a peer VNFCI operational state is active, retrieving a timestamp of a VNFCI state change to an active state from an element VNFCI state database, retrieving a timestamp of a peer VNFCI state change to active from an element VNFCI state database, sending one or more of: a request to a virtual network function manager (VNFM) to determine if the VNFCI network is isolating while an operating state was active, and a request to the VNFM to determine if the peer VNFCI network is isolating while an operating state was active, sending a state change request with standby state to the peer VNFCI when the VNFCI is not network isolated and the peer VNFCI is network isolated, and a VNFM response is received regarding the VNFCI, a timeout response from the VNFM, and a VNFM response is received regarding the peer VNFCI, and sending a state change request with standby to the VNFCI with one or more of: the VNFCI network isolate and peer VNFCI is not network isolated, and the VNFCI is network isolated or the peer VNFCI is not network isolated, and the VNFCI is not network isolated and the peer VNFCI is network isolated and the VNFCI is in preferred standby.
US11310094B2

Disclosed is a method for transmitting a broadcast signal. A method for transmitting a broadcast signal according to an embodiment of the present invention comprises the steps of: delivery layer processing broadcasting service data and signaling information for the broadcasting service data; UDP/IP encapsulating the broadcasting service data and signaling information for the broadcasting service data; and physical layer processing the broadcasting service data and signaling information for the broadcasting service data.
US11310090B2

Systems, transmitters, and methods employing waveform bandwidth compression to transmit information are provided. Transmitters may include an encoder to generate a time-domain amplitude sequence from information in a constant amplitude sinusoidal modulation format; fit a polynomial to the time-domain amplitude sequence, the fitted polynomial spanning at least one transmission time interval; and convert the polynomial to a transmission signal, the transmission signal comprising a sum of sinusoids of differing frequencies, each sinusoid having a continuously time-varying amplitude. A carrier source providing a carrier that is modulated with the transmission signal and transmitted through the system to a receiver, which receives the signal in the constant amplitude sinusoidal modulation format. The sum of sinusoids of differing frequencies having a continuously time-varying amplitude may be generated using instantaneous spectral analysis, to reduce the spectral occupancy of the transmission signal.
US11310068B2

This application is a technology with regard to a device that controls a related device based on an operation situation using artificial intelligence, a schedule bot and a server that controls the same, and the device that receives a control of the related device based on the operation situation by an exemplary embodiment of this application includes a function unit that performs a physical function of the device, a communication unit that receives a time schedule and function information from a related device or a schedule management device, and control unit that controls the function unit to maintain a ready state so that a function unit performs a first function at a point that is indicated in the time schedule by using the time schedule and the function information that the communication unit receives.
US11310060B1

Systems and methods are described for using equivalent secret values across different elliptic curves. For example, a transferring party may wish to exchange a first asset on a first blockchain with a recipient for a second asset on a second blockchain. After exchanging sets of public keys with a recipient, a transferring party may generate a zero-knowledge proof and public keys associated with a selected bitstring. The recipient may then verify the proof, which shows that private keys associated with the public keys associated with the bitstring are both derived from the bitstring without revealing the bitstring itself. Once validity of the private keys has been established, the transferring party may publish a second signature to claim the second asset. The published second signature may then be used to publish a first signature (generated using the selected bitstring) on the first blockchain to claim the first asset.
US11310059B2

Techniques of data authentication in a distributed computing system are disclosed herein. One example technique includes receiving a request for performing an operation along with a data package that includes a security token, a first digital signature of the security token generated using an ephemeral private key, and an ephemeral public key with a second digital signature generated using a master private key stored at a secure location. The example technique can also include initially validating the second digital signature using a public key corresponding to the master private key, and upon validating the second digital signature, validating the first digital signature of the security token using the ephemeral public key included in the data package. Upon validating that the first digital signature of the security token, the request can be authenticated, and the requested operation can be performed.
US11310055B2

An incorrect transmission, of a record of data to a distributed ledger system, can be prevented. A first signal can be received. The first signal can include a first instruction to cause the record to be transmitted to the system. One or more items of information in the record can be determined. A delay of time to be elapsed, before a transmission of the record to the system, can be set in response to a receipt of the first signal and a determination of the one or more items. The transmission of the record to the system can be caused to occur after the delay has elapsed. The transmission of the record to the system can be prevented in response to a receipt of a second signal before the delay has elapsed. The second signal can include a second instruction that supersedes the first instruction.
US11310054B2

A database management system stores an entry in a journal. The journal, upon storage of the entry, comprising a hierarchy of nodes. A node in the hierarchy comprises a hash value computed by application of a symmetric hash operator to hash values of first and second child nodes. The symmetric hash operator generates equivalent output irrespective of the order of the operands. A cryptographic proof of the entry comprises successive application of the symmetric hash operator to a list of hashes from the hierarchy.
US11310050B2

One example provides a method for authenticating a computing device received from a manufacturer, the method including establishing a secured connection with the computing device, receiving, from the computing device, a first set of security artifacts, and retrieving, from a secure cloud storage location, a second set of security artifacts, the second set of security artifacts including the EK public key and the PCR values for the computing device obtained during manufacturing. The method further comprises, when the first set of security artifacts matches the second set of security artifacts, then verifying the computing device as trusted and permitting communication between the computing device and a secured computing environment, and when the first set of security artifacts does not match the second set of security artifacts, then not verifying the computing device as trusted and not permitting communication between the computing device and the secured computing environment.
US11310048B2

Highly secure portable storage device may include a security controller, a data transfer controller and a memory controller. The security controller self-verifies, without a host, an access code. After the verification, the security controller may retrieve a concealed encryption key and a transformation key that were previously self-generated by the security controller. The encryption keys are not generated by the host, a user, or the memory controller. The transformation key is sent to the memory controller via a side channel during a first time period. The concealed encryption key is sent to the memory controller via the side channel during a different time period. After extracting an operating encryption key, the memory controller may notify the data transfer controller to initiate an enumeration process with the host. Data transfer from and to the host is performed via interfaces different from the side channel. Other methods and implementations are also described.
US11310047B2

The present disclosure discloses a method for configuring a block chain-based local consensus, including implementing an initialization of a plurality of nodes and creating a local consensus instance for a set of nodes selected from the plurality of nodes. The present disclosure also discloses a corresponding computer-readable storage medium and an apparatus for configuring a block chain-based local consensus. The apparatus including an initialization module configured to implement an initialization of a plurality of nodes; and a local consensus configuration module configured to create a local consensus instance for a set of nodes selected from the plurality of nodes. The method for configuring a block chain-based local consensus according to the present disclosure can select, from the plurality of nodes, the relevant nodes that are a part of the plurality of nodes, thereby establishing a local consensus instance among the selected nodes, in turn to ensure that the local consensus instance can select its desired consensus algorithm, so as to optimize the network and improve the network service quality.
US11310043B2

A receiver in a communication system may include a buffer and hardware. The buffer may be configured to store a communication signal comprising one or more pulses representative of data. The hardware may be configured to determine whether a data authentication pulse has been superimposed over at least one of the one or more pulses, and authenticate, based on the determination of whether the data authentication pulse has been superimposed over at least one of the one or more pulses, the one or more pulses as a valid representation of the data.
US11310028B2

A method of persistently storing event counts includes generating, using a secret cryptographic key, a sequence of numbers arranged in a pseudorandom order. The sequence of numbers is indicative of a sequence of addresses of cells in an array of cells. Each cell in the array of cells is programmable from an initial state to a programmed state to persistently encode data indicative of counter values associated with a particular event. The method also includes comparing addresses of cells having the programmed state with the sequence of addresses to determine whether a tampering event occurred at the array of cells. The method further includes, based on the determination, authenticating the array of cells or performing a countermeasure.
US11310025B1

The disclosure provides a signal synchronizing device and a digital signal output device. A digital circuit counts a first frequency signal to generate a count value, and generates an output voltage according to the count value. An analog circuit generates a feedback signal according to the output voltage. A synchronization circuit samples the feedback signal according to a second frequency signal to generate a synchronization signal. A control circuit generates a voltage control signal according to the second frequency signal and the synchronization signal to control the digital circuit to stop counting the first frequency signal, and a frequency of the first frequency signal is lower than a frequency of the second frequency signal.
US11310023B2

Methods, systems, and devices for wireless communications are described. Generally, the described techniques provide for signaling a semi-static configuration for demodulation reference signal (DMRS) bundling across non-uniform bundles of transmission time intervals (TTIs). A base station may transmit control signaling to a user equipment (UE) that schedules resources for DMRSs and associated data channels across the TTIs. For example, the base station may transmit a bundling configuration to the UE that may configure a bundling sequence defining an order for the bundles and a number of TTIs for each bundle. Based on the control signaling, the UE may determine a reference signal bundling pattern for receiving the DMRSs and the associated data channels, where the reference signal bundling pattern may indicate the bundling sequence. The UE may accordingly receive the DMRSs and the associated data channels and perform channel estimation on the data channels.
US11310019B2

A method for transmitting uplink demodulation reference signal (DMRS) includes: receiving, by a terminal device, first DMRS configuration information sent by a network device, the first DMRS configuration information indicating a type of a DMRS sequence; receiving, by the terminal device, second DMRS configuration information sent by the network device, the second DMRS configuration information indicating at least one configuration parameter of: an antenna port configuration of DMRS, a physical resource configuration of DMRS, or a sequence configuration of DMRS; determining, by the terminal device, a configuration parameter indicated by the second DMRS configuration information according to the first DMRS configuration information; determining, by the terminal device, a transmission parameter of DMRS according to the configuration parameter indicated by the second DMRS configuration information; and transmitting, by the terminal device, DMRS to the network device according to the transmission parameter.
US11310003B2

A method and an apparatus for transmitting broadcast signals thereof are disclosed. The apparatus for receiving broadcast signals, the apparatus comprises a receiver to receive the broadcast signals, a demodulator to demodulate the received broadcast signals by an OFDM (Orthogonal Frequency Division Multiplex) scheme, a frame parser to parse a signal frame from the demodulated broadcast signals, wherein the signal frame includes at least one service data, a time deinterleaver to time deinterleave each the service data, wherein the time deinterleaving is performed depending on a number of physical paths for each the service data, a damapper to demap the time deinterleaved data and a decoder to decode the demapped service data.
US11309999B2

Methods, systems, and devices for wireless communications are described that provide improved repetition techniques for autonomous uplink transmissions. Configuration information may be provided from a base station to a user equipment (UE) for autonomous uplink transmissions, that may indicate initial resources for an initial uplink transmission slot and retransmission resources for a number of retransmissions. Time resources within the retransmission resources may be configured to provide enhanced reliability, such as by being configured in non-contiguous slots to avoid one or more other transmission channels. Time resources within slots may also be configured to prevent persistent collisions with autonomous uplink transmissions or retransmissions of two or more different UEs.
US11309996B2

A communication method is configured to increase speed of messages reception over a bandwidth limited channel such as high frequency (HF) radio. User data arriving from a high-speed network is transformed into a format suitable for transmission over the radio channel. Message packets that will take longer to reach a destination via the radio channel as compared to alternative channels, such as a fiber optic network, are rejected for radio transmission. When the packet is received, the receiver deduces message length by using information from various error handling techniques, such as forward error correction (FEC) and cyclic redundancy check (CRC) techniques. Fill data is transmitted between message packets when no data is available. The FEC and CRC information for the fill data is modified so that the fill data will fail FEC and CRC checks at the receiving station.
US11309992B2

Methods, systems, and devices for wireless communications are described. Some wireless communications systems may utilize beamforming techniques to process wireless communications transmitted in millimeter wave (mmW) frequency ranges. In such cases, a user equipment (UE) may perform lattice reduction (LR)-based preprocessing for a received resource element (RE), which allows the UE to utilize demapping techniques (e.g., minimum mean square error (MMSE)-based demapping techniques or successive interference cancellation (SIC) demapping techniques) that are less computationally-complex than conventional demapping techniques (e.g., maximum likelihood (ML)-based demapping techniques) while providing a similar performance as conventional techniques. Further, due to mmW systems' robustness to time-dispersion, the UE may apply the same LR to multiple REs across multiple symbols in the time domain and across multiple sub-carriers in the frequency domain. The computational cost of performing the LR calculation may be spread across multiple REs and further increase the efficiency of utilizing low-complexity demapping techniques.
US11309989B2

A terminal apparatus includes a transmitter configured to transmit capability information of the terminal apparatus, and a receiver configured to perform blind detection of a PDCCH from a search space in a control resource set, wherein in a case that a capability of blind detection is supported, the blind detection detecting the PDCCH from search spaces in control resource sets the number of which is greater than a prescribed number in a prescribed duration, the transmitter transmits, as the capability information of the terminal apparatus, at least two of pieces of information including (a) a maximum number of blind detections that can be performed in the prescribed duration, (b) a maximum number of blind detections in a unit time, (c) a maximum number of blind detections based on configuration for the control resource set, and (d) a maximum number of the control resource sets for which blind detections can be simultaneously performed.
US11309982B2

A broadcast signal transmission method includes encoding service data of a service and service layer signaling information that are delivered over a Real-Time Object Delivery over Unidirectional Transport (ROUTE) session, wherein the service layer signaling information includes transport session information containing transport session identifier (TSI) information for the service data and wherein a value of TSI information for the service layer signaling information is zero; and encoding signaling information for one or more services including the service, wherein the signaling information includes one or more service element entries corresponding to the one or more services, wherein a service element entry corresponding to the service includes service information related to the service, and wherein the service information includes service identification information for identifying the service, first version information for indicating a change of the service information, short name information of the service and access information of the ROUTE session.
US11309979B2

An adaptive identification system, for identifying a propagation system characteristic by an adaptive filter, includes a signal generator that generates an identification input signal including a frequency component of an integer multiple of a fundamental frequency and having a periodicity satisfying a PE condition, a setting unit that sets moving average time to a fundamental period of the identification input signal, and an adaptive algorithm execution unit that uses a moving average value and a diagonal matrix to update a coefficient of the adaptive filter, the moving average value being obtained by calculating a moving average of a cross-correlation vector of a vector of the identification input signal and an observation signal with the moving average time, and the diagonal matrix being obtained by diagonalizing a matrix obtained by calculating a moving average of an autocorrelation matrix of the vector of the identification input signal with the moving average time.
US11309977B2

Embodiments of the present application relate to the communications field and disclose a calibration method and a communications device, capable of compensating for measured amplitude and phase results. The method includes determining a position error of each of the N antenna groups, and then determining an actual position of the antenna group based on a target position of the antenna group and the position error of the antenna group. A phase compensation value and/or an amplitude compensation value of the antenna group are determined for a target probe of the second device based on the actual position of the antenna group. Based on the phase compensation value and/or the amplitude compensation value of the antenna group, compensating is performed for a phase result and/or an amplitude result that are/is obtained by the target probe of the second device by measuring a signal transmitted by the antenna group.
US11309973B2

A passive optical network having an optical-signal monitor configured to monitor carrier-wavelength drifts during optical bursts transmitted between the optical line terminal and optical network units thereof. In an example embodiment, the optical-signal monitor uses heterodyne beating between two differently delayed portions of an optical burst to generate an estimate of the carrier-wavelength drift during that optical burst. The passive optical network may also include an electronic controller configured to use the estimates generated by the optical-signal monitor to make configuration changes at the optical network units and/or implement other control measures directed at reducing to an acceptable level the amounts of carrier-wavelength drift during the optical bursts and/or mitigating some adverse effects thereof.
US11309959B2

A direct-detection optical data receiver capable of low-latency SSBI cancellation using one or more FIR filters in the chain of digital signal processing thereof. In an example embodiment, a DSP of the receiver may have first and second serially connected FIR filters whose filter coefficients are updated based on a same feedback signal. An SSBI-cancellation circuit of the DSP is configured to estimate the SSBI by summing a scaled square of the filtered signal generated by the first FIR filter and a scaled square of the filtered signal generated by the second FIR filter. In some embodiments, the SSBI-cancellation circuit may have two or more serially connected stages, each of which incrementally improves the accuracy of the SSBI estimate. In some embodiments, the need for dedicated and/or specialized filter-calibration procedures may beneficially be circumvented.
US11309957B2

The invention provides a method and an architecture for deploying non-terrestrial cellular network base stations, so as to enable cellular network coverage in remote areas, where no fixed infrastructure is available. The proposed methods allow for efficient power management at the terminal devices that need to synchronize to the airborne or spaceborne cellular base stations. This is particularly important for IoT devices, which have inherently limited power are computing resources.
US11309949B2

An embodiment of the present application relates to a signal processing method and apparatus. The method includes: determining a plurality of signals that are quasi-co-located with a first port set of a first reference signal, wherein the first port set is used to send or receive the first reference signal, and the first port set comprises at least one port; determining a target signal among the plurality of signals; and sending or receiving the first reference signal via the first port set according to a quasi-co-location relationship between the first port set and the target signal.
US11309943B2

A system and method are described which enable planned evolution and obsolescence of multiuser wireless spectrum. One embodiment of such a system includes one or multiple centralized processors and one or multiple distributed nodes that communicate via wireline or wireless connections. The distributed nodes may share their identification number and other reconfigurable system parameters with the centralized processor. The information about all distributed nodes may be stored in a database that is shared by all centralized processors. The reconfigurable system parameters may comprise power emission, frequency band, modulation/coding scheme. The distributed nodes may be software defined radios such as FPGA, DSP, GPU and/or GPCPU that run algorithms for baseband signal processing and may be reconfigured remotely by the centralized processor. A cloud wireless system may be used wherein the distributed nodes are reconfigured periodically or instantly to adjust to the evolving wireless architecture.
US11309938B2

According to one embodiment, a file transmission/reception device includes a communication direction managing unit and an application unit. The communication direction managing unit, in near field communication, cuts off a connection with an opposing device in a case where a conflict occurs with the opposing device, and, after being reconnected to the opposing device, switches the file transmission/reception device to any one mode of a master mode and a slave mode. The application unit performs transmission, reception, or transmission/reception of a file between the opposing device and the file transmission/reception device in the master mode or the slave mode in accordance with a mode specified by the communication direction managing unit.
US11309935B1

Methods, apparatus, and processor-readable storage media for generating a frequency hopping arrangement are provided herein. An example computer-implemented method includes determining a starting frequency channel for a frequency hopping arrangement to be used in a communication session by a group of devices; calculating a frequency channel step value based at least in part on a predetermined required minimum number of frequency channels; and selecting the frequency channel values to be used in the communication session by iterating through frequency channel values for the useable frequency channels at intervals of a random frequency channel selection offset value until a number of frequency channel values equal to the frequency channel step value are selected.
US11309932B1

Semiconductor chips are made increasingly smaller, thanks to improved design techniques and process scaling. Sometimes the bottleneck is not the chip itself but the package size due to many necessary pins. To help reduce the number of package pins, the chip should use less pins by sharing or reusing pins if possible. Therefore, single-ended RF input/output is used for transceiver, and the same pin is shared between RX and TX. A receiver (RX)-transmitter (TX) impedance co-matching method uses multiple bondwires for transceivers sharing one input/output (I/O) pin between RX and TX. The RX input impedance and TX output impedance are transformed closer to each other or even to the same impedance, which makes it possible to get the best RX and TX performance with just one matching network. The chip area is also saved without using on-chip inductors.
US11309927B2

Radio frequency (RF) communication systems with coexistence management are provided herein. In certain embodiments, a mobile device includes a first antenna, a first front end system that receives an RF receive signal from the first antenna, a first transceiver coupled to the first front end system, a second antenna, a second front end system that provides an RF transmit signal to the second antenna, and a second transceiver coupled to the second front end system. The second front end system observes the RF transmit signal to generate an RF observation signal, which is downconverted and processed by the second transceiver to generate digital observation data that is provided to the first transceiver. The first transceiver downconverts the RF receive signal to baseband, and compensates the baseband receive signal for an amount of RF signal leakage indicated by the digital observation data.
US11309926B2

An integrated circuit architecture and circuitry is defined by a die structure with a plurality of exposed conductive pads arranged in a grid of rows and columns. The die structure has a first operating frequency region with a first transmit and receive chain, and a second operating frequency region with a second transmit chain and a second receive chain. There is a shared region of the die structure defined by an overlapping segment of the first operating frequency region and the second operating frequency region with a shared power supply input conductive pad connected to the first transmit chain, the second transmit chain, the first receive chain, and the second receive chain, and a shared power detection output conductive pad connected to the first transmit chain and the second transmit chain.
US11309925B2

A radio-frequency module includes a mounting substrate having a first main surface and a second main surface on opposite sides of the mounting substrate; an external connection terminal arranged on the first main surface; and a first transmission power amplifier arranged on the first main surface. The first transmission power amplifier includes an amplifier first main surface closest to the first main surface, an amplifier second main surface that faces away from the amplifier first main surface, a first input-output electrode arranged on the amplifier first main surface and through which a radio-frequency signal input into the first transmission power amplifier or a radio-frequency signal output from the first transmission power amplifier is transmitted, and a first ground electrode arranged on the amplifier second main surface.
US11309920B2

Identification of communication participants may be an important aspect of various communication systems. For example, fifth generation (5G) wireless communication systems may benefit from suitable recipient identification. A method can include obtaining data bits to be communicated to a target device. The method can also include obtaining identification bits corresponding to at least one of sender or receiver of the data bits. The method can further include multiplexing the data bits with the identification bits.
US11309917B2

Protograph-based LDPC codes are obtained from z-row-orthogonal base matrices with some additional structure constraints, such as a diagonal and/or double-diagonal structure, in order to allow a high parallelization that is a multiple of z, while having an efficient encoding or decoding. A “big” base matrix is constructed from a structured square submatrix in order to have a WiMAX-like structure and a z-row-orthogonality. Also, starting from a “smaller” base matrix having a part arranged in a double-diagonal shape with tail-biting one, an expansion by a factor equal to z can be performed, followed by an addition of a single one-entry into the last column at a specific location, thereby obtaining a three-degree column, and followed by a row and/or column permutation in order to obtain a base matrix in a WiMAX-like structure.
US11309906B2

A sensor data are compressed on field devices using a representation is provided. The field device immediately decompresses the compressed data in order to detect a deviation. If there is a deviation, then a cloud storage receives the sensor data as raw uncompressed data. A cloud component receives a trigger signal from the field device, indicating that the representation used by the field device for compression does not sufficiently describe the sensor data. The cloud component then learns a new representation by retrieving and analyzing all data stored in the cloud storage. The method and field device provide robust, compression-based data acquisition. They improve quality and precision of the data captured by the field devices. As the representation in the field device can be updated, it becomes possible to accommodate changes in the device setup. The cloud infrastructure provides automatic learning of the representation in the cloud.
US11309905B2

A wireless device generates a High Efficiency Signal B (HE-SIG-B) field by Block Convolution Code (BCC) encoding and rate-matching a BCC block of the HE-SIG-B field, generates a Physical Layer Protocol Data Unit (PPDU) including the HE-SIG-B field, and transmits the PPDU. A total number N is a total number of bits of the HE-SIG-B field that precede the BCC block, and is greater than 0. The BCC block has a puncturing pattern depending on the total number N. A wireless device receives a PPDU. The PPDU includes an HE-SIG-B field that includes an encoded BCC block. The wireless device de-rate-matches the encoded BCC block having a puncturing pattern depending on a total number N. The total number N is a total number of decoded bits of the HE-SIG-B field that preceded the BCC block, and the total number N is greater than 0.
US11309898B2

A semiconductor integrated circuit includes: a phase synchronization circuit configured to be synchronized with a reference clock signal and to generate a synchronization clock signal by multiplying the reference clock signal; an edge detection circuit configured to detect an edge at which a signal waveform of the reference clock signal changes at a timing of the synchronization clock signal and to output an edge detection signal indicating the timing at which the edge has been detected; and a clock division circuit configured to be reset at a timing based on the edge detection signal and to generate a divided clock signal by dividing the synchronization clock signal.
US11309895B2

Multi-chip systems and structures for modular scaling are described. In some embodiments an interfacing bar is utilized to couple adjacent chips. For example, a communication bar may utilized to coupled logic chips, and memory bar may be utilized to couple multiple memory chips to a logic chip.
US11309894B2

A programmable integrated circuit (“PIC”) device includes configurable logic blocks (“LBs”), routing connections, and configuration memory for performing user defined programmed logic functions. Each configurable LB, in one example, includes a set of lookup tables (“LUTs”) and associated registers. The LUTs, for example, are configured to generate one or more output signals in accordance with a set of input signals. The registers are arranged so that each register corresponds to one LUT. In one embodiment, a group of registers, instead of assigning to a group of LUTs across multiple configurable LBs, is allocated or configured as embedded signature registers in PSD. For example, a first register which corresponds or physically situated in the vicinity of first LUT can be designated as an embedded signature register for storing a fixed value or signature information for facilitating device or IC identification.
US11309890B1

The present disclosure provides a pre-emphasis circuit, method and display device, and belongs to a field of display driving. The pre-emphasis circuit according to the disclosure can determine whether to output a pre-emphasis voltage corresponding to grayscale of current input data via an input terminal of an amplifier according to data input to a data terminal by adding an amplifier input pre-emphasis module. Rapid conversion of output voltage can be realized without increasing the quiescent current of the amplifier, while the stability of temperature of the IC is ensured.
US11309885B2

A power-on reset signal generating device includes a reference voltage generator, a signal driver, and a stabilization circuit. The reference voltage generator generates a power-on reference voltage based on a voltage level of a power supply voltage. The signal driver drives the power-on reference voltage to generate a power-on reset signal. The stabilization circuit receives the power-on reset signal to keep a voltage level of the power-on reference voltage staying during a predetermined amount of time.
US11309880B2

Embodiments described herein provides a low-complexity solution and current protection for a current driver that provide current pulses to pyrotechnic initiators. The current drivers include current limiters that prevent high current transients during a current pulse. Further, a duration of the current pulse is controlled based on a thermal limit of the current driver to prevent thermal damage to the current driver. One embodiment comprises an apparatus that includes a control circuit and a current driver. The current driver is electrically couplable to a pyrotechnic initiator. The current driver includes a power switch circuit electrically coupled to a supply rail that supplies a current to a high side of the pyrotechnic initiator in response to receiving a drive signal from the control circuit.
US11309877B1

Disclosed are circuits and methods for a comparator with a floating capacitive supply. A capacitor is coupled between a comparator and a power supply. Two sets of electronic switches are configured in opposing operational states to shift the configuration of the circuit between a charging configuration and a decision configuration. In the charging configuration, the capacitor draws current from the power supply. In the decision configuration, the comparator pulls current from the capacitor to perform a decision. The configuration of the two sets of switches is alternated to toggle between the charging configuration and the decision configuration, allowing for the capacitor to be recharged between each decision performed by the comparator.
US11309875B2

A method of frequency doubling includes receiving a first clock that has a fifty percent duty cycle and is a two-phase clock having a first phase and a second phase; outputting a second clock using a multiplexer by selecting one of the first phase and the second phase of the first clock in accordance with a third clock; delaying the second clock into a fourth clock using a recirculating delay circuit; and using a divide-by-two circuit to output the third clock in accordance with the fourth clock.
US11309864B2

A quartz crystal resonator unit that includes a quartz crystal resonator, a lid member and a base member defining an internal space that accommodates the quartz crystal resonator, and a sealing frame and a joining material joining the lid member and the base member to each other. In a plan view of a principal surface of the base member, the sealing frame and the joining material have a frame shape surrounding the quartz crystal resonator, and the frame shape has a uniform width.
US11309848B2

An amplifier circuit includes: a Schmidt trigger having an input electrically coupled to an input of the amplifier circuit, a switching network electrically coupled to an output of the Schmidt trigger, an inductor electrically coupled to the switching network, a first resistor electrically coupled to the inductor, a capacitor electrically coupled to the first resistor, a first feedback circuit that provides a first feedback signal to the input of the Schmidt trigger based on a voltage at a first node electrically coupled to the first resistor and to the capacitor, a second resistor electrically coupled to the output of the amplifier circuit, a third resistor electrically coupled to the second resistor, and a second feedback circuit that provides a second feedback signal to the input of the Schmidt trigger based on a voltage at a second node electrically coupled to the second resistor and to the third resistor.
US11309843B2

An input receiver includes a first current source circuit, a second current source circuit, a first rail-to-rail amplifier circuit, a first inverter circuit, and a second inverter circuit. The first current source circuit adjusts an operating current flowing through a first node according to a first bias signal. The second current source circuit adjusts a ground current flowing through a second node according to a second bias signal. The first rail-to-rail amplifier circuit and the first inverter circuit are connected in parallel between the first node and the second node. The first rail-to-rail amplifier circuit receives an input signal and compares the input signal with a reference voltage and accordingly outputs an amplified signal. The second inverter circuit is coupled between an operating voltage and a ground voltage. The second inverter circuit generates an output signal according to an inverted signal outputted by the first inverter circuit.
US11309842B2

A power amplifier circuit includes a first path and a second path between an input terminal and an output terminal, a first amplifier located in the first path operative in a first mode, a second amplifier located in the second path operative in a second mode, a first matching circuit between the first amplifier and the output terminal in the first path, a first capacitor having a first end connected to the output terminal side of the first matching circuit, and a second end, a first inductor having a first end connected to the second end of the first capacitor and a second end grounded, and a short-circuit switch connected in parallel with the first inductor. The short-circuit switch short-circuits the first and second ends of the first inductor in the first mode and is placed in an open-circuit position in the second mode.
US11309839B2

A multi-stage amplifier with a high signal-to-noise ratio is introduced. Multiple amplification stages are cascaded between an input terminal and an output terminal of the amplifier. A controller switches the output stage among the multiple amplification stages from a normal mode to an attenuation mode in response to the amplifier input being lower than the threshold. In the attenuation mode, the output stage provides an attenuation resistor coupled in series with the load resistor of the amplifier. Noise is successfully attenuated by the attenuation-mode output stage.
US11309817B2

Provided is a control device for a rotating machine including a magnetic pole position estimation unit, a vector calculation unit, a current command correction unit configured to correct a first d-axis current command and a first q-axis current command, to thereby output a second d-axis current command and a second q-axis current command, a voltage application unit configured to superimpose a high-frequency voltage including a specific frequency component on voltage commands on rotational coordinates. The magnetic pole position estimation unit is configured to estimate the position of the magnetic pole based on a state quantity of the specific frequency component. The current command correction unit is configured to correct the current commands so that a current amplitude of electrical angle frequency components is equal to or larger than a half of a current amplitude of the specific frequency component.
US11309816B2

A method and apparatus for operating a converter system of a wind turbine for exchanging electrical power with an electrical supply grid at a grid connection point are provided. In the method and apparatus, the converter system is operated in a normal operating mode. An overload situation affecting the converter system is detected and operation of the converter system is changed to an overload operating mode when the overload situation is detected. An average switching frequency for generating an output current is reduced in the overload operating mode of the converter system in comparison with the normal operating mode, a higher load is permitted on the converter system, which may be in the form of an increased temperature or an increased output current, in the overload operating mode of the converter system for a predetermined maximum overload period.
US11309808B1

An electromagnetic and triboelectric hybrid energy collector for low-frequency movement is provided. The electromagnetic and triboelectric hybrid energy collector comprises an electromagnetic module, triboelectric modules and spring mass modules. The electromagnetic module includes a shell, a magnet frame, a magnet array, coil arrays, coil frames and coil magnetic conductive columns. The spring mass modules include respective springs, respective mass blocks and respective end caps. The triboelectric modules include multiple nano-friction power generation units which are connected in sequence. When the energy collector is excited to move a magnet assembly. The electromagnetic module generates voltage according to the Faraday's law of electromagnetic induction. The movement of the magnet assembly generated by external excitation may also cause contact and separation between triboelectric units to generate voltage.
US11309800B2

A controller for use with a power converter and a power switch comprising a primary controller and a secondary controller. The primary controller to control the power switch to transfer energy from the input side to the output side of the power converter. The secondary controller to transmit a control signal to the primary controller through a communication link, and to initiate a transition operation with the primary controller through the communication link. The secondary controller comprises a secondary switch control circuit configured to output the control signal in response to an output of the power converter, a charging circuit coupled to an energy storage element for providing power to the secondary control circuit, and a voltage detection circuit coupled to the energy storage element, wherein the voltage detection circuit is configured to indicate to the secondary switch control circuit when to initiate the transition operation.
US11309797B2

A voltage regulation system utilizes a controller to select one of a continuous comparator and a discrete comparator to operate, making one of the continuous comparator and the discrete comparator output a pulse signal to the controller. The controller controls a switched power stage circuit to supply power to a load element. Through the aforementioned configuration, the switched power stage circuit adjusts the power supply based on the condition of the load element, thus decreasing the power loss of the switched power stage circuit.
US11309792B2

A voltage converter circuit may include: a first input node; a second input node; a first output node; a second output node; one or more charge pumps that convert a first input voltage supplied to the first input node up to a first output voltage and convert a second input voltage supplied to the second input node down to a second output voltage; and a control circuit to control the one or more charge pumps according to two operational modes. In the first operation mode, the control circuit supplies the first input voltage to the first input node, leaves the second input node floating, and outputs the first output voltage at the first output node. In the second operation mode, the control circuit supplies the second input voltage to the second input node, leaves the first input node floating, and outputs the second output voltage at the second output node.
US11309784B2

The disclosure provides a power conversion circuit with a multi-function pin and a multi-function setting method thereof. The multi-function pin is coupled to an external setting circuit. The power conversion circuit includes a first function circuit, a second function circuit, and a judging circuit. The first function circuit is coupled to the multi-function pin. The second function circuit is coupled to the multi-function pin. The judging circuit is coupled to the multi-function pin, the first function circuit, and the second function circuit. The judging circuit provides a setting current to the multi-function pin, so that the external setting circuit generates a voltage according to the setting current. The judging circuit judges the type of external setting circuit according to voltage so as to activate the first function circuit or the second function circuit accordingly. The disclosure also provides a multi-function setting method in which the power conversion circuit automatically activates the corresponding function according to the type of external setting circuit.
US11309783B2

An electromagnetic propulsion system comprises a plurality of stator coils wound about a first axis, a plurality of support structures, a coupler that surrounds a portion of the stator coils, and a plurality of rotor coils wound about an axis that is parallel to the first axis. The stator coils are configured to receive electric current to induce a first magnetic field. The support structures support the stator coils. The coupler includes a notch oriented so that one of the support structures can pass through the notch when the coupler moves along the stator coils. The rotor coils are attached to the coupler and are configured to receive electric current to induce a magnetic field that interacts with the first magnetic field so that a magnetic force is applied to the rotor coils, thereby propelling the coupler and the rotor coils along the stator coils.
US11309777B2

A rotating electrical machine capable of obtaining a higher torque while limiting the amount of permanent magnets used. A magnetic pole of a rotor includes an auxiliary magnet embedded in a rotor core and at least one main magnet arranged on an outer circumferential side than the auxiliary magnet of the rotor. In each magnetic pole, the distance from an end of the main magnet, the end facing the auxiliary magnet, to the auxiliary magnet facing the main magnet is shorter than the length of the main magnet in the radial direction. In a cross-section orthogonal to the rotation axis of the rotating electrical machine, the main magnets of each magnetic pole are arranged so as to be asymmetrical about a virtual line passing the rotation axis and axisymmetrically dividing the auxiliary magnet.
US11309769B2

A disclosed electrical generator includes a housing, an actuator, a rotatable member, a stator, a rotor, an electrical circuit, and a current controller. The actuator is movable relative to the housing and the rotatable member is also rotatable relative to the housing. The rotatable member cooperates with the actuator such that movement of the actuator causes rotation of the rotatable member. The stator is fixed relative to the housing and the rotor receives rotational kinetic energy from the rotatable member. Movement of the rotor relative to the stator generates electromagnetic induction in the rotor and/or the stator which produces a three-phase alternating current. The electrical circuit includes a rectifier that converts the alternating current to a direct current. The current controller regulates the direct current to thereby generate a fixed constant direct current.
US11309766B2

A permanent magnet electric motor includes a shaft extending along a longitudinal axis and a rotor mounted on the shaft. The rotor is rotatable concomitantly with the shaft about the longitudinal axis, the rotor defines an innermost rotor edge. The innermost rotor edge is sized to receive the shaft. The permanent magnet electric motor further includes a stator. The shaft defines a jacket configured to receive a coolant. The jacket is disposed about the longitudinal axis. The jacket is elongated in a first direction. The first direction is parallel to the longitudinal axis. The rotor defines a plurality of longitudinal channels. Each of the plurality of longitudinal channel is elongated along the first direction, and each of the plurality of longitudinal channels is in fluid communication with the jacket to allow fluid flow between the jacket and the plurality of the longitudinal channels.
US11309752B2

A method of manufacturing a motor jacket incorporating a stator includes: the step of inserting the stator into a hole in the jacket that has a diameter larger than the outer diameter of the stator; the step of introducing an elastic adhesive into a gap between a surface of the hole and the stator; and the step of cooling the jacket for a given time after introducing the adhesive into the gap.
US11309745B2

A wireless charging device and an electronic device are disclosed. The wireless charging device includes: a photoelectric conversion device and a primary light guide plate; the primary light guide plate having a first light incident surface and a first light exiting surface; and the photoelectric conversion device faces the first fight exiting surface.
US11309743B1

The disclosure provides a balanced-current circuit structure and a parameter design method for a bifilar winding coil of wireless power transfer. The disclosure relates to the technical field of magnetic coupling wireless power transfer. The circuit includes a bifilar winding coil, a compensation capacitor array and a controlled voltage source array. The bifilar winding coil includes a first coil and a second coil, the compensation capacitor array includes a first compensation capacitor and a second compensation capacitor, and the controlled voltage source array includes a first controlled voltage source and a second controlled voltage source. Compared with the existing centralized series compensation scheme, the scheme proposed by the disclosure can realize the currents in two windings of the bifilar winding coil being basically the same, so as to eliminate the current imbalance problem existing in the traditional compensation mode, thereby fully exerting the current-carrying capacity of the bifilar winding coil, and improving the practicability of the bifilar winding coil in practical applications.
US11309732B2

A power system includes first and second power supplies, and a control circuit. The control circuit is configured to control the first power supply to regulate its output voltage at a first value, enable the second power supply, increase the output voltage of the first power supply to a second value in response to the second power supply being enabled, increase an output voltage of the second power supply to a third value, and decrease an output current of the first power supply and increase an output current of the second power supply to transition between electrically powering the load with the first power supply and electrically powering the load with the second power supply. Other example power system and methods for controlling a power transition between power supplies are also disclosed.
US11309729B2

Apparatus comprising a first layer of electrically conductive material and a second layer of electrically conductive material, and a plurality of impedance elements connecting said first layer with said second layer, wherein an impedance value of at least some of said plurality of impedance elements is controllable.
US11309723B2

Systems, methods, and articles for a portable power case are disclosed. The portable power case is comprised of at least one battery and at least one PCB. The portable power case is operable to supply power to a transceiver. The portable power case is operable to be charged using a DC power source (e.g., solar panel, wind turbine, water turbine). A plurality of portable power cases, DC power sources, and transceivers are operable to form a mesh network.
US11309717B2

A Battery Management System (BMS) for an electronic device with bidirectional communication between The BMS and an Operating System (OS) of the electronic device for generating a charging pattern of charging the battery of the electronic device according to information received from the operating system.
US11309716B2

A system includes a transmitter circuit coupled to an input power source, a transmitter coil coupled to the transmitter circuit, a receiver coil magnetically coupled to the transmitter coil, a rectifier coupled to the receiver coil and configured to convert an alternating current voltage into a direct current voltage, and a high efficiency power converter comprising a first stage and a second stage connected in cascade between the rectifier and a battery, wherein the first stage is configured to charge the battery, and the second stage is configured to provide isolation between the first stage and the battery.
US11309710B2

In one aspect, there is provided a method comprising: receiving consumption data comprising readings from one or more utility meters associated with a property comprising one or more devices, the one or more devices comprising one or more devices of interest; determining, in the received consumption data, one or more positive consumption variations indicative of switching on of one or more of the devices and/or one or more negative consumption variations indicative of switching off of one or more of the devices; identifying one or more events associated with the one or more devices, based on the determined variations, by matching one or more positive variations with one or more negative variations; grouping the identified one or more events into one or more blocks, each block corresponding to an occurrence of usage of a device of the property; classifying the one or more blocks into one or more predetermined clusters, the one or more predetermined clusters comprising a respective predetermined cluster associated with each device of interest of the property; and determining an occurrence and/or an absence of usage of the one or more devices of interest of the property, based on the classification into the one or more predetermined clusters.
US11309701B2

Flexible AC transmission system (FACTS) enabling distributed controls is a requirement for power transmission and distribution, to improve line balancing and distribution efficiency. These FACTS devices are electronic circuits that vary in the type of services they provide. All FACTS devices have internal circuitry to handle fault currents. Most of these circuits are unique in design for each manufacturer, which make these FACTS devices non-modular, non-interchangeable, expensive and heavy. One of the most versatile FACTS device is the static synchronous series compensator (SSSC), which is used to inject impedance into the transmission lines to change the power flow characteristics. The addition of integrated fault current handling circuitry makes the SSSC and similar FACTS devices unwieldy, heavy, and not a viable solution for distributed control. What is disclosed are modifications to FACTS devices that move the fault current protection external to the FACTS device and make them modular and re-usable.
US11309699B2

A control system for and a method of fault isolation and electrical power restoration on an electrical network are provided and comprise: a plurality of electrical power supply facilities connectable to a region of a network, the region comprising a plurality of segments, and each segment being connectable to one or more neighbouring segments by a respective switching device; and the method including the steps of: detecting a fault condition within the region; operating the plurality of switching devices connecting the segments within the region so as to disconnect those segments from one another; performing a reconnection routine for each of a plurality of reconnection zones, being run concurrently.
US11309691B2

A bus bar arrangement including two or more bus bars arranged for conducting currents, wherein the two or more busbars are arranged parallel and at a distance from each other, the arrangement including a magnetic structure which is arranged between two bus bars which are next to each other.
US11309687B2

The present embodiment relates to a light-emitting device or the like having a structure capable of reducing one power of ±1st-order light with respect to the other power. The light-emitting device includes a substrate, a light-emitting portion, and a phase modulation layer including a base layer and a plurality of modified refractive index regions. Each of the plurality of modified refractive index regions has a three-dimensional shape defined by a first surface facing the substrate, a second surface positioned on a side opposite to the substrate with respect to the first surface, and a side surface. In the three-dimensional shape, at least one of the first surface, the second surface, and the side surface has a portion inclined with respect to a main surface.
US11309681B2

A mount member includes first and second conduction parts. In the first conduction part, as seen in a top view, a length in a first direction parallel to an emission end surface of a first semiconductor laser element is smaller than a length in a second direction perpendicular to the emission end surface, and, in relation to the second direction, a first wiring region extends from a first mounting region in a direction from the light emission end surface to an opposite end surface. In relation to the second direction, a second conduction part extends further than the first conduction part in a direction from an emission end surface to an opposite end surface of a second semiconductor laser element, and from a region where the second conduction part extends further than the first conduction part, the second conduction part extends toward the first conduction part in the first direction.
US11309680B2

A light source device includes: a base comprising a bottom portion and a peripheral wall portion; a semiconductor laser located on the bottom portion; a cap connected to an upper surface of the peripheral wall portion, wherein the cap and the base define a sealed space; a translucent portion located in the peripheral wall portion or the cap, the translucent portion being configured to transmit a beam emitted from the semiconductor laser; and first and second lead terminals located in the sealed space and crossing from a first inner surface of the peripheral wall portion to a second inner surface of the peripheral wall portion. The semiconductor laser is located between the two lead terminals. The translucent portion is located on an optical axis of the beam emitted from the semiconductor laser.
US11309668B2

A coupler, in particular a resistive coupler, wherein all ports are at least partially or completely arranged in or at a connector. The coupler comprises resistors which are adapted to sum and/or divide the incoming and/or outgoing signal. The resistors are arranged at or in the connector. A sum port and/or at least two dividing ports are arranged on a substrate.
US11309666B2

Novel tools and techniques are provided for implementing customer premises device functionality, and, more particularly, to methods, systems, and apparatuses for implementing media adaptation device functionality. In various embodiment, a rear-facing camera of a media adaptation device might capture a first image of a wall of a customer premises, the wall including an electrical wall outlet into which the media adaptation device is intended to be plugged. The media adaptation device might display, on a front display device disposed on a front face (and in some cases, also on top and/or side display devices on corresponding faces) of the media adaptation device, a second image based on the captured first image of the wall of the customer premises. The media adaptation device might also perform one or more first functions other than display of images or videos, after the media adaptation device has been plugged into the electrical wall outlet.
US11309663B2

A connector includes a sensing member inserted into the second housing along the first direction, and a sensing mechanism allowing the sensing member to advance to a predetermined engaged position along the first direction when the first housing and the second housing are completely fitted, and locking the sensing member at a position before the engaged position when the first housing and the second housing are not completely fitted. The sensing member includes an exposed portion exposed to an outer space when the sensing member is in the engaged position. In the exposed portion, a first surface exposed to a side opposite to a side of a central axis of the second housing is an inclined surface or an arc-shaped surface extending in a direction inclined with respect to the first direction and facing a side opposite to a side of the first housing in the first direction.
US11309660B1

A connector assembly includes a connector body, a corresponding mating connector body, and a connection position assurance (CPA) device. The connector body includes a deflectable latching member and at least one outer detent feature located on an outer surface of the connector body. The corresponding mating connector body is configured to be removably connected with the connector body, wherein the deflectable latching member is configured to secure the connector body to the corresponding mating connector body. The CPA device is slidably positioned adjacent the connector body and moveable from a pre-stage position to a full-stage position, wherein the CPA device interacts with the at least one outer detent feature located on the outer surface of the connector body to deflect the connector body towards the corresponding mating connector body.
US11309657B1

A blade type electrical connector may include a first connecting member and a second connecting member. The first connecting member has an end surface, and a plurality of blades protrude therefrom. A waterproof mat coupled on the end surface has a plurality of first through holes penetrated by the blades. A plurality of protruding portions protruding from the waterproof mat are respectively coupled around the blades, and each two adjacent protruding portions are separated by an interval surface. The box-shaped second connecting member comprises a first surface, and a plurality of receiving slots are formed on the first surface and extended into the inner space of the second connecting member, and each of the receiving slots has a conductive terminal installed therein. The second connecting member comprises a plurality of interval bars, and each of the interval bars located between two adjacent receiving slots extendedly protrudes from the first surface.
US11309653B2

A connector is provided with a housing 60 including a cavity 62 and a terminal fitting 10 to be inserted into the cavity 62. The housing 60 includes a deflectable locking lance 64 projecting into the cavity 62. The terminal fitting 10 includes a locking portion 29 arranged to face the locking lance 64 in a direction to escape from the cavity 62 and a restricting piece 45 rising toward the locking portion 29. A tip of the restricting piece 45 in a rising direction is arranged to face the locking lance 64.
US11309652B2

The present invention provides a contact with low impedance even in a high frequency band. The contact (1) includes a base part (3), a contact part (5), and a spring part (7). The spring part (7) is elastically deformed to bias the contact part (5) in the x-axis positive direction and the z-axis positive direction. The contact part (5) includes a sliding part (23A) oriented in the x-axis positive direction. The base part (3) includes a part to be slided (14) oriented in the x-axis negative direction. The contact part (5) is biased in the x-axis positive direction by the spring part (7), so that the sliding part (23A) is in pressure contact with the part to be slided (14). The contact part (5) is configured to be slidable in the z-axis direction relative to the base part (3) while maintaining a state in which the sliding part (23A) is in pressure contact with the part to be slided (14).
US11309650B2

A connector assembly includes a female connector body and a male connector body defining a shroud configured to receive the female connector body. The electrical connector assembly further includes a resilient seal axially surrounding a portion of the female connector body. The seal is disposed intermediate the female connector body and the shroud. The connector assembly additionally includes a seal retainer attached to the female connector body. The female connector body defines an outwardly extending retaining ledge on the forward portion of the female connector body. The seal defines an inwardly extending retaining hook engaging the retaining ledge. A portion of the retaining hook is disposed intermediate the female connector body and the seal retainer.
US11309646B2

An electrical connector includes a body having multiple accommodating holes running vertically therethrough, and multiple conductive terminals vertically movably accommodated in the accommodating holes. Each accommodating hole has upper and lower position limiting surfaces. Each conductive terminal includes a flat plate portion having an upper position limiting portion located above the upper position limiting surface, and a lower position limiting portion located below the lower position limiting surface, so as to limit a vertical movement of the conductive terminal. Upper and lower elastic arms are formed at a rear side the flat plate portion. Each of the upper and lower elastic arms has a corresponding contact portion to correspondingly abut a first electronic component and a second electronic component. A through slot extends from the upper elastic arm through the flat plate portion to the lower elastic arm.
US11309643B2

A substrate connecting structure includes a first substrate, a second substrate facing the first substrate, and a terminal through which electricity is supplied to the first substrate and the second substrate. The terminal has a first substrate connecting part that is connected to the first substrate from a side opposite from the second substrate, and a second substrate connecting part that is provided by splitting from the first substrate connecting part at an intermediate point in the terminal and connected to the second substrate by extending contactlessly through the first substrate from the side opposite from the second substrate toward the second substrate.
US11309641B2

An antenna (101) includes a grounded conductive foil (110) disposed on a module substrate (140), a first conductive foil (111), and a second conductive foil (112). The first conductive foil (111) and the second conductive foil (112) are disposed on the module substrate (140), are elongated, and do not overlap with the grounded conductive foil (110) in a plan view of the module substrate (140). The first conductive foil (111) has one end supplied with an antenna signal and the other end that is open. The second conductive foil (112) has one end connected to the grounded conductive foil (110) and the other end that is open. A wireless module (120) includes a circuit unit (130) including a communication circuit and provided to the module substrate (140) on which the antenna (101) is formed.
US11309612B2

A separating device for a battery module. The separating device includes a first separating element and a second separating element, which are arranged congruently with respect to one another and adjacent one another. Furthermore, the first separating element and the second separating element enclose a chamber between them, and the chamber is filled with a flame-retarding and/or insulating fluid.
US11309607B2

A battery pack includes a first core pack and a second core pack each holding a plurality of unit cells. The unit cells of a first cell group or second cell group that is closest to a connector are electrically connected to the connector through a third busbar. The unit cells of the first cell group or second cell group that is most distant from the connector are electrically connected to the connector through a fourth busbar.
US11309606B2

A vehicle for carrying a camera crane has wheels or treads on a chassis. A battery pack assembly on the chassis, includes an AC to DC converter and plurality of batteries wired to a battery charger within a housing. The batteries collectively may have an output voltage of 30 to 36 VDC when fully charged. At least one input connector on the housing is wired to the AC to DC converter for charging the batteries. The battery pack assembly replaces and is used instead of a camera-equipment-generator.
US11309604B2

The present disclosure includes a battery module having a housing with a first end (having a cell receptacle region) and a second end opposite to the first end. The battery module includes a stack of electrochemical cells inserted through the cell receptacle region of the housing, disposed between the first end and the second end of the housing, and having terminal ends of all the electrochemical cells of the stack aligned in a planar area. The battery module includes a bus bar carrier disposed over the stack of electrochemical cells and within the cell receptacle region of the housing. The bus bar carrier includes bus bars disposed thereon that interface with the terminal ends. The battery module includes a layer of thermal epoxy disposed between the second end of the housing and a bottom side of the stack of electrochemical cells.
US11309603B2

A square secondary battery of an embodiment includes an outer can formed in a shape of a bottomed cylinder having a cross-sectional shape of a substantially quadrangular shape, the outer can having an opening, a power generation element contained in the outer can, and a lid having a positive electrode terminal and a negative electrode terminal, the lid covering the opening of the outer can. Two or more convex portions exist on each of one or more surfaces of a side surface of an outer surface of the outer can, a bottom surface of the outer surface of the outer can, and a surface having the positive electrode terminal and the negative electrode terminal of an outer surface of the lid.
US11309602B2

The present disclosure relates to a casing for a battery pack and a battery pack. The casing has a receiving space and an opening in communication with the receiving space, the receiving space is formed by a wall portion of the casing, and the wall portion is formed from two or more stacked base plates, between which a plurality of cavities are formed, wherein an island is disposed within the cavity. By disposing islands in the plurality of cavities, the casing provided by the present disclosure not only can improve the structural strength of the casing and of the cavities, but also can change the flow capacity and flow rate of the fluid in the cavities, which can make the temperature distribution of the casing more uniform, increase the heat exchange efficiency of the battery assembly, and further improve the thermal management of the battery pack.
US11309595B2

A rechargeable battery cell includes a cathode, an anode, an electrolyte, and a sensor that is arranged in the rechargeable battery cell. The sensor has at least two sensor electrodes and is accommodated in the rechargeable battery cell without a sheathing at least in sections. Moreover, the at least two sensor electrodes are operated in an electrical potential range that protects the sensor and/or the sensor electrodes against corrosion by the electrolyte. A method for producing and operating a rechargeable battery cell of this kind is also provided.
US11309575B2

An energy storage device comprising a container, a mandrel, at least one sheet of separator material, and two or more electrodes. The container comprises an inner surface. The mandrel comprises a mandrel surface, and is positioned within the container so that the mandrel surface is spaced apart from the inner surface to define a cavity within the container. The container has a packing axis that passes through the cavity, the mandrel surface, and the inner surface. The mandrel is compressible in the direction of the packing axis, the at least one sheet of separator material is arranged in the cavity to provide a plurality of separator layers along the packing axis, and an electrode is provided between the separator layers.
US11309572B2

A fuel cell stack assembly and method of operating the same are provided. The assembly includes a fuel cell stack column and side baffles disposed on opposing sides of the column. The side baffles and the fuel cell stack may have substantially the same coefficient of thermal expansion at room temperature. The side baffles may have a laminate structure in which one or more channels are formed.
US11309569B1

A microwatt fuel cell stack that demonstrates a wide range temperature tolerance, low reactant cross-over and leakage, low internal leakage current, and/or effective water transport is disclosed. Both H2 and O2 may be supplied directly to the fuel cell stack (i.e., dead-ended). One-piece gas diffusion electrodes (GDEs) may serve as both the active electrode and manifold port. Water removal may be accomplished by permeation through the membrane to “fins” exposed by notches in the bipolar plates and gaskets.
US11309559B2

A multi-environment integrative thermal management method for a fuel cell vehicle is provided. The method can ensure the accuracy and the stability of the control for a temperature of a fuel cell system of the fuel cell vehicle in a complicated and changeable environment, decrease the energy consumption of the entire vehicle, and increase the economical efficiency of the entire vehicle.
US11309558B2

A control method and system for driving of a motor and a control method of driving of an air compressor of a fuel cell system using the same include calculating an electrical rotation frequency of a motor, calculating a driving torque frequency of the motor based on the calculated electrical rotation frequency of the motor, and controlling torque of the motor to be repeatedly turned on/off at the calculated driving torque frequency.
US11309549B2

The invention relates to a bipolar plate (40) for a fuel cell, comprising a first distributing region (50) for distributing a fuel to a first electrode (21) and a second distributing region (60) for distributing an oxidant to a second electrode (22). At least one woven fabric (80) is provided in at least one of the distributing regions (50, 60). The invention further relates to a fuel cell, comprising at least one membrane electrode assembly (10) having a first electrode (21) and a second electrode (22), which are separated from each other by a membrane (18), and comprising at least one bipolar plate (40) according to the invention.
US11309544B2

Provided are electrochemical secondary cells that exhibit excellent abuse tolerance, deep discharge and overcharge conditions including at extreme temperatures and remain robust and possess excellent performance. Cells as provided herein include: a cathode a polycrystalline cathode electrochemically active material including the formula Li1+xMO2+y, wherein −0.9≤x≤0.3, −0.3≤y≤0.3, and wherein M includes Ni at 80 atomic percent or higher relative to total M, the cathode electrochemically active material comprising a non-uniform distribution of Co; an anode including an anode electrochemically active material of the formula Li4+aTi5O12+b wherein −0.3≤a≤3.3, −0.3≤b≤0.3; and wherein the anode and the cathode each independently include a current collector substrate comprising aluminium.
US11309540B1

An anode for a lithium metal battery includes a host structure configured to be between an anode current collector and a separator, the host structure having void spaces configured to host metallic lithium during charging, wherein the host structure has a void space of ≥60% and ≤80%. Another anode for a lithium metal battery includes a current collector, a separator, and a host structure between the current collector and the separator, the host structure having void spaces configured to host metallic lithium during charging, wherein the host structure is formed of fibers.
US11309539B2

An electrochemical cell comprising an alkali metal negative electrode layer physically and chemically bonded to a surface of a negative electrode current collector via an intermediate metal chalcogenide layer. The intermediate metal chalcogenide layer may comprise a metal oxide, a metal sulfide, a metal selenide, or a combination thereof. The intermediate metal chalcogenide layer may be formed on the surface of the negative electrode current collector by exposing the surface to a chalcogen or a chalcogen donor compound. Then, the alkali metal negative electrode layer may be formed on the surface of the negative electrode current collector over the intermediate metal chalcogenide layer by contacting at least a portion of the metal chalcogenide layer with a source of sodium or potassium to form a layer of sodium or potassium on the surface of the negative electrode current collector over the metal chalcogenide layer.
US11309538B2

A method for fabricating porous wire-in-tube (WiT) nanostructures including forming a first porous core-shell nanostructure, forming a second porous core-shell nanostructure by increasing thickness and porosity of the porous core-shell nanostructure, and forming a porous WiT nanostructure by etching the second porous core-shell nanostructure. Forming the first porous core-shell nanostructure may include forming a porous layer on a semi-conductive core by depositing a first plurality of particles on the semi-conductive core and generating an initial porous semi-conductive core by etching the semi-conductive core simultaneously with forming the porous layer.
US11309537B2

The present invention relates to a method of producing a lithium-ion battery member including an electrode composition layer that includes electrode active material particles and an electrolyte solution on a current collector or a separator, the method including: forming the electrode composition layer on a surface of a support different from either the current collector or the separator; and relocating the electrode composition layer from the surface of the support to the current collector or the separator, wherein a weight percent of the electrolyte solution in the electrode composition layer is 10 wt % or less based on the weight of the electrode composition layer, in the forming the electrode composition layer on a surface of a support and in the relocating the electrode composition layer from the surface of the support to the current collector or the separator.
US11309528B2

The present disclosure relates to a method of fabricating a flexible display panel. The method of fabricating the flexible display panel may include forming a photosensitive layer comprising at least one azo group on a carrier substrate; forming a flexible substrate on the photosensitive layer; irradiating the photosensitive layer with ultraviolet light; and peeling off the flexible substrate from the carrier substrate.
US11309527B2

Provided are a display panel and a display apparatus. The display panel includes an organic light-emitting device, which includes an anode, a cathode, a light-emitting layer between the anode and the cathode, and a capping layer located on a side of a light-exiting side electrode facing away from the light-emitting layer and containing an ultraviolet absorber for absorbing ultraviolet light. After absorbing the ultraviolet light, a molecular volume of the ultraviolet absorber is reduced. By adding the ultraviolet absorber, the organic material in the organic light-emitting device is protected from being damaged, and the service life of the organic light-emitting device is prolonged. Since the molecular volume of the ultraviolet absorber is reduced after absorbing ultraviolet light, the refractive index of the capping layer is increased, improving the light extraction efficiency and the light-emitting efficiency of the organic light-emitting device, and also prolonging the service life.
US11309525B2

A method of manufacturing an organic light emitting diode (OLED) display device includes: providing a substrate including a display area and a non-display area; forming an organic light emitting diode element in the display area; forming a barrier wall around the display area and spaced apart from the organic light emitting diode element; performing a plasma treatment on the substrate on which the organic light emitting diode element is formed; and forming a thin film encapsulation layer for coating the organic light emitting diode element, wherein forming the thin film encapsulation layer includes: forming at least one inorganic layer; and forming at least one organic layer inwardly of the barrier wall.
US11309519B2

The present disclosure relates to a display panel comprising a display area. The display area may include a substrate having a third opening, a thin film transistor layer on a side of the substrate, a light emitting layer on a side of the thin film transistor layer opposite from the substrate, and an encapsulation layer on a side of the light emitting layer opposite from the substrate. The thin film transistor layer may have a first opening to expose the third opening and the encapsulation layer may have a second opening to expose the third opening. Orthographic projection of the second opening on the substrate may cover orthographic projection of the third opening on the substrate.
US11309512B2

An organic EL display device includes a reflective electrode and a transparent electrode disposed facing each other with an organic EL layer interposed therebetween. The reflective electrode includes a reflective film and a protection film formed on the reflective film, and the protection film includes a frame-shaped portion surrounding the periphery of the organic EL layer and an opening surrounded by the frame-shaped portion. This improves the reflectivity of the reflective electrode while protecting the reflective electrode.
US11309509B2

A display device is provided with a light-emitting element layer including an anode electrode, a cathode electrode, and a quantum dot light-emitting layer sandwiched between the anode electrode and the cathode electrode, wherein the quantum dot light-emitting layer includes at least quantum dots and nanofibers. A method for manufacturing a display device includes forming a quantum dot light-emitting layer by applying a colloidal solution including at least quantum dots and nanofibers by ink-jet.
US11309508B2

A multi-functional optical composite board having quantum dots of high uniformity is provided herein, the multi-functional optical composite board comprises a diffusion base layer, a first quantum dot-containing layer disposed on the lower surface of the diffusion base layer, and a second quantum dot-containing layer disposed on the upper surface of the diffusion base layer, wherein the first quantum dot-containing layer comprises a red quantum dot-containing layer and a green quantum dot-containing layer, and the second quantum dot-containing layer is sequentially deposited on the upper surface of the diffusion base layer by coating repeatedly. The present invention improves the optical composite board from the structure, raw material and compositions thereof, and obtains a multi-functional optical composite board having a high light diffusion, a high uniformity of emitting-light, and the emitting-light of the resultant product appears much whiter and brighter.
US11309503B2

A transistor manufacturing method includes forming a source electrode and a drain electrode on a substrate, forming a layer including an insulator layer to cover the source electrode and the drain electrode, and forming a gate electrode on the layer including the insulator layer, wherein the forming the gate electrode includes forming a plating base film, forming a protection layer of the plating base film, forming a photoresist layer on the protection layer to expose the photoresist layer with desired patterning light, causing the exposed photoresist layer to come into contact with a developer to remove the photoresist layer and the protection layer until the plating base film is uncovered corresponding to the patterning light, and after depositing a metal on the uncovered plating base film, causing an electroless plating solution to come into contact with the plating base film to perform electroless plating.
US11309497B2

The present invention describes dibenzofuran and dibenzothiophene derivatives, in particular for use as triplet matrix materials in organic electroluminescent devices. The invention furthermore relates to a process for the preparation of the compounds according to the invention and to electronic devices comprising same.
US11309492B2

In some embodiments, a semiconductor device is provided. The semiconductor device includes a first amorphous switching structure disposed over a first electrode. A buffer structure is disposed over the first amorphous switching structure. A second amorphous switching structure is disposed over the buffer structure. A second electrode is disposed over the second amorphous switching structure, where the first and second amorphous switching structures are configured to switch between low resistance states and high resistance states depending on whether a voltage from the first electrode to the second electrode exceeds a threshold voltage.
US11309489B2

A magnetic tunnel junction is disclosed wherein the reference layer and free layer each comprise one layer having a boron content from 25 to 50 atomic %, and an adjoining second layer with a boron content from 1 to 20 atomic %. One of the first and second layers in each of the free layer and reference layer contacts the tunnel barrier. Each boron containing layer has a thickness of 1 to 10 Angstroms and may include one or more B layers and one or more Co, Fe, CoFe, or CoFeB layers. As a result, migration of non-magnetic metals along crystalline boundaries to the tunnel barrier is prevented, and the MTJ has a low defect count of around 10 ppm while maintaining an acceptable TMR ratio following annealing to temperatures of about 400° C. The boron containing layers are selected from CoB, FeB, CoFeB and alloys thereof including CoFeNiB.
US11309485B2

A magnetostrictive material includes a FeGaSm alloy that is represented by Expression (1), Fe(100-x-y)GaxSmy  (1) (in Expression (1), x and y are respectively a content rate (at. %) of Ga and a content rate (at. %) of Sm, and satisfy that y≤0.35x−4.2, y≤−x+20.1, and y≥−0.1x+2.1).
US11309477B2

A thermoelectric module including at least a first and a second thermoelectric element comprising a thermoelectric semiconductor; an electrode connecting the first and second thermoelectric elements; and at least a first and a second joining layer, the first joining layer positioned between the first thermoelectric element and the electrode, and the second joining layer positioned between the second thermoelectric element and the electrode; and at least a first and a second barrier layer including an alloy including Cu, Mo and Ti, the first barrier layer positioned between the first thermoelectric element and the first joining layer, and the second barrier layer positioned between the second thermoelectric element and the second joining layer. The module prevents heat diffusion of the material of the joining layer, preventing the oxidation and deformation of the thermoelectric element under high temperature environment, and exhibiting improved operational stability due to excellent adhesion to a thermoelectric element.
US11309473B2

A semiconductor-based light emitting platform (LEP) comprising a heated blackbody radiator wherein the light emitting platform is thermally isolated by nanowires having ultra-low thermal conductivity. In embodiments, the pixel is structured for broadband emission with a platform comprising an infrared surface structured for high emissivity within a broadband wavelength range. In other embodiments radiation is confined to a limited bandwidth by metamaterial and other resonant filters. In embodiments, the internal efficiency of the LEP configured for broadband operation can be higher compared with an LED.
US11309471B2

A flip-chip light-emitting module includes a thermal dissipation substrate, a package assembly, and a light-emitting chip. The package assembly includes a frame surrounding the thermal dissipation substrate, and a lens unit disposed on the frame. The frame includes a conductive path. The light-emitting chip is disposed on the thermal dissipation substrate, and includes a top conductive contact and a light-emitting surface at the same side. The top conductive contact is electrically connected with the conductive path by a conductor.
US11309467B2

A method for manufacturing a light emitting device includes preparing a light transmissive member block including a first light transmissive member block having a plate like shape and including a resin containing at least one phosphor and a second light transmissive member block including a material harder than a material of the first light transmissive member block. Grooves are formed on an upper face of the second light transmissive member block. The light transmissive member block is divided at the grooves to obtain a plurality of light transmissive members each having a first light transmissive member and a second light transmissive member. A lower face of the first light transmissive member and an upper face of a light emitting element are bonded together such that a lower face perimeter of the first light transmissive member is located outside of an upper face perimeter of the light emitting element.
US11309459B2

An optoelectronic semiconductor device includes a semiconductor layer sequence including an active zone that generates radiation by electroluminescence; a p-electrode and an n-electrode; an electrically insulating passivation layer on side surfaces of the semiconductor layer sequence; and an edge field generating device on the side surfaces on a side of the passivation layer facing away from the semiconductor layer sequence at the active zone, wherein the edge field generating device is configured to generate an electric field at least temporarily in an edge region of the active zone so that, during operation, a current flow through the semiconductor layer sequence is controllable in the edge region.
US11309457B2

Disclosed is a semiconductor light emitting device characterized by being a flip chip including: a plurality of semiconductor layers, which includes a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity type, and an active layer interpositioned between the first and second semiconductor layers and adapted to generate light by electron-hole recombination; an insulating layer, which is formed on the plurality of semiconductor layers and has openings; and an electrode formed on the insulating layer and electrically connected to the plurality of semiconductor layers through the opening, wherein the electrode has a top face and a bottom face, with the top face having a smaller area than the bottom face.
US11309449B2

A voltage tunable solar-blind UV detector using a EG/SiC heterojunction based Schottky emitter bipolar phototransistor with EG grown on p-SiC epi-layer using a chemically accelerated selective etching process of Si using TFS precursor.
US11309445B2

A thin-film photovoltaic cell series structure is disposed on a display surface side of a display module and includes a transparent substrate, as well as a first single-junction cell and a second single-junction cell which are disposed on the transparent substrate and connected in series. The first single-junction cell includes a first front electrode, a first photovoltaic layer, and a first back electrode which are sequentially laminated and disposed on the transparent substrate, the second single-junction cell includes a second front electrode, a second photovoltaic layer, and a second back electrode which are sequentially laminated and disposed on the transparent substrate, and the first front electrode and the second back electrode are electrically connected through a metal auxiliary electrode to realize series connection of the first single-junction cell and the second single-junction cell.
US11309444B1

Techniques for enhancing the absorption of photons in semiconductors with the use of microstructures are described. The microstructures, such as pillars and/or holes, effectively increase the effective absorption length resulting in a greater absorption of the photons. Using microstructures for absorption enhancement for silicon photodiodes and silicon avalanche photodiodes can result in bandwidths in excess of 10 Gb/s at photons with wavelengths of 850 nm, and with quantum efficiencies of approximately 90% or more.
US11309441B2

Discussed is a solar cell including a semiconductor substrate, a first tunneling layer entirely formed over a surface of the semiconductor substrate, a first conductive type area disposed on the surface of the semiconductor substrate, and an electrode including a first electrode connected to the first conductive type area.
US11309440B2

An imaging device includes a plurality of pixels each including a plurality of avalanche photodiodes, a setting unit configured to set the plurality of avalanche photodiodes to an active state or an inactive state separately, and a counter circuit that counts and outputs number of photons determined by the avalanche photodiode(s) set to the active state out of the plurality of avalanche photodiodes, wherein the imaging device is configured to change the number of avalanche photodiodes set to the active state out of the plurality of avalanche photodiodes in accordance with brightness of an object.
US11309425B2

A field effect transistor, a method of manufacturing the field effect transistor, and an electronic device are provided, wherein the field effect transistor comprises: a source(105) formed of a Dirac material(103) and a drain(107); a channel(102) disposed between the source(105) and the drain(107); and a source control electrode(108) disposed on the source(105) and for controlling the doping of the Dirac material(103) such that the Dirac material(103) and the channel(102) are doped in an opposite manner; and a gate(106) disposed on the channel(102) and electrically insulated from the channel(102).
US11309415B2

A wide gap semiconductor device has: a first MOSFET region (M0) having a first gate electrode 10 and a first source region 30 provided in a first well region 20 made of a second conductivity type; a second MOSFET region (M1) provided below a gate pad 100 and having a second gate electrode 110 and a second source region 130 provided in a second well region 120 made of the second conductivity type; and a built-in diode region electrically connected to the second gate electrode 110. The second source region 130 of the second MOSFET region (M1) is electrically connected to the gate pad 100.
US11309408B2

A method of forming the fin structure that includes forming a replacement gate structure on a channel region of the at least one replacement fin structure; and forming an encapsulating dielectric encapsulating the replacement fin structure leaving a portion of the replacement gate structure exposed. The exposed portion of the replacement gate structure is etched to provide an opening through the encapsulating dielectric to the replacement fin structure. The replacement fin structure is etched selectively to the dielectric to provide a fin opening having a geometry dictated by the encapsulating dielectric. Functional fin structures of a second semiconductor material is epitaxially grown on the growth surface of the substrate substantially filling the fin opening.
US11309406B2

A manufacturing method of an LDMOS device comprises: obtaining a wafer formed with a doped region having a first conductivity type, wherein a top buried layer is formed inside the doped region having the first conductivity type, and a field oxide insulation layer structure is formed on the top buried layer; disposing a trench on the doped region having the first conductivity type, wherein the trench extends to the top buried layer and the field oxide insulation layer structure such that a portion of the top buried layer is removed; injecting an ion of a second conductivity type to form a well region below the trench; and forming a doped source region in the well region. The first conductivity type and the second conductivity type are opposite conductivity types.
US11309399B2

A process for preparing a thin layer made of ferroelectric material based on alkali metal, exhibiting a determined Curie temperature, transferred from a donor substrate to a carrier substrate by using a transfer technique including implanting light species into the donor substrate in order to produce an embrittlement plane, the thin layer having a first, free face and a second face that is arranged on the carrier substrate. The process comprises a first heat treatment of the transferred thin layer at a temperature higher than the Curie temperature, the thin layer exhibiting a multi-domain character upon completion of the first heat treatment, and introducing, after the first heat treatment, protons into the thin layer, followed by applying a second heat treatment of the thin layer at a temperature lower than the Curie temperature to generate an internal electric field that results in the thin layer being made single domain.
US11309394B2

A semiconductor memory device includes: a first wiring and a second wiring; a first selection transistor, a memory transistor, and a second selection transistor connected between the first wiring and the second wiring; and a third wiring and a fourth wiring connected to gate electrodes of the first selection transistor and the second selection transistor. From a first timing to a second timing, a first voltage that turns the first selection transistor ON is supplied to the third wiring, and a second voltage that turns the second selection transistor OFF is supplied to the fourth wiring. From the second timing to a third timing, a third voltage that turns the first selection transistor OFF is supplied to the third wiring, and at a fourth timing between the first timing and the third timing, at least one of a voltage and a current of the first wiring is detected.
US11309392B2

The present disclosure provides a thin film transistor, a display panel and a method for manufacturing the thin film transistor. The thin film transistor includes an active layer and a source-drain electrode layer, the source-drain electrode layer includes a first electrode having at least one first electrode strip and a second electrode having at least one second electrode strip, the at least one first electrode strip and the at least one second electrode strip are alternately arranged at intervals, and at least an insulating part of a layer where the active layer is located is provided with an insulating material, and the insulating part is located at an orthographic projection of at least a part of a region between a free end of the first electrode strip, which is proximal to the second electrode, and the second electrode, on the layer where the active layer is located.
US11309382B2

An electronic product that includes a component having a first electrode with a first surface and a pillar extending from the first surface in a first direction, the pillar having three protrusions, the three protrusions forming angles of about 120 degrees with each other around a central line of the pillar where the three protrusions meet, and the three protrusions being bent so that the pillar has a triskelion cross-section in a plane perpendicular to the first direction.
US11309381B2

A display device having a display region and a peripheral region in contact with the display region above a substrate is provided. The display region has a plurality of pixels each including a transistor, an insulating film above the transistor, a pixel electrode arranged above the insulating film and electrically connected to the transistor, and a common electrode above the insulating film, a video signal line and a gate signal line electrically connected to the transistor, and liquid crystal layer above the plurality of pixels. The peripheral region has a terminal electrically connected to the video signal line, a wiring arranged parallel to the gate wiring between the display region and the terminal, and a plurality of first electrodes above the wiring. The insulating film covers the wiring, and the wiring is electrically connected to the plurality of first electrodes via an opening in the insulating film.
US11309380B2

A display panel includes pixels and a driver IC pad area; a driver IC on the driver IC pad area of the display panel; first input pads and first output pads that overlap the driver IC pad area; a flexible printed circuit adjacent to the driver IC pad area on the display panel; first output test pads that overlap the flexible printed circuit, and are respectively extended to the first output pads; and first input extending wires that overlap the flexible printed circuit, are respectively extended to the first input pads, and are between the first output test pads.
US11309376B2

A display device is disclosed that includes one or more crack detection units. The crack detection units can detect a crack position in the display device without requiring the disassembly of the display device. The crack detection units may be disposed across one or more non-active areas of the display device.
US11309374B2

A mask component includes a first mask plate and a second mask plate, and the first mask plate includes a first shield region, a first open region disposed in the first shield region, an electronic component shield region disposed in the first open region, a connecting shield region disposed in the first open region. The electronic component shield region is connected to the first shield region by the connecting shield region. The connecting shield region includes a first connecting shield region disposed on one side of the electronic component shield region and a second connecting shield region disposed on another side of the electronic component shield region, and the first mask plate is configured to evaporate a common electrode to obtain a first region of the common electrode.
US11309371B2

A display substrate, a method for manufacturing the same and a display device are provided. The method for manufacturing the display substrate includes: forming a control structure layer on a base substrate; forming a first planarization layer on the control structure layer; forming a support structure on the first planarization layer, a material of the support structure includes a negative photosensitive polymer; forming a protection layer enveloping the support structure on the first planarization layer formed with the support structure; forming a second planarization layer on the protection layer; and forming a first electrode on the second planarization layer, the first electrode is electrically connected to the control structure layer.
US11309370B1

A plurality of fibers may be included in an electronic device display to allow the display to have a curved output surface. Each fiber may guide light from one or more display pixels on the display panel to a display output surface. The fibers may be bent, allowing light from the display pixels to be displayed on a three-dimensional display output surface of any desired shape. The fibers may be formed from a high refractive index core surrounded by a cladding. The fibers may be formed from an activated photoactive material. The fibers may cover the entire display panel, the periphery of the display panel, or the corners of the display panel. The display panel may have one or more bends. Polarizing fibers may be used to both guide light from the display panel and serve as a linear polarizer for the display.
US11309368B2

A display device and a method for manufacturing the same are disclosed, which may prevent a crack from occurring on an inorganic film constituting an encapsulation film and prevent a residual film from occurring. The display device comprises a substrate including a display area on which pixels area arranged, and a non-display area surrounding the display area; an encapsulation film covering the display area and including an organic film; a first dam arranged to be in contact with the encapsulation film, having a second side which is an opposite side of a first side facing the organic film and has an inclination smaller than 90°; and a metal pattern pattern-formed on the first dam.
US11309367B2

A display device includes: a display panel including a base substrate having a display region and a hole region included in the display region; a touch sensor including a light blocking member disposed on the display panel, a first sensing insulating layer covering the light blocking member, a sensing electrode layer disposed on the first sensing insulating layer, and a second sensing insulating layer covering the sensing electrode layer; a polarizing layer disposed on the touch sensor; and a cover window disposed on the polarizing layer. At least one of the first sensing insulating layer and the second sensing insulating layer exposes at least a portion of the hole region.
US11309364B2

Provided are a sensor, a display panel and an electronic device. The sensor includes a flexible substrate, a plurality of sensing units disposed on a first side of the flexible substrate, and at least one inorganic blocky structure and at least one organic layer which are disposed on the first side of the flexible substrate, where each of the plurality of sensing units is disposed corresponding to a respective one of the at least one blocky structure, and a vertical projection of at least part of the respective one of the at least one blocky structure on a plane where the flexible substrate is located overlaps with the corresponding one of the plurality of sensing units, and where the at least one organic layer is filled adjacent blocky structures.
US11309363B2

A display panel and a method of manufacturing the display panel, and a display device are disclosed. The display panel includes a display area and a non-display area. The display area includes a first display area and a second display area both bendable in relation to each other. The display panel includes a base substrate, a thin-film transistor layer, and a sensor. One or a plurality of through holes or grooves are disposed on the thin-film transistor layer, and the second is disposed facing the through hole or the groove.
US11309362B2

The present disclosure relates to a display panel. The display panel may include a substrate. The substrate may include a display area, a dummy area inside the display area, and a boundary area between the dummy area and the display area on the substrate. The display substrate may further include an isolation protrusion on the substrate at the boundary area. The isolation protrusion may be configured to isolate a functional layer in the display area from the functional layer in the dummy area, and at least a side surface of the isolation protrusion facing the dummy area may be covered by an isolation inorganic layer.
US11309359B2

A display panel includes an array substrate and a display layer disposed on the array substrate. The display layer includes a plurality of display units. Each of the display units includes: a first electrode disposed on the array substrate; an organic material functional layer including a light-emitting area and a light-transparent area connected to and surrounding the light-emitting area, wherein the light-emitting area is disposed on the first electrode; a second electrode disposed on the organic material functional layer; a pixel defining layer disposed under a bottom surface of the organic material functional layer and extending from the light-emitting area to the light-transparent area, wherein there is a light-transparent void between the pixel defining layer and the array substrate; and a color resist filling the light-transparent void. Two adjacent color resists of any two adjacent display units have an overlapping region therebetween.
US11309350B2

This disclosure discloses a light-emitting display module display. The light-emitting display module comprises: a board; and a plurality of light-emitting diode modules arranged in an array configuration on the board; wherein one of the light-emitting diode modules comprises a plurality of encapsulated light-emitting units spaced apart from each other; and one of the encapsulated light-emitting units comprises a plurality of optoelectronic units, a first supporting, and a fence; and wherein the plurality of optoelectronic units are covered by the first supporting structure, and the fence surrounds the first supporting structure and the plurality of optoelectronic units.
US11309340B2

A display panel includes a substrate, a first gate-electrode metal layer, a first organism, and a second organism. The first organism is disposed on one surface of the first gate-electrode metal layer near the substrate in order that a bending stress is released. The second organism is disposed on one surface of the first gate-electrode metal layer away from the substrate in order that the bending stress is released. Organisms are disposed above a metal trace and below the metal trace, so that a stress which occurs in inorganic layers can be released through the organisms when the display panel is being bent.
US11309335B2

The present invention provides an array substrate, a method of fabricating the same, and a display module. The array substrate includes a substrate and a thin film transistor. An active layer of the thin film transistor includes: a first region including source and drain doped regions and a channel region; a second region surrounding at least a side of the channel region not in contact with the source and drain doped regions, and the first region forming a PN junction with the second region.
US11309332B2

A three-dimensional ferroelectric memory device includes an alternating stack of insulating layers and electrically conductive layers located over a substrate, where each of the electrically conductive layers contains a transition metal element-containing conductive liner and a conductive fill material portion, a vertical semiconductor channel extending vertically through the alternating stack, a vertical stack of tubular transition metal element-containing conductive spacers laterally surrounding the vertical semiconductor channel and located at levels of the electrically conductive layers, and a ferroelectric material layer located between the vertical stack of tubular transition metal element-containing conductive spacers and the transition metal element-containing conductive liner.
US11309329B2

A NOR-type three-dimensional memory device includes a vertically alternating stack of insulating layers and electrically conductive layers located over a substrate, and laterally alternating sequences of respective active region pillars and respective memory stack structures. Each laterally alternating sequence is electrically isolated from the electrically conductive layers by a respective blocking dielectric layer at each level of the electrically conductive layers. Each memory stack structures include a memory film and a semiconductor channel material portion that vertically extend through the vertically alternating stack. The active region pillars include an alternating sequence of source pillar and drain pillars.
US11309328B2

A method of forming a microelectronic device comprises forming a microelectronic device structure. The microelectronic device structure comprises a stack structure comprising insulative structures and additional insulative structures vertically alternating with the insulative structures, a dielectric structure vertically extending partially through the stack structure, and a dielectric material vertically overlying and horizontally extending across the stack structure and the dielectric structure. Portions of at least the dielectric material and the dielectric structure are removed to form a trench vertically overlying and at least partially horizontally overlapping a remaining portion of the dielectric structure. The trench is substantially filled with additional dielectric material. Microelectronic devices, memory devices, and electronic systems are also described.
US11309321B2

Some embodiments include an integrated structure having a stack of alternating dielectric levels and conductive levels, and having vertically-stacked memory cells within the conductive levels. An opening extends through the stack. Channel material is within the opening and along the memory cells. At least some of the channel material contains germanium.
US11309318B2

A semiconductor device and a method for forming the semiconductor device are provided. The method includes providing a semiconductor substrate including a first plug-cutting region and a fin-cutting region, and forming an initial to-be-cut fin partially extended to the fin-cutting region. The method also includes forming a gate structure across the initial to-be-cut fin, and forming a dielectric layer covering a sidewall of the gate structure and the initial to-be-cut fin. In addition, the method includes forming a cutting opening over the first plug-cutting region by removing a portion of the dielectric layer and a portion of the initial to-be-cut fin. A remaining initial to-be-cut fin forms a cutting fin. Further, the method includes forming a cutting structure in the cutting opening, and forming a first plug structure in a remaining dielectric layer. The cutting structure cuts the first plug structure in a width direction of the cutting fin.
US11309311B2

An integrated circuit is disclosed, including a first conductive pattern and a second conductive pattern that are disposed in a first layer and extend in a first direction, at least one first conductive segment disposed in a second layer different from the first layer, and at least one via disposed between the first layer and the second layer. The at least one via is coupled between the at least one first conductive segment and one or both of the first conductive pattern and the second conductive pattern, at an output node of the integrated circuit. The at least one via comprises a tapered shape with a width that decreases from a first width to a second width narrower than the first width. The first width of the at least one via is greater than widths of the first conductive pattern and the second conductive pattern.
US11309310B2

A semiconductor device includes a semiconductor layer of a first conductivity type having a first principal surface on one side and a second principal surface on the other side, the semiconductor layer in which a device formation region and an outer region outside the device formation region are set, a channel region of a second conductivity type formed in a surface layer portion of the first principal surface of the semiconductor layer in the device formation region, an emitter region of a first conductivity type formed in a surface layer portion of the channel region, a gate electrode formed at the first principal surface of the semiconductor layer in the device formation region, the gate electrode facing the channel region across a gate insulating film, a collector region of a second conductivity type formed in a surface layer portion of the second principal surface of the semiconductor layer in the device formation region, an inner cathode region of a first conductivity type formed in the surface layer portion of the second principal surface of the semiconductor layer in the device formation region, and an outer cathode region of a first conductivity type formed in the surface layer portion of the second principal surface of the semiconductor layer in the outer region.
US11309306B2

An integrated circuit includes an active zone having a center portion adjoining a first side portion and a second side portion. A first transistor having a gate formed over one of the first channel regions in the center portion has a first threshold-voltage. A second transistor having a gate formed over one of the second channel regions in the center portion has a second threshold-voltage. A third transistor having a gate formed over one of the third channel regions in the first side portion has a third threshold-voltage. A fourth transistor having a gate formed over one of the fourth channel regions in the second side portion has a fourth threshold-voltage. A first average of the first threshold-voltage and the second threshold-voltage is larger than a second average of the third threshold-voltage and the fourth threshold-voltage by a predetermined threshold-voltage offset.
US11309305B2

Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
US11309303B2

A semiconductor package includes a substrate and a sub semiconductor package disposed over the substrate. The sub semiconductor package includes a sub semiconductor chip which has chip pads on its active surface facing the substrate, a sub molding layer which surrounds side surfaces of the sub semiconductor chip and has one surface facing the substrate, and redistribution conductive layers which are connected to the chip pads and extend over the one surface of the sub molding layer. The redistribution conductive layers include a signal redistribution conductive layer, which extends onto an edge of the sub molding layer and has a signal redistribution pad on its end portion, and a power redistribution conductive layer, which has a length shorter than a length of the signal redistribution conductive layer and has a power redistribution pad on its end portion.
US11309299B2

An image sensor package includes a substrate, an image sensor, a light-emitting element, and a package body. The substrate includes a plurality of first conductive contacts and a plurality of second conductive contacts. The image sensor is disposed on the substrate and electrically connected to the corresponding first conductive contacts. The light-emitting element is close to the image sensor, disposed on the substrate and electrically connected to the corresponding first conductive contacts. The package body is filled between the image sensor and the light emitting element. The above-mentioned image sensor package can achieve miniaturization, provide uniform illumination, and increase light utilization efficiency. An endoscope including the above-mentioned image sensor package is also disclosed.
US11309295B2

A semiconductor device package includes a first passive component having a first surface and a second passive component having a second surface facing the first surface of the first passive component. The first surface has a recessing portion and the second surface includes a protruding portion within the recessing portion of the first surface of the first passive component. A contour of the protruding portion and a contour of the recessing portion are substantially matched. A method of manufacturing a semiconductor device package is also disclosed.
US11309292B2

A semiconductor device, the device including: a first silicon layer including a first single crystal silicon; a first metal layer over the first silicon layer; a second metal layer over the first metal layer; a first level including a plurality of transistors over the second metal layer, where the plurality of transistors include a second single crystal silicon; a third metal layer over the first level; a fourth metal layer over the third metal layer, where the fourth metal layer is aligned to the first metal layer with less than 40 nm alignment error; and a via disposed through the first level, where the via has a diameter of less than 450 nm.
US11309287B2

The present disclosure relates to a radio frequency device that includes a transfer device die and a multilayer redistribution structure underneath the transfer device die. The transfer device die includes a device region with a back-end-of-line (BEOL) portion and a front-end-of-line (FEOL) portion over the BEOL portion and a transfer substrate. The FEOL portion includes isolation sections and an active layer surrounded by the isolation sections. A top surface of the device region is planarized. The transfer substrate including a porous silicon (PSi) region resides over the top surface of the device region. Herein, the PSi region has a porosity between 1% and 80%. The multilayer redistribution structure includes a number of bump structures, which are at a bottom of the multilayer redistribution structure and electrically coupled to the FEOL portion of the transfer device die.
US11309283B2

A packaging structure includes a bridge die, a through silicon via die, a first encapsulant, a first active die, a second active die, a second encapsulant, and a redistribution circuit structure. The first encapsulant covers the through silicon via die and the bridge die. The first active die is electrically connected to the bridge die and the through silicon via die. The second active die is electrically connected to the bridge die. The second encapsulant covers the first active die and the second active die. The redistribution circuit structure is electrically connected to the through silicon via die. The through silicon via die is disposed between the first active die and the redistribution circuit structure. A manufacturing method of a packaging structure is also provided.
US11309282B2

The present disclosure provides a method for manufacturing a semiconductor package. The method includes steps of providing semiconductor wafer having a plurality of device chips disposed thereon, wherein each of the plurality of device chips has an active area and an inactive area arranged around the active area; forming a plurality of the openings, wherein each of the plurality of openings is formed in a back surface of the semiconductor wafer and forms an opening into the inactive area; and disposing a protecting material within the openings and over the back surface of the semiconductor wafer.
US11309281B2

A semiconductor device assembly includes a substrate having a plurality of external connections, a first stack of semiconductor dies disposed directly over a first location on the substrate and electrically coupled to a first subset of the plurality of external connections, and a second stack of semiconductor dies disposed directly over a second location on the substrate and electrically coupled to a second subset of the plurality of external connections. A portion of the semiconductor dies of the second stack overlaps a portion of the semiconductor dies of the first stack. The semiconductor device assembly further includes an encapsulant at least partially encapsulating the substrate, the first stack and the second stack.
US11309273B2

An electronic module has a first substrate 11, a first electronic element 13 provided on one side of the first substrate 11, a first connection body 60 provided on one side of the first electronic element 13, a second electronic element 23 provided on one side of the first connection body 60, a second substrate 21 provided on one side of the second electronic element 23, and an abutment body 250 that abuts on a face on one side of the second electronic element 23 and is capable of imparting a force toward one side with respect to the second substrate 21.
US11309266B2

The present disclosure discloses a semiconductor device structure with an air gap for reducing capacitive coupling and a method for forming the semiconductor device structure. The semiconductor device structure includes a first conductive pad over a first semiconductor substrate, and a first conductive structure over the first conductive pad. The semiconductor device structure also includes a second conductive structure over the first conductive structure, and a second conductive pad over the second conductive structure. The second conductive pad is electrically connected to the first conductive pad through the first and the second conductive structures. The semiconductor device structure further includes a second semiconductor substrate over the second conductive pad, a first passivation layer between the first and the second semiconductor substrates and covering the first conductive structure, and a second passivation layer between the first passivation layer and the second semiconductor substrate. The first and the second passivation layers surround the second conductive structure, and a first air gap is enclosed by the first and the second passivation layers.
US11309261B2

When III-V semiconductor material is bonded to an oxide material, water molecules can degrade the bonding if they become trapped at the interface between the III-V material and the oxide material. Because water molecules can diffuse readily through oxide material, and may not diffuse as readily through III-V material or through silicon, forcing the III-V material against the oxide material can force water molecules at the interface into the oxide material and away from the interface. Water molecules present at the interface can be forced during manufacturing through vertical channels in a silicon layer into a buried oxide layer thereby to enhance bonding between the III-V material and the oxide material. Water molecules can be also forced through lateral channels in the oxide material, past a periphery of the III-V material, and, through diffusion, out of the oxide material into the atmosphere.
US11309259B2

A high frequency module in which warpage does not easily occur is provided by adjusting linear expansion coefficient, glass transition temperature, and elastic modulus of a sealing resin layer. The high frequency module includes a wiring board, a first component mounted on a lower surface of the wiring board, a plurality of connection terminals, a first sealing resin layer that coats the first component and the connection terminal, a plurality of second components mounted on an upper surface of the wiring board, a second sealing resin layer coating the second components, and a shield film. The first sealing resin layer is formed thinner than the second sealing resin layer, and the first sealing resin layer has the linear expansion coefficient of the resin smaller than the linear expansion coefficient of the resin of the second sealing resin layer.
US11309257B2

A semiconductor apparatus comprising: an element substrate including a plurality of semiconductor devices which detect or oscillate terahertz waves; and an electromagnetic shielding in a mesh form disposed in front of a surface detecting or oscillating the terahertz waves in the element substrate and formed of a conductive material, wherein a line width of the electromagnetic shielding is not more than a wavelength of the terahertz waves.
US11309255B2

A system in package is provided comprising an embedded trace substrate having redistribution layers therein, at least one passive component mounted on one side of the embedded trace substrate and embedded in a first molding compound, at least one silicon die mounted on an opposite side of the embedded trace substrate and embedded in a second molding compound wherein electrical connections are made between the at least one silicon die and the at least one passive component through the redistribution layers, and solder balls mounted through openings in the second molding layer to the redistribution layers wherein the solder balls provide package output.
US11309252B2

A package substrate including a first redistribution structure, a first bonding layer, a core, a second bonding layer and a second redistribution structure in a sequential order is provided. The first redistribution structure has a first redistribution surface and a first bonding pad disposed on the first redistribution surface. The second redistribution structure has a second redistribution surface and a second bonding pad disposed on the second redistribution surface. The core has a first core pad disposed on a first core surface, and a second core pad disposed on a second core surface opposite to the first core surface. The first core pad and the second core pad are directly bonded to first bonding pad and the second bonding pad, respectively. The first core pad and the second core pad are offset from first bonding pad and the second bonding pad, respectively. The first bonding pad and the first core pad are embedded in the first bonding layer. The second bonding pad and the second core pad are embedded in the second bonding layer. A package structure is also provided.
US11309245B2

The present application discloses a semiconductor device and a method for fabricating the semiconductor device. The semiconductor device includes a substrate having a plurality of contacts, a plurality of plugs positioned above the plurality of contacts, a plurality of metal spacers positioned above the plurality of plugs; and a plurality of air gaps respectively positioned between the plurality of metal spacers.
US11309243B2

A package has a first region and a second region. The package includes a first die, a second die, an encapsulant, and an inductor. The second die is stacked on and bonded to the first die. The encapsulant is aside the second die. At least a portion of the encapsulant is located in the second region. The inductor is located in the second region. A metal density in the first region is greater than a metal density in the second region.
US11309240B2

The present disclosure describes a semiconductor structure and a method for forming the same. The semiconductor structure can include a substrate, a first vertical structure and a second vertical structure formed over the substrate, and a conductive rail structure between the first and second vertical structures. A top surface of the conductive rail structure can be substantially coplanar with top surfaces of the first and the second vertical structures.
US11309232B2

A semiconductor device includes: a substrate; a semiconductor element that disposed on the upper surface of the substrate; a sealing portion that seals the substrate and the semiconductor element; a first lead frame that has one end in contact with a upper surface of the first conductive layer at an end extending in the side direction of the upper surface of the substrate in the sealing portion, and has the other end exposed from the sealing portion; a first conductive bonding material that bonds between the upper surface of the first conductive layer and the lower surface side of the one end portion of the first lead frame at the end portion of the substrate, and has electrical conductivity.
US11309228B2

A packaged semiconductor device includes a package substrate, a first semiconductor device on the package substrate, and at least one second semiconductor device that extends on and partially covers the first semiconductor device. A heat dissipating insulation layer is provided as a coating on the first and second semiconductor devices. A conductive heat dissipation member is provided, which extends upwardly from the heat dissipating insulation layer and on portions of the first and second semiconductor devices. A protective member is provided on the package substrate, to cover the first and second semiconductor devices and the conductive heat dissipation member. This protective member includes a first covering portion, which covers an upper surface of the conductive heat dissipation member.
US11309217B2

A method of making a semiconductor device that includes forming a dielectric stack over a substrate and patterning a contact region in the dielectric stack, the contact region having side portions and a bottom portion that exposes the substrate. The method also includes forming a dielectric barrier layer in the contact region to cover the side portions and forming a conductive blocking layer to cover the dielectric barrier layer, the dielectric stack, and the bottom portion of the contact region. The method can include forming a conductive layer over the conductive blocking layer and forming a conductive barrier layer over the conductive layer. The method can further include forming a silicide region in the substrate beneath the conductive layer.
US11309204B2

According to one embodiment, an electrostatic chuck includes a ceramic dielectric substrate, a base plate, and a first porous part. The ceramic dielectric substrate has a first major surface and a second major surface. The base plate supports the ceramic dielectric substrate and includes a gas feed channel. The first porous part is provided between the base plate and the first major surface. The ceramic dielectric substrate includes a first hole part. The first porous part includes a porous section, and a first compact section being more compact than the porous section. As projected on a plane perpendicular to a first direction from the base plate to the ceramic dielectric substrate, the first compact section is configured to overlap the first hole part, and the porous section is configured not to overlap the first hole part.
US11309199B2

A substrate transfer apparatus for transferring a substrate includes a plurality of vacuum transfer chambers, each having therein a substrate transfer mechanism for holding and transferring the substrate, and an intermediate chamber disposed between the vacuum transfer chambers adjacent to each other. When one of the vacuum transfer chambers adjacent to each other is set as a first vacuum transfer chamber and the other is set as a second vacuum transfer chamber, a first substrate loading/unloading port is disposed between the intermediate chamber and the first vacuum transfer chamber and a second substrate loading/unloading port is disposed between the intermediate chamber and the second vacuum transfer chamber. A gate valve is provided only for the second substrate loading/unloading port. Further, the first and the second substrate loading/unloading port have different height positions.
US11309191B2

A method includes: providing a semiconductor body having a generation plane and crystal lattice planes which intersect the generation plane at intersecting lines; generating modifications in the semiconductor body by multiphoton excitation and which are spaced apart from one another, the modifications altering a physical property of the semiconductor body so as to form subcritical cracks in the generation plane; and separating a solid-state layer from the semiconductor body by connecting the subcritical cracks in the generation plane.
US11309176B2

A short-arc discharge lamp may include an arc tube section; at least one side tube section connected to at least one end of the arc tube section; at least one electrode provided inside the arc tube section; and at least one lead rod which is provided inside the at least one side tube section and which is connected to the at least one electrode; wherein the at least one lead rod has at least one metal body disposed so as to be in contact with the at least one lead rod; the at least one side tube section has at least one reduced diameter region; the at least one lead rod is supported by the at least one reduced diameter region via the at least one metal body; and at least one coating film is formed on at least one surface of the at least one metal body.
US11309170B2

Methods for testing or adjusting a charged-particle detector are provided. A diagnostic and/or adjustment method for a charged-particle detector of an instrument includes providing, from a photon source, photons incident on the charged-particle detector. Moreover, the method includes detecting a response by the charged-particle detector to the photons incident thereon. Related detection systems are also provided.
US11309164B2

Techniques for suppressing an increase in reflected wave power (reflection coefficient) due to IMD are proposed. A high-frequency power supply system for providing a high-frequency power to a connected load includes: a bias power supply which outputs a bias power at a first frequency; a source power supply which outputs a source power at a second frequency higher than the first frequency; and a matching unit including an impedance matching circuit which acquires the bias power and the source power and matches an impedance of the source power supply side with an impedance of the load side. The source power supply determines a delay setting value indicating the timing of starting a frequency variation process with respect to the source power, performs the frequency variation process using the delay setting value and the value of the first frequency, and outputs a frequency-varied source power to the matching unit.
US11309162B2

A metrology method for use in determining one or more parameters of a three-dimensional patterned structure, the method including performing a fitting procedure between measured TEM image data of the patterned structure and simulated TEM image data of the patterned structure, determining a measured Lamellae position of at least one measured TEM image in the TEM image data from a best fit condition between the measured and simulated data, and generating output data indicative of the simulated TEM image data corresponding to the best fit condition to thereby enable determination therefrom of the one or more parameters of the structure.
US11309160B2

Various methods and systems are provided for an x-ray imaging system. In one example, an x-ray tube of the imaging system includes a rotor with a core forming a continuous unit with at least one of a retention sleeve and a bearing assembly sleeve. The rotor further includes one or more magnets disposed in the core and maintained in place by the retention sleeve.
US11309157B2

The embodiments of a “SAVUS” disclosed herein are simple, safe, low cost devices used to connect emergency power to an entire home. The embodiments of SAVUS are configured to install into most residential types of circuit breaker front panels and require only one available circuit breaker space for installation. SAVUS mechanically interlocks with the main circuit breaker and will not allow connection of an external power source to the circuit breaker box until utility power is turned off for safety.
US11309152B2

An integrated circuit for demagnetizing an inductive load includes a first switch to control current supplied by a voltage supply to the inductive load. A Zener diode includes an anode connected to a control terminal of the first switch and a cathode connected to the voltage supply. A second switch includes a control terminal and first and second terminals. A temperature sensing circuit is configured to sense a temperature of the first switch and to generate a sensed temperature. A comparing circuit includes inputs that receive a reference temperature and the sensed temperature and an output connected to the control terminal of the second switch.
US11309138B2

Disclosed herein are perovskite based optoelectronic devices made entirely via solution-processing at low temperatures (<150° C.) which provide for simple manufacturing, compatibility with flexible substrates, and perovskite-based tandem devices. These perovskite based optoelectronic devices are produced using an electron transport layer on which the perovskite layer is formed which is passivated using a ligand selected to reduce electron-hole recombination at the interface between the electron transport layer and the perovskite layer.
US11309136B2

The purpose of the present invention is to provide an electrolyte solution for an electrolytic capacitor which has high withstand voltage. The electrolyte solution for an electrolytic capacitor that is used contains: an organic solvent; an acrylic polymer which has hydroxy group and/or carboxy group; and an electrolyte. A concentration of hydroxy groups included in the organic solvent is 10 mmol/g or less with respect to the weight of the organic solvent.
US11309132B2

A multilayer capacitor includes a capacitor body including dielectric layers and first and second internal electrodes, the capacitor body having first to sixth surfaces, the first internal electrode being exposed through the third, fifth, and sixth surfaces, and the second internal electrode being exposed through the fourth, fifth, and sixth surfaces, a first side portion and a second side portion, respectively disposed on the fifth surface and the sixth surface of the capacitor body, and a first external electrode and a second external electrode, respectively be connected to the first internal electrode and the second internal electrode. The first and second side portions comprise an acicular second phase including a glass comprising aluminum (Al) and silicon (Si), manganese (Mn), and phosphorus (P), and a volume of the second phase is 30% or more with respect to the entire first and second side portions.
US11309131B2

A multilayer ceramic capacitor includes a body including a dielectric layer and first and second internal electrodes disposed with the dielectric layer interposed therebetween and disposed in point-symmetry with each other; first and second connection electrodes penetrating the body in a direction perpendicular to the dielectric layer and connected to the first internal electrode; third and fourth connection electrodes penetrating the body in a direction perpendicular to the dielectric layer and connected to the second internal electrode; first and second external electrodes disposed on both surfaces of the body and connected to the first and second connection electrodes; and third and fourth external electrodes spaced apart from the first and second external electrodes and connected to the third and fourth connection electrodes, and the first and second internal electrodes include a region in which an electrode is not disposed.
US11309129B2

A dielectric ceramic composition includes a base material main component of barium titanate and a subcomponent. A microstructure of the dielectric ceramic composition after sintering includes a first grain having a Ca content of less than 3.5 at % and a second grain having a Ca content of 3.5 to 13.5 at %, and an area ratio of the second grain to an area of the total grains is 70% to 95%.
US11309125B2

A power transmission unit includes: a power transmission coil; a communication coupler that is formed in an annular shape about an axis X and arranged to surround the power transmission coil; and a shielding member that is formed in an annular shape about the axis X, and arranged between the power transmission coil and the communication coupler in an intersecting direction. The shielding member is arranged at a position along the intersecting direction to surround the power transmission coil, and shields magnetic force generated by the power transmission coil.
US11309116B2

An electronic component with a plurality of coil conductor layers laminated such that a coil conductor having a coil pattern on a surface of an insulation layer is formed on each of the plurality of coil conductor layers. The electronic component includes a laminated body in which a bottom face side extended electrode layer, a primary coil conductor layer including a primary coil conductor, a secondary coil conductor layer including a secondary coil conductor, a tertiary coil conductor layer including a tertiary coil conductor, a parallel primary coil conductor layer including a parallel primary coil conductor, and a top face side extended electrode layer are laminated in this order. The electronic component further includes first through sixth external electrodes on a surface of the laminated body, which are connected to the primary, secondary, tertiary and parallel primary coil conductors.
US11309106B2

The present invention provides an apparatus having a protecting element for protecting the apparatus in an emergency, wherein the protecting element is a polymer PTC element, the polymer PTC element has a polymer PTC member, and the polymer PTC member is formed from a polymer composition containing a polyvinylidene fluoride as a main component.
US11309104B2

A superconducting electrical power distribution network has a superconducting bus bar and superconducting cables electrically connected to the bus bar at respective joints distributed along the bus bar. The network further has a first coolant system for providing first cryogenic fluid and first circuits for circulating the first cryogenic fluid provided by the first coolant system. The first circuits comprise: a bus bar flow path which extends along and thereby cools the bus bar, cable flow paths which respectively extend along and thereby cool the cables, cooling junctions where the bus bar and cable flow paths meet at the electrical connection joints, inflow lines which send the first cryogenic fluid from the first coolant system to the flow paths, and outflow lines which remove the first cryogenic fluid from the flow paths.
US11309099B2

The present invention relates to a disposal container and a storage system for high-level radioactive waste and, more specifically, to a disposal container for high-level radioactive waste using multiple barriers and a barrier system using thereof, the disposal container having the multiple barriers consisting of an inner wall made of carbon steel for excellent corrosion resistance and ease of manufacture, a middle wall made of Inconel, which is bonded to a lateral surface of the inner wall, and an outer wall made of copper, which is bonded to a lateral surface of the middle wall.
US11309091B2

Systems and methods for population health surveillance utilizing a network of smart thermometers is provided. Based on the geolocated user data provided by the smart thermometers, contagious illness can be forecasted for various population nodes. Population nodes can be provided at various levels of granularity. Geographic or population specific early warning signals can be generated based on detected outbreaks of contagious illness.
US11309090B2

A system and method for analyzing a data store of de-identified patient data to generate one or more dynamic user interfaces usable to predict an expected response of a particular patient population or cohort when provided with a certain treatment. The automated analysis of patterns occurring in patient clinical, molecular, phenotypic, and response data, as facilitated by the various user interfaces, provides an efficient, intuitive way for clinicians to evaluate large data sets to aid in the potential discovery of insights of therapeutic significance.
US11309088B2

A method and system use mathematical models and available patient information to virtualize a continuous glucose monitoring trace for a period of time. Such a method and system can generate the virtualized trace when episodic patient data is incomplete. Such a method and system can also rely on self-monitored blood glucose measurement information to improve the virtualized continuous glucose monitoring trace.
US11309086B1

The present disclosure is directed to interactively counseling a user with respect to supervised content. In particular, the methods and systems of the present disclosure may: determine, based at least in part on one or more machine learning (ML) models, that one or more interfaces displayed to a user include content of a content type designated by a content supervisor of the user for identification; and, responsive to determining that the interface(s) displayed to the user include content of the content type designated for identification, generate data representing a graphical user interface (GUI) for presentation to the user, the GUI indicating detection of the content of the content type and comprising interactive educational material counseling the user with respect to the content type.
US11309085B2

A computer-implemented system comprising a treatment device, a patient interface, and a processing device is disclosed. The treatment device is configured to be manipulated by a user while the user performs a treatment plan. The patient interface comprises an output device configured to present telemedicine information associated with a telemedicine session. The processing device is configured to receive a treatment plan for a patient; during the telemedicine session, use the treatment plan to generate at least one parameter; and responsive to at least one trigger condition occurring, control at least one operation of the device.
US11309073B2

A display control device includes: a display control unit that displays a graph representing a history of inspection results including a last inspection result of a subject individual and a predetermined number of previous inspection results from the last inspection result for a predetermined inspection item among plural inspection items in the subject, the graph having a first axis representing the inspection results and a second axis representing a time series, and performs control for displaying information representing plural inspection results of at least one of the subject individual or the same variety as a variety of the subject individual on a position corresponding to a specific point of time of the second axis along a direction of the first axis with a different color or density according to a frequency of each inspection result.
US11309059B2

A method for determining a risk score that indicates a risk that a clinical event will occur within a certain period of time. The risk score is based at least in part on a combination of inferred activities of two or more cellular signaling pathways in a tissue and/or cells and/or a body fluid of a subject. The cellular signaling pathways comprise a Wnt pathway, an ER pathway, an HH pathway, and/or an AR pathway. The risk score is defined such that the indicated risk that the clinical event will occur within the certain period of time decreases with an increasing PER and increases with an increasing max(PWnt, PHH), wherein PER, PWnt, and PHH denote the inferred activity of the ER pathway, the Wnt pathway, and the HH pathway, respectively.
US11309058B2

Techniques are described for determining the strain on a cell wall using two models: 1) a short timescale model, describing the relationship between physical properties assumed to be fixed and 2) a long timescale model, describing the dynamic chemical composition of a cell wall. Short term modeling of the physical properties in a cell wall is used to properly understand how physical factors such as osmotic pressure affects the strain on the cell wall, which is in turn used to identify conditions under which a cell wall will cease to function properly or lyse entirely. Although temporally the physical properties which cause cell walls to underperform/lyse can be evaluated under a short time frame, the chemical properties that lead to the physical properties which cause that behavior themselves change over much longer timescales, in a relative sense.
US11309051B2

According to one embodiment, a memory system includes: a memory chip including a first memory block and first word lines, the first memory block including a first memory string which includes first memory cells that are coupled in series, the first word lines being respectively coupled to gates of the first memory cells; a memory controller coupled to an external device, controlling the memory chip, and capable of performing an error checking and correcting process of data. When a write instruction is received from the external device, the memory controller is configured to perform a write operation on a second memory cell which is one of the first memory cells, and to perform a read verify operation including a read process and the ECC process on a third memory cell which is one of the first memory cells.
US11309039B2

Memories having a controller configured, during a pre-charge portion of a read operation, to apply a sequence of increasing voltage levels concurrently to each access line of a plurality of access lines, wherein each voltage level of the sequence of increasing voltage levels is higher than any previous voltage level of the sequence of increasing voltage levels and lower than any subsequent voltage level of the sequence of increasing voltage levels, and determine a particular voltage level of the sequence of increasing voltage levels corresponding to a point at which all memory cells of the plurality of strings of series-connected memory cells are first deemed to be activated while applying the sequence of increasing voltage levels.
US11309031B2

Apparatuses and techniques are described for increasing channel boosting of NAND string during programming by applying a periodic low word line bias during programming. In one aspect, a low pass voltage, VpassL, is applied to designated word lines to create periodic low points or dips in the channel boosting level. A normal pass voltage, Vpass, is applied to other unselected word lines. The low points create barriers to the movement of electrons in the channel toward the selected word line, to prevent the electrons from pulling down the voltage at the channel region which is adjacent to the selected word line. VpassL can be applied to designated word lines at the source and/or drain sides of the selected word line. A control circuit can be configured with various parameters for implementing the techniques.
US11309029B2

A semiconductor device includes a memory string that includes a plurality of memory cells and is coupled between a source line and a bit line. A method for operating the semiconductor device may include: boosting a first channel region in a channel region of the memory string, wherein the channel region includes the first channel region at one side of the selected memory cell and a second channel region at the other side of the selected memory cell; applying a pre-program bias to a gate electrode of the selected memory cell, to inject electrons into a space region of the selected memory cell; and applying a program bias to the gate electrode.
US11309024B2

The present disclosure includes apparatuses, methods, and systems for memory cell programming that cancels threshold voltage drift. An embodiment includes a memory having a plurality of memory cells, and circuitry configured to program a memory cell of the plurality of memory cells to one of two possible data states by applying a first voltage pulse to the memory cell, wherein the first voltage pulse has a first polarity and a first magnitude, and applying a second voltage pulse to the memory cell, wherein the second voltage pulse has a second polarity that is opposite the first polarity and a second magnitude that can be greater than the first magnitude.
US11309021B2

The present disclosure relates to a memory device comprising a plurality of memory cells, each memory cell being programmable to a logic state corresponding to a threshold voltage exhibited by the memory cell in response to an applied voltage, and a logic circuit portion operatively coupled to the plurality of memory cells, wherein the logic circuit portion is configured to scan memory addresses of the memory device, and to generate seasoning pulses to be applied to the addressed pages of the memory device. A related electronic system and related methods are also disclosed.
US11309014B2

Disclosed is a memory device, which includes a buffer die that outputs a first power supply voltage to a first through-substrate via (e.g., through-silicon via (TSV)) and receives a small swing data signal from a second TSV generated based on the first power supply voltage, and a core die that is electrically connected to the buffer die through the first and second TSVs, includes a first cell capacitor electrically connected to the first TSV and configured to block a first noise introduced to the first power supply voltage received through the first TSV. The core die outputs the small swing data signal to the second TSV.
US11309012B2

Embodiments of the disclosure are drawn to apparatuses and methods for staggering the timing of targeted refresh operations. A memory device may include a number of memory banks, at least some of which may be simultaneously entered into a refresh mode. A given memory bank may perform an auto-refresh operation or a targeted refresh operation, which may draw less power than the auto-refresh operation. The timing of the targeted refresh operations may be staggered between the refreshing memory banks, such that a portion of the refreshing memory banks are performing a targeted refresh operation simultaneously with a portion of the refreshing memory banks performing an auto-refresh operation.
US11309006B2

A magnetic memory device includes a first magnetic structure having a magnetic anisotropy, a read electrode that is on an end of the first magnetic structure and configured to sense a first magnetic moment of the first magnetic structure and to convert the first magnetic moment to an electric signal, a second magnetic structure spaced apart from the first magnetic structure, the second magnetic structure having a magnetic anisotropy, and a write electrode that is on an end of the second magnetic structure and configured to change a second magnetic moment of the second magnetic structure, based on the electric signal. The magnetic memory device executes operations of writing, moving, and reading data on almost the entire region of the magnetic structure in a more efficient manner, compared with the conventional magnetic memory device.
US11309002B2

A delay locked loop circuit and a semiconductor memory device are provided. The delay locked loop circuit includes a phase detection and delay control circuit configured to detect a phase difference between a first internally generated clock signal the feedback clock signal to generate a first phase difference detection signal in response to a first selection signal being activated, to detect a phase difference between a second internally generated clock signal and the feedback clock signal to generate a second phase difference detection signal in response to a second selection signal being activated, and to change a code value in response to the first phase difference detection signal or the second phase difference detection signal.
US11308996B2

A sensing circuit includes a cell clock generator, a reference clock generator, a counter, a latching signal generator, a latch and a count-to-state conversion circuit. The cell clock generator receives a cell current from a selected memory cell, and converts the cell current into a cell clock signal. The reference clock generator converts a reference current into a reference clock signal. The count receives the cell clock signal, and generates a count value. When a pulse number of the reference clock signal reaches a predetermined count value, the latching signal generator activates a latching signal. When the latching signal is activated, the latch issues a latched count value. The count-to-state conversion circuit receives the latched count value, and issues a state value. A storage state of the selected memory cell is determined according to the state value.
US11308995B2

A semiconductor apparatus including a sudden power detection circuit, a power-on reset circuit, and a driving circuit. The sudden power detection circuit configured to detect an external power supply voltage and generate a sudden power detection signal. The power-on reset circuit configured to detect the voltage level of the external power supply voltage according to a reset reference voltage and generate a power-on reset signal. The driving circuit configured to perform a sudden power-off operation and a power-on reset operation.
US11308993B2

Provided are a short video synthesis method and apparatus, a device and a storage medium. The method includes: obtaining a video frame set corresponding to a to-be-processed video, where each video frame in the video frame set carries a timestamp; respectively inputting all video frames in the video frame set into an interest frame identification model to obtain a plurality of to-be-synthesized video frames, where the interest frame identification model is used for identifying a video frame meeting an interest degree condition in the input video frames; and splicing, according to the timestamp carried by the each to-be-synthesized video frame, the plurality of to-be-synthesized video frames to form a short video corresponding to the to-be-processed video.
US11308992B1

Technologies are provided for accessing a physical location of a storage medium reader of a storage device. A computing device can transmit a request for the storage medium reader's physical location. The storage device can determine the physical location of the storage medium reader and transmit the location to the computing device. The computing device can use the physical location of the storage medium reader to determine an expected latency for retrieving one or more stored data items. The computing device can transmit a command to change the physical location of the storage medium reader, for example by changing a location of the storage medium reader with respect to a given storage medium and/or changing a storage medium that is accessed by the storage medium reader. The computing device can control the placement of the storage medium reader in order to optimize retrieval of data items from the storage device.
US11308986B2

In an approach to automatically reconciling data in HSM without affecting system performance, responsive to migrating a file on a hierarchical storage system from a primary storage to one or more tape drives, one or more file migration records are recorded in a reconcile database. Responsive to the occurrence of a file event on the primary storage, the one or more file migration records in the reconcile database are updated. Responsive to receiving a command to unmount a first mounted tape on one of the one or more tape drives, a reconcile function is performed on the first mounted tape, wherein the reconcile function updates the first mounted tape with the one or more file migration records in the reconcile database.
US11308978B2

Methods, apparatus, systems and articles of manufacture are disclosed for distributed automatic speech recognition. An example apparatus includes a detector to process an input audio signal and identify a portion of the input audio signal including a sound to be evaluated, the sound to be evaluated organized into a plurality of audio features representing the sound. The example apparatus includes a quantizer to process the audio features using a quantization process to reduce the audio features to generate a reduced set of audio features for transmission. The example apparatus includes a transmitter to transmit the reduced set of audio features over a low-energy communication channel for processing.
US11308977B2

According to an embodiment, the above-described specification discloses an electronic device comprises at least one processor configured to: receive a first audio signal and a second audio signal; detect a spectral envelope signal from the first audio signal and extract a feature point from the second audio signal; extend a high-band of the second audio signal based on the spectral envelope signal from the first audio signal and the feature point from the second audio signal to generate a high-band extension signal; and mix the high-band extension signal and the first audio signal, thereby resulting in a synthesized signal.
US11308976B2

A method, an apparatus, and logic to post-process raw gains determined by input processing to generate post-processed gains, comprising using one or both of delta gain smoothing and decision-directed gain smoothing. The delta gain smoothing comprises applying a smoothing filter to the raw gain with a smoothing factor that depends on the gain delta: the absolute value of the difference between the raw gain for the current frame and the post-processed gain for a previous frame. The decision-directed gain smoothing comprises converting the raw gain to a signal-to-noise ratio, applying a smoothing filter with a smoothing factor to the signal-to-noise ratio to calculate a smoothed signal-to-noise ratio, and converting the smoothed signal-to-noise ratio to determine the second smoothed gain, with smoothing factor possibly dependent on the gain delta.
US11308975B2

A mixing device of a first signal and a second signal on a time-frequency plane, includes a control signal generation unit to generate a control signal indicating whether to perform prioritized mixing that includes amplification of the first signal and attenuation of the second signal; and a gain derivation unit to derive a first gain for amplifying the first signal and a second gain for attenuating the second signal based on the control signal. The control signal takes at least a first value and a second value different from the first value, wherein the first value is not continuous beyond a predetermined bandwidth on a frequency axis. The mixing device applies the prioritized mixing to the first and second signals when the control signal indicates the first value, and applies simple addition to the first and second signals when the control signal indicates the second value.
US11308966B2

A speaker recognition device includes: an obtaining unit which obtains a speech uttered by a speaker included in one or more speakers; a storage which stores the speech obtained by the obtaining unit; a trigger input unit which receives a trigger; an utterance start detector which detects a start position of the speech stored in the storage, when the trigger input unit receives the trigger, the start position being a position at which utterance of the speech has started; and a speaker identification unit which identifies the speaker of the speech from the one or more speakers based on at least first timing and second timing, the first timing being timing at which the trigger input unit has received the trigger, the second timing being timing indicating the start position of the speech detected by the utterance start detector.
US11308961B2

A first network microphone device (NMD) is configured to receive, from a second NMD, a first arbitration message including (i) a first measure of confidence associated with a voice input as detected by the second NMD and (ii) the voice input as detected by the second NMD, and receive, from a third NMD, a second arbitration message including (i) a second measure of confidence associated with the voice input as detected by the third NMD and (ii) the voice input as detected by the third NMD. The first NMD is configured to determine that the second measure of confidence is greater than the first measure of confidence and based on the determination, perform voice recognition based on the voice input as detected by the third NMD, where the voice input includes a command to control audio playback by the first, second, and/or third NMD, and after performing voice recognition, executing the command.
US11308960B2

A processing system detects a period of non-voice activity and compares its duration to a cutoff period. The system adapts the cutoff period based on parsing previously-recognized speech to determine, according to a model, such as a machine-learned model, the probability that the speech recognized so far is a prefix to a longer complete utterance. The cutoff period is longer when a parse of previously recognized speech has a high probability of being a prefix of a longer utterance.
US11308959B2

Systems and methods are provided for detecting wake words. An electronic device detects an audio signal; identifies two spatial zones as first and second sources of audio associated with the audio signal; processes the audio signal at two wake word detection engines, where each detection engine is associated with a respective spatial zone; determines, based on the processing at the wake word detection engines, whether the audio signal represents a wake word for the electronic device; and in accordance with a determination that the audio signal does represent a wake word, adjusts a wake word detection threshold for at least one of the wake word detection engines.
US11308955B2

Disclosed are a speech recognition device and a speech recognition method, which perform speech recognition by executing an artificial intelligence (AI) algorithm and/or a machine learning algorithm provided therein, and which can communicate with other electronic devices and an external server in a 5G communication environment. According to an embodiment, the speech recognition method includes setting an additional wake-up word target capable of activating a speech recognition function in addition to a preset wake-up word, generating a plurality of additional wake-up word utterances formed on the basis of the additional wake-up word target being uttered under various conditions, learning a wake-up word recognition algorithm by using each of the spoken utterances of the additional wake-up word to generate an additional wake-up word recognition algorithm, and executing the additional wake-up word recognition algorithm upon receiving a select word uttered by a user to determine whether to activate the speech recognition function.
US11308952B2

A text and voice information processing method includes: photographing a document to obtain a first picture, wherein the document comprises a first text keyword and a second text keyword; recording audio to obtain a voice file corresponding to the document; obtaining a first voice segment matching the first text keyword and a second voice segment matching the second text keyword from the voice file; displaying a second picture with a first play button and a second play button; in response to a user input, playing back the first voice segment or playing back the second voice segment.
US11308945B1

A hypernym of a word in utterance data may be probabilistically determined. The utterance data may correspond to a spoken query or command. A redacted utterance may be derived by replacing the word with the hypernym. The hypernym may be determined by applying noise to a position in a hierarchical embedding that corresponds to the word. The word may be identified as being potentially sensitive. The hierarchical embedding may be a Hyperbolic embedding that may indicate hierarchical relationships between individual words of a corpus of words, such as “red” is a “color” or “Austin” is in “Texas.” Noise may be applied by obtaining a first value in Euclidean space based on a second value in Hyperbolic space, and obtaining a third value in Hyperbolic space based on the first value in Euclidean space. The second value in Hyperbolic space may correspond to the word.
US11308941B2

A natural language processing apparatus includes: a first calculation unit configured to calculate a distributed vector of a word included in a plurality of sentences based on a database that manages the plurality of sentences associated with a classification word; a second calculation unit configured to calculate a distributed vector of the sentence based on the distributed vector of the word included in each sentence; and a third calculation unit configured to calculate a distributed vector of the classification word based on the distributed vector of each sentence associated with the same classification word.
US11308940B2

A method of configuring a conversational computing interface. The method comprises maintaining a branching dialogue representing a plurality of multi-turn conversations each including a plurality of turns, wherein a turn indicates one or both of a conversational computing interface action and a conversation event, the branching dialogue including a shared prefix of turns common to the plurality of multi-turn conversations and at least two different counterfactual branches descending from the shared prefix of turns, each different counterfactual branch including one or more descendent turns corresponding to a different multi-turn conversation of the plurality of multi-turn conversations. The method further comprises providing the branching dialogue in a computer-readable format traversable to retrieve a particular multi-turn conversation of the plurality of multi-turn conversations, the particular multi-turn conversation represented by the shared prefix of turns and a particular counterfactual branch including descendent turns corresponding to the particular multi-turn conversation.
US11308937B2

Embodiments of the present disclosure provide a method and an apparatus for identifying a key phrase in audio, a device and a computer readable storage medium. The method for identifying a key phrase in audio includes obtaining audio data to be identified. The method further includes identifying the key phrase in the audio data using a trained key phrase identification model. The key phrase identification model is trained based on first training data for identifying feature information of words in a first training text and second training data for identifying the key phrase in a second training text. In this way, embodiments of the present disclosure can accurately and efficiently identify key information in the audio data.
US11308936B2

A speech signal processing method of a user terminal includes: receiving a speech signal, detecting a personalized information section including personal information in the speech signal, performing data processing on the personalized information section of the speech signal by using a personalized model generated based on the personal information, and receiving, from a server, a result of the data processing performed by the server on a general information section of the speech signal that is different than the personalized information section of the speech signal.
US11308927B2

An apparatus is provided for integrating a removable fader component with an audio component while also enabling the fader component to be connected with one or more external audio components and/or to function as a standalone fader when removed from the apparatus. Embodiments include an audio component configured to produce a first audio signal; a removable fader component configured with a first connection point for connectivity to the audio component and a second connection point for connectivity to an external audio component that produces a second audio signal, wherein a hardware component, a software component, or a combination thereof for performing a mixing of the first audio signal and the second audio signal is contained within the removable fader component; and a receptacle integrated into the apparatus, wherein the receptacle is configured to hold the removable fader component to the apparatus.
US11308926B2

The present invention provides method and system for composing music with chord accompaniment. One or more keys on a first keyboard are selected by end-users to generate a chord progression, and a computer generates a chord progression MIDI file, and associates the file with a first physical card that is embedded with a unique machine-readable ID (UID). After the UID of the first physical card is subsequently recognized, the chord progression MIDI file is retrieved and played. While the chord progression MIDI file is played, certain keys on a second keyboard are highlighted, and each of the highlighted keys on a second keyboard represents a music note that is in harmony with a particular chord in the chord progression while the particular chord is being played, and one or more of the highlighted keys on the second keyboard are selected by the end-user to compose a melody.
US11308924B2

A chord information extraction device includes an acquirer, a score type determiner, an extraction region determiner and a chord information extractor. The acquirer acquires score image data representing a reference score. The score type determiner determines a score type of the reference score from among a plurality of predetermined score types based on the acquired score image data. The extraction region determiner determines a chord extraction region in the reference score based on extraction region information that defines a relationship between a plurality of score types and a chord extraction region from which chord information is to be extracted. The chord information extractor extracts the chord information from the acquired score image data based on the determined chord extraction region.
US11308922B2

A portable electronic device is used with a mixed reality headset. The MR headset includes a lens and a holder that retains the portable electronic device in a defined orientation relative to the lens. The portable electronic device includes a camera, a display device, and a processor. The camera outputs video frames and is arranged to view the lens. The display device is arranged to display information that is projected on the lens for reflection directly or indirectly toward the user's eyes and the camera. The processor performs operations that include processing the video frames from the camera to identify locations of at least one real-world feature, displaying information on the display device, and controlling at least one of the processing of the video frames and the displaying of the information on the display device to at least partially reduce occurrence in the video frames of the displayed information.
US11308915B2

A photoelectric selection signal control circuit, a display apparatus, a display method and a control apparatus. The photoelectric selection signal control circuit comprises an output circuit and at least one signal control circuit. The signal control circuit is configured to output a comparison result signal under the control of a selection signal and an illumination signal; and the output circuit is configured to output an output signal according to the comparison result signal.
US11308909B2

A gate driver on array (GOA) circuit, wherein each of GOA units includes a pull-up control circuit, wherein a control terminal thereof receives a first control signal, and a second terminal thereof outputs a second control signal; a pull-up circuit including a first transistor, wherein a control terminal thereof is connected to the second terminal of the pull-up control circuit, a first terminal thereof receives a first clock signal, and a second terminal thereof outputs a driving signal; a bootstrap capacitor connected between the second terminal of the pull-up control circuit and the second terminal of the first transistor; and a cascade-transmission circuit including a second transistor, wherein a control terminal thereof is connected to the second terminal of the pull-up control circuit, and a second terminal thereof outputs a cascade-transmission signal; wherein a duty cycle of the first clock signal is less than 33%.
US11308903B2

A source driving device, a polarity reversal control method thereof, and a liquid crystal display device. In the source driving device, a polarity signal control unit is added, and an output terminal of the polarity signal control unit is connected to control terminals of a first channel selection circuit and a second channel selection circuit in a positive-negative polarity reversal control unit, respectively. Polarity reversal condition of the polarity reversal control signal outputted by the polarity signal control unit is controlled using a trigger control signal inputted to a control terminal of the polarity signal control unit.
US11308898B2

A pixel arrangement structure and a display panel are provided. The pixel arrangement structure includes a plurality of sub-pixels having different colors. Each of the sub-pixels is divided into a main pixel area and a sub-pixel area, an area of the main pixel area is not equal to an area of the sub-pixel area, and at most every four columns, a position of the main pixel area and a position of the sub-pixel area are alternately changed to improve brightness uniformity of a display panel.
US11308892B2

The disclosure relates to an organic light emitting display device that can detect a defect in a scan transistor in the device in which the scan transistor and a sensing transistor simultaneously operate, and the device includes: an OLED in a subpixel; a driving transistor connected between the OLED and a driving voltage line; a scan transistor connected between a first node through which a data voltage is applied to the driving transistor and a data line; a sensing transistor connected between a second node between the driving transistor, the OLED, and a reference voltage line; and a defect detector for applying the data voltage in a state in which both the scan transistor and the sensing transistor are turned off and then detecting an amount of charges charged in a parasitic capacitor of the OLED to determine whether the scan transistor is defective due to foreign substances.
US11308889B2

A detection method of a pixel circuit, a driving method of a display panel, and a display device are disclosed. The pixel circuit includes a driving transistor; and the detection method of the pixel circuit includes: in the first charge cycle, applying a first data voltage to a gate electrode of the driving transistor, acquiring a first sensing voltage at a first electrode of the driving transistor within the first duration after the application of the first data voltage and before the driving transistor is switched off, and determining whether the first sensing voltage is equal to reference sensing voltage.
US11308888B2

A pixel scan drive circuit including a switch unit, a pull-up output unit and a pull-down output unit is provided. In a scan signal output phase of a scanning cycle, the pull-down output unit outputs a first reference voltage in a scan signal to an output end according to a clock signal. In a maintenance phase of the scanning cycle, the switch unit controls the voltage of a pull-down node according to a switch control signal, thereby controlling the pull-down output unit to stop outputting the first reference voltage. In the maintenance phase, the pull-up output unit outputs a second reference voltage in the scan signal. The second reference voltage controls the pixel units to stop receiving the image data. Transistors in the switch unit are of different types from transistors in the pull-up output unit and the pull-down output unit. An array substrate and a display terminal are provided.
US11308887B2

A display panel and a display device are disclosed, the display panel includes a plurality of display regions, a peripheral region surrounding the plurality of display regions, a plurality of light-emission control scan driving circuits provided in the peripheral region, a first start signal line, and a second start signal line. The first start signal line is different from the second start signal line, the plurality of display regions include a first display region and a second display region, the plurality of light-emission control scan driving circuits include a first light-emission control scan driving circuit and a second light-emission control scan driving circuit, the first start signal line is configured to provide a first start signal to the first light-emission control scan driving circuit, and the second start signal line is configured to provide a second start signal to the second light-emission control scan driving circuit.
US11308886B2

A pixel driving circuit includes: a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film transistor, a fifth thin film transistor, a sixth thin film transistor, a seventh thin film transistor, an eighth thin film transistor, a first capacitor, and an organic light emitting diode (OLED). Gates of the seventh thin film transistor and the eighth thin film transistor respectively input a first scanning signal and a second scanning signal, and when the first scanning signal is at a low level, a reverse bias reset can be performed on the OLED.
US11308879B2

An organic light emitting display device includes a pixel, a data line, a first scan line, a second scan line, and a scan driver. The pixel includes a first transistor, a second transistor, and a third transistor. A source of the first transistor is electrically connected to a drain of the third transistor. A source of the second transistor is configured to receive an initialization voltage. The data line is electrically connected to a source of the third transistor and may transmit a data voltage higher than the initialization voltage. The first scan line is electrically connected to a gate of the third transistor. The second scan line is electrically connected to a gate of the second transistor. The scan driver may provide an initializing scan signal to the second scan line at least two horizontal periods before providing an initial scan signal to the first scan line.
US11308878B2

A pixel driving circuit and a driving method thereof, and a display panel are provided. The pixel driving circuit includes a first transistor (T1), a second transistor (T2), a third transistor (T3), a first storage capacitor (Cst1), a second storage capacitor (Cst2) and an organic light emitting element (OLED). By appropriately designing capacitance of the two capacitors and dividing a gate voltage of the first transistor (T1), it can be ensured that a black screen is achieved and contrast of a display panel is improved even though a negative drift is seriously caused on a threshold voltage of T1.
US11308874B2

A display device including an emitting element. A first transistor includes a first electrode electrically connected to a first supply voltage line, a second electrode electrically connected to the emitting element, and a gate electrode receiving a data signal, the first transistor being configured to transfer a driving current to the emitting element based on the data signal. A capacitor is connected between the gate electrode of the first transistor and the first supply voltage line. An electric field generating element is connected between the second electrode of the first transistor and the gate electrode of the first transistor and includes ferroelectrics.
US11308872B2

The present disclosure relates to an OLED display panel for minimizing the size of a bezel and includes: an active area including data lines, scan lines intersecting the data lines, and sub-pixels arranged at each intersection; and a stage of a GIP driving circuit distributed and arranged in a plurality of unit pixel regions driven by m (m being a natural number) scan lines in the active area, to supply scan pulses to the corresponding scan lines, wherein the active area further includes m GIP internal connection lines parts respectively adjacent to the m scan lines, and a plurality of internal connection lines for connecting elements constituting each stage is distributed and arranged in the m GIP internal connection line parts.
US11308870B2

An organic light emitting display device comprising: a source device configured to output image data; and a sink device configured to perform a displaying operation based on the image data, wherein the source device is configured to change a frame rate of an image frame composing the image data while the displaying operation is performed, wherein the sink device is configured to change a frame rate of a panel driving frame for the displaying operation as the frame rate of the image frame is changed, and wherein the source device is configured to change the frame rate of the image frame while satisfying a condition in which an emission duty ratio of the panel driving frame is not changed.
US11308869B2

An image light generation module according to the present disclosure includes a first panel configured to emit first image lighting a red wavelength region not having polarization characteristics, a second panel configured to emit second image light in a blue wavelength region not having polarization characteristics, a third panel configured to emit third image light in a green wavelength region not having polarization characteristics, and a color combining prism configured to emit combined light obtained by combining the first image light, the second image light, and the third image light. The first panel, the second panel, and the third panel each include a pixel structure in which a plurality of pixels are disposed, and aperture ratios of the pixels of the first panel, the second panel, and the third panel differ from each other.
US11308862B2

A scan display system includes a picture receiving unit, a scan needle, a picture display screen having first and second opposing surfaces, and a driving unit. The picture receiving unit is configured to receive picture data and transmit the picture data to the scan needle. The driving unit is configured to perform a picture scanning process by moving the scan needle to scan in a vertical direction relative to the first surface of the picture display screen at a predetermined frequency. The scan needle is configured to emit light, representative of the picture data, to the first surface of the picture display screen to project image lines, each image line being projected by the scan needle during the scan. The picture display screen is configured to receive the emitted light on the first surface and display an image comprising the image lines on the second surface.
US11308857B2

A gate driver includes first and second stages. Each of the first and second stages includes an output circuit which outputs a scan signal, a carry signal and an inverted carry signal based on voltages of first and second nodes, a first input terminal, a second input terminal, a third input terminal, a first output terminal, and a second output terminal. The first stage further includes a first input circuit which controls the voltages of the first and second nodes thereof based on a start pulse and a signal supplied to the second input terminal. The second stage further includes a second input circuit which controls the voltages of the first and second nodes thereof based on a first carry signal and a first inverted carry signal, and a signal supplied to the second input terminal. The second stage is dependently connected to the first stage.
US11308856B2

An electronic device is disclosed. The disclosed electronic device comprises a display including a first display module and a second display module, a processor, and a memory, wherein the memory may store instructions that cause the processor to store first data obtained from the first display module and second display data obtained from the second display module, accumulate the first data over a predetermined period to obtain an average value of the first data, accumulate the second data over a predetermined period to obtain an average value of the second data, and control the display to display guide information requesting the positions of the first display module and the second display module to change using the average value of the first data and the average value of the second data. In addition, at least a portion of the electronic device may use a rule-based model or an artificial intelligence data recognition model trained according to at least one of a machine learning, a neural network, or a deep learning algorithm. The rule-based model or the artificial intelligence data recognition model may estimate whether to replace the display module by using, as input values, the first data generated by the first display module and the second data generated by the second display module.
US11308850B2

A combined display panel including: a first sub-screen comprising a plurality of first pixel units, each of the first pixel units comprising a first sub-pixel and a third sub-pixel; a second sub-screen comprising a plurality of second pixel units corresponding to the first pixel units, each of the second pixel units comprising a second sub-pixel; wherein the first sub-screen overlaps with the second sub-screen, each of the second pixel units is located directly above the first pixel unit corresponding thereto, a first pixel unit and a second pixel unit are stacked to form a pixel unit of the combined display panel.
US11308848B2

A scan display system includes a picture receiving unit, a scan needle, a picture display screen having first and second opposing surfaces, and a driving unit. The picture receiving unit is configured to receive picture data and transmit the picture data to the scan needle. The driving unit is configured to perform a picture scanning process by moving the scan needle to scan in a horizontal direction and in a vertical direction relative to the surface of the picture display screen at a predetermined frequency. The scan needle is configured to emit light, representative of the picture data, to the first surface of the picture display screen to project image portions, each image portion being formed by the scan needle during the scan. The picture display screen is configured to receive the emitted light on the first surface and display an image comprising the image portions on the second surface.
US11308847B2

A display apparatus includes a display including a plurality of display modules, a display driver including a plurality of driving modules respectively connected to the plurality of display modules, a storage storing current information concerning a plurality of display modules, and a processor calculating a peak luminance level of each of a plurality of display modules based on individual power consumptions of each of a plurality of display modules and controlling a plurality of driving modules using the current information stored in the storage based on the calculated peak luminance level.
US11308844B2

A multi-primary color conversion method is provided to include: establishing a spatial gamut model of a display panel; determining a target peripheral surface corresponding to the target color according to the color coordinates of the target color and color coordinates of a color corresponding to each vertex of each peripheral surface; obtaining reference gray scales of a part of primary colors of the target color according to gray scales of the primary colors of a color corresponding to each vertex of the target peripheral surface; obtaining reference gray scales of the rest primary colors of the target color and a reference luminance of the target color; and respectively converting the reference gray scales of the plurality of primary colors of the target color into target gray scales according to a proportional relationship between the reference luminance and the target luminance of the target color.
US11308842B2

The present disclosure discloses a display driving apparatus configured to process data by using a low voltage bias current, process a source signal by using a high voltage bias current, and provide the low voltage bias current and the high voltage bias current by using one bias core.
US11308840B2

The present disclosure relates to a technology for a low power operation of a display device. The present disclosure allows reducing power consumption by supplying image data of a pixel of a preceding line again for a pixel of a current line without transmitting new image data when image data are repeated in units of pixels.
US11308830B1

The disclosure provides a display driving device and an operation method thereof. The display driving device includes a timing controller circuit and a driving circuit. The timing controller circuit performs oblique filter processing on an original image frame to generate a processed image frame. The driving circuit is coupled to the timing controller circuit to receive the processed image frame. The driving circuit drives a display panel module according to the processed image frame. The display panel module includes a tilt lenticular lens layer having a first tilt angle. A second tilt angle of a filter mask of the oblique filter processing corresponds to the first tilt angle.
US11308827B2

A flexible display device is provided. The flexible display device includes a housing, a flexible display panel, a cover window, and a first viscoelastic fluid layer. The flexible display panel is disposed on the housing. The cover window is disposed on the flexible display panel. The first viscoelastic fluid layer is disposed between the cover window and the flexible display panel.
US11308820B2

The present invention pertains to the technical field of teaching or training simulators, more specifically the field of those especially designed for providing instruction on driving vehicles or other means of transport, and it particularly refers to a compact motion simulator for creating motion in three directions.
US11308815B2

A base module may be used to receive and house one or more unmanned aerial vehicles (UAVs) via one or more cavities. The base module receives commands from a manager device and identifies a flight plan that allows a UAV to execute the received commands. The base module transfers the flight plan to the UAV and frees the UAV. Once the UAV returns, the base module once again receives it. The base module then receives sensor data from the UAV from one or more sensors onboard the UAV, and optionally receives additional information describing its flight and identifying success or failure of the flight plan. The base module transmits the sensor data and optionally the additional information to a storage medium locally or remotely accessible by the manager device.
US11308807B2

To enable a risk of collision between moving objects such as a pedestrian and a vehicle to be quickly and accurately determined in a roadside device, when the roadside device receives a message including state information indicating that a pedestrian is in a risky state from a pedestrian terminal, the roadside device acquires position information of a vehicle present around the pedestrian in the risky state based on a result of detecting vehicles on roads by a radar, determines a risk of collision between the pedestrian in the risky state and the vehicle based on the position information of the vehicle, and when the risk of collision exists, transmits a message including alarm information indicating that the risk of collision exists to the terminal.
US11308802B2

The invention relates to a method for the at least partially automated operation of a motor vehicle. The method includes ascertaining a planned trajectory to be traversed by the motor vehicle. The method further includes transmitting plan data relating to the planned trajectory from the motor vehicle to a central device on the infrastructure side and evaluating a release condition, the meeting of which depends on the plan data, by means of the central device. The method also includes transmitting a release message from the central device to the motor vehicle if the release condition has been met, and transmitting a modification message from the central device to the motor vehicle if the release condition has not been met. The planned trajectory is ascertained again on the motor vehicle side upon receiving a modification message in order to determine another planned trajectory.
US11308799B2

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for acquiring image data, determining that the user's vehicle is traveling in a left lane of a roadway having at least two lanes for travel in a first direction, detecting that a second vehicle is traveling within a predetermined distance in front of the user's vehicle and in the left lane of the roadway, obtaining speed information of the user's vehicle and the second vehicle at a first time and at a first location, determining, based on the obtained speed information, that a speed of the second vehicle at the first time is below a defined speed limit of the roadway at the first location, and in response triggering a potential violation procedure.
US11308791B2

The disclosure generally provides methods, systems and apparatus for functional safety systems. Specifically, the disclosure relates to validating functional safety warnings that may be communicated to an operator. Such warnings may include safety warning chimes. An exemplary embodiment relates to an apparatus to validate operation of a Functional Safety (FuSa) platform through delivery of a safety warning signal, the apparatus comprising: a Safety Application to issue a safety warning signal, the safety warning signal configured for audio delivery to an audience; a transmit path in communication with the Safety Application to transmit the safety warning signal; and a digital signal processing (DSP) circuitry to communicate with the transmit path, the DSP circuitry configured to detect the safety warning signal at the transmit path, the DSP circuitry further configured to communicate the detected safety warning signal back to the Safety Application; wherein the transmit path, the Safety Application and the DSP circuitry are integrated on a System-on-Chip (SoC).
US11308783B2

A medical device is configured to produce an accelerometer signal and detect a patient fall from the accelerometer signal. The device generates a body posture signal and a body acceleration signal from the accelerometer signal and detects a patient fall in response to determining that the body posture signal and the body acceleration signal meet fall detection criteria. The medical device is configured to receive a truth signal from another device that is not the medical device. The truth signal may indicate that the detected patient fall is a falsely detected patient fall and, responsive to receiving the truth signal, the medical device adjusts at least one fall detection control parameter.
US11308781B2

A data interruption device (1) is described, between a plurality of control units (2) communicating through at least one communication protocol (6), designed to produce an electromagnetic interference inhibiting a data communication between the plurality of control units (2); moreover, the device (1) is equipped with at least one transformer (3) designed to transfer at least one signal on at least one transmission means (5) of the communication protocol (6), inducing such electromagnetic interference.
US11308775B1

Methods and systems monitor activity in a retail environment, such as activity in a display area (e.g., aisle) of the retail environment. A convolutional neural network is used to detect objects (e.g., inventory items) or events (e.g., instances of people picking up inventory items from shelves). Various algorithms may be used to determine whether suspicious activity occurs, and/or to determine whether to trigger alerts. Monitored/detected activity may be stored in a database to facilitate a deeper understanding of operations within the retail environment.
US11308774B2

Described herein are methods and systems of distributed acoustic sensing, such as in an urban or metropolitan area involving a dedicated and established fibre optic communications network including a data centre. In general, the disclosed method and system includes the steps of (a) selecting an optical fibre cable installation having a path extending across a selected geographical area, the optical fibre cable installation including a bundle of optical fibres and forming part of a fibre-optic communications network, (b) determining characteristics associated with the optical fibre and/or the selected optical fibre installation, (c) transmitting outgoing light in the optical fibre, (d) receiving reflected light back scattered along the optical fibre, and (e) based on the reflected light and the determined characteristics, generating an alert signal representative of an acoustic event. The disclosed method and system are applied to detect acoustic events near or within the selected geographical area.
US11308769B2

An electronic gaming machine, a system, and a method provide a wagering game to a player. Four community cards are dealt to a community area of a table. The player enters a wager associated with an expected characteristic of a fifth community card to be dealt during the game. The fifth community card is dealt and a determination is made whether the player wins the wager based on the actual characteristic of the fifth community card matching the expected characteristic associated with the player's wager. An award to be received by the player is determined based on the player winning the wager.
US11308753B2

An electronic gaming machine (EGM) archway includes a first EGM including at least one first curved display device, the at least one first curved display device defining a first portion of the archway. The EGM archway also includes a second EGM including at least one second curved display device, the at least one second curved display device defining a second portion of the archway, the second EGM spaced apart from and diametrically opposing the first EGM. In addition, the EGM archway includes an overhead display portion including at least one third display device, the at least one third display device defining a third portion of the archway, the overhead display portion extending overhead between the at least one first curved display device and the at least one second curved display device.
US11308752B2

The present disclosure describes systems and methods for simulating gameplay of a live event and placing wagers or non-wager submissions concerning an outcome of a simulation. The systems incorporate statistical data, event information, and user modifications to create the simulation.
US11308745B2

A secure storage system for limiting access to a stored material, the storage system including a remote access management system including an input device for receiving an access instruction and a transmitting device configured to electronically transmit an access instruction signal based on the access instruction, a cabinet including at least one storage drawer including a first lock, at least one container arranged in the at least one storage drawer each at least one container configured to store a stored material, each at least one container including a second lock for preventing access to the stored material. The second lock is placed in an unlocked state allowing access to the stored material based on the access instruction signal received from the remote access management system. A switch indicates to the remote access management system a locked state or an unlocked state of the respective container.
US11308743B2

A gate apparatus includes: an exit gate door; a first biometrics information acquisition unit that acquires, from a user who moves toward the exit gate door in a closed state, first target biometrics information to be compared with registered biometrics information registered in advance; a second biometrics information acquisition unit that acquires second target biometrics information to be compared with the registered biometrics information from the use who stops in front of the exit gate door when there is no matching in a comparison between the first target biometrics information and the registered biometrics information or the comparison is unable to be performed; and a door control unit that opens the closed exit gate door in accordance with a result of a comparison between the first target biometrics information or the second target biometrics information and the registered biometrics information.
US11308739B2

The disclosure provides an automatic driving system, a vehicle control method and a device. The automatic driving system includes a main monitoring equipment, a secondary monitoring equipment, at least one equipment to be detected, and a standby equipment corresponding to each equipment to be detected; the primary monitoring equipment and the secondary monitoring equipment are connected to each equipment to be detected and the standby equipment corresponding to each equipment to be detected; the primary monitoring equipment is connected to the secondary monitoring equipment. The above system and control method ensure that an equipment of the vehicle is is abnormal, the vehicle can be switched to a standby equipment of the equipment in time, which greatly reduces an incidence of a safety accident caused by a failure of the equipment.
US11308738B2

A mobile work machine includes a sensor configured to generate a sensor signal indicative of operation of the mobile work machine, a machine performance detection system configured to receive the sensor signal, generate a topological representation of the sensor signal, and determine a machine performance characteristic based on the topological representation relative to a reference model, and a control system configured to generate a control signal to control the mobile work machine based on the machine performance characteristic.
US11308731B2

Systems and methods of identifying unknown video content are described. An example method may include receiving a first fingerprint and a second fingerprint. The first fingerprint may be a color-based fingerprint derived from colors in a portion of the unknown video content, and the second fingerprint may be at least partially based on a feature other than the colors of the unknown video content. A reference database of reference fingerprints may then be queried using one of the first fingerprint or the second fingerprint to obtain a candidate group of fingerprints. The candidate group of fingerprints may then be queried using the other of the first fingerprint and the second fingerprint to identify at least one query fingerprint. The unknown video content may then be identified using the at least one query fingerprint.
US11308727B2

The present disclosure provides a fingerprint detection device and method. The fingerprint detection device includes a detection substrate and a signal converter. The detection substrate includes pixels arranged in rows and columns. Each pixel includes a sensing circuit configured to receive an optical signal and output a sensing electrical signal according to the received optical signal. The signal converter includes A/D converters each coupled to one column of sensing circuits. The fingerprint detection device further includes a control circuit coupled to the sensing circuits and the A/D converters and configured to obtain common mode component of sensing electrical signals output by sensing circuits of at least part of the pixels and provide information about the common mode component to the A/D converters. The A/D converter is configured to perform analog-to-digital conversion on difference between the sensing electrical signal from corresponding sensing circuit and the common mode signal.
US11308723B2

Embodiments of the present disclosure provide a driving state detection method and apparatus, a driver monitoring system, and a vehicle. The driving state detection method includes: performing head pose detection and eye state detection on a driver image to obtain head pose information and eye state information; and determining detection results of fatigue state and distraction state of the driver according to the head pose information and the eye state information.
US11308718B2

A vehicular vision system includes an electronic control unit (ECU) and a plurality of cameras including side-viewing cameras, a front camera and a rear camera. The cameras connect with the ECU via respective coaxial cables. Image data captured by the cameras is converted at a respective serializer to a respective image signal and is carried to the ECU via the respective coaxial cable. The image signals are de-serialized at the respective de-serializers of the ECU. The ECU generates an output provided to a video display device of the vehicle. The output may include a bird's eye view of an environment at least partially surrounding the vehicle. The ECU may connect with the video display device via a coaxial cable. Electrical power for the cameras may be carried from the ECU to the respective cameras via the respective coaxial cables.
US11308710B2

Various embodiments provide a polygonal region detection method and apparatus, a computer readable storage medium and an electronic device. In those embodiments, a to-be-detected image can be obtained. A plurality of line segments in the image can be calculated based on a line detection algorithm. The plurality of line segments meeting a merging condition can be merged into a line segment. Crosspoints of the pairwise merged line segments can be calculated according to the merged line segments in the image. A polygonal region can be generated with the crosspoints as vertexes of the polygonal region in the image.
US11308702B2

A method for displaying an image is applied to an electronic device including a first camera and a second camera. The method includes: acquiring a first real-time image collected by the first camera and a second real-time image collected by the second camera, the first real-time image being different from the second real-time image; determining a target object in the first real-time image; generating a real-time virtual image corresponding to the target object; and displaying the real-time virtual image on the second real-time image.
US11308698B2

In one embodiment, a computing system may generate and display a virtual reality environment to a user. The computing system may determine a head pose of the user based on headset tracking data associated with a headset worn by the user. The computing system may determine a hand pose of the user based on hand tracking data associated with a device held or worn by a hand of the user. The computing system may access scene information associated with the displayed virtual reality environment. The computing system may determine a predicted focal point of the user within the virtual reality environment by processing the head pose, the hand pose, and the scene information using a machine-learning model.
US11308693B2

A method of edge loop selection includes accessing a polygon mesh; receiving a selection of a first edge connected to a first non-four-way intersection vertex; receiving, after receiving the selection of the first edge, a selection of a second edge connected to the first non-four-way intersection vertex; in response to receiving a command invoking an edge loop selection process: evaluating a topological relationship between the first edge and the second edge; determining a rule for processing a non-four-way intersection vertex based on the topological relationship between the first edge and the second edge; and completing an edge loop by, from the second edge, processing each respective four-way intersection vertex by choosing a middle edge as a next edge at the respective four-way intersection vertex, and processing each respective non-four-way intersection vertex based on the rule.
US11308689B2

Managing supply chain inventory is accomplished by measuring the dimensions and the weight of a product. A plurality of images of the product is obtained. The shape of the outer surface of the product is determined. The center of gravity of the product can be calculated. A product model that includes a three dimensional representation of the shape of a configuration of the product and optionally the center of gravity of the product is generated. The product model is stored in memory for future use.
US11308688B2

A localization microscope including an imaging device emitting sample light from a focal plane into an image plane, including an optical-manipulation device for depth-dependent influencing of a point-spread function of the imaging and influencing the point-spread function of the imaging such that a point emitter is imaged in the image plane into an image that is rotationally asymmetrically distorted. A form of the distortion depends on the location of the point emitter with respect to the focal plane and a wavelength of the sample light. The optical manipulation device includes first and second anisotropy elements that anisotropically influence the point spread function to produce rotational asymmetry of the point emitter image. The elements are arranged one behind the other in the imaging direction, with anisotropy axes at an angle to one another. Both elements have differing neutral wavelength at which they do not anisotropically influence the point spread.
US11308685B2

Various implementations disclosed herein include devices, systems, and methods that dynamically-size zones used in foveated rendering of content that includes text. In some implementations, this involves adjusting the size of a first zone, e.g., a foveated gaze zone (FGZ), based on the apparent size of text from a viewpoint. For example, a FGZ may be increased or decreased in width, height, diameter, or other size attribute based on determining an angle subtended by one or more individual glyphs of the text from the viewpoint. Various implementations disclosed herein include devices, systems, and methods that select a text-rendering algorithm based on a relationship between (a) the rendering resolution of a portion of an image corresponding to a part of a glyph and (b) the size that the part of the glyph will occupy in the image.
US11308680B2

Apparatus and method for processing virtual graphics processor telemetry data based on quanta. For example, one embodiment of a graphics processing apparatus comprises virtualization control circuitry to virtualize graphics processing resources of one or more graphics processing units (GPU), wherein one or more virtual machines (VMs) are to be provided with controlled access to the graphics processing resources in accordance with a current graphics virtualization configuration specified, at least in part, in one or more virtualization control registers of the virtualization control circuitry; a scheduler to schedule each VM for processing by the graphics processing resources in accordance with the graphics virtualization configuration, the scheduler to generate a VM switch event responsive to each VM being scheduled for processing on the graphics processing resources; power management circuitry to collect telemetry data associated with VMs which have temporarily completed processing on the graphics processing resources and to forward the telemetry data to a telemetry data aggregator, the telemetry data aggregator to combine telemetry data collected for each VM over a period of time and to store per-VM telemetry data in a data repository accessible by a virtualization management application.
US11308670B2

The present technology relates to an image processing apparatus and method, and a program that are capable of more facilitating editing. The image processing apparatus includes: an operation detection unit configured to detect an operation input by an operation unit; and a display control unit configured to output, to an immersive presentation device, part or entirety of a spherical image on which an image of the operation unit is superimposed, as a presentation image, to cause the immersive presentation device to display the presentation image, the display control unit being configured to control, in a case where the operation input has been detected, the display of the presentation image such that the operation input is reflected. The present technology is applicable to an editing system.
US11308667B1

A computer-implemented method is provided. The embodiments include evaluating, by one or more processors, a specimen chart relative to a chart erratum model that has features mapped to an optimum state for a first chart type. The method also includes generating a first risk score for a first sample feature of the specimen chart. The first risk score may include a delta from the optimum state. The method also includes refactoring the specimen chart to mitigate the first risk score of the first sample feature.
US11308662B2

A system and method for image reconstruction are provided. A first region of an object may be determined. The first region may correspond to a first voxel. A second region of the object may be determined. The second region may correspond to a second voxel. Scan data of the object may be acquired. A first regional image may be reconstructed based on the scan data. The reconstruction of the first regional image may include a forward projection on the first voxel and the second voxel and a back projection on the first voxel.
US11308658B2

Motion adaptive shading increases rendering performance for real-time animation in graphics systems while maintaining dynamic image quality. Each frame of an animation is statically displayed within a refresh interval, while a viewer's eyes move continuously relative to the image when actively tracking a moving object being displayed. As a result, a statically displayed frame is essentially smeared across the viewer's continuously moving retina over the lifetime of the frame, causing a perception of blur referred to as an eye-tracking motion blur effect. A region of an image depicting a moving object may be rendered at a lower shading rate because eye-tracking motion blur will substantially mask any blur introduced by reducing the shading rate. Reducing an average shading rate for rendering frames reduces computational effort per frame and may advantageously allow a rendering system to operate at a higher frame rate to provide a smoother, clearer visual experience.
US11308654B2

A method can include executing an application using a virtual reality headset; rendering a scene of the application to a display of the virtual reality headset; and, during rendering of the scene, rendering a graphic to the display where the graphic represents a power unit that is not physically coupled to the virtual reality headset.
US11308653B2

An electronic device is disclosed. The electronic device according to an embodiment disclosed in the disclosure includes a camera, a display, a memory storing a plurality of captured images and preference information for each captured image, and a processor operatively connected to the camera, the display, and the memory, wherein the processor obtains a live view image using the camera, determines at least one image of which a preference is relatively high among the plurality of captured images as additional information of an augmented reality service based on at least one of the preference information or an object included in the live view image, and displays the additional information and the live view image on the display.
US11308650B2

Disclosed are a display apparatus, an image providing apparatus, and methods of controlling the same, the display apparatus including: a display; and a processor configured to: decode an encoded video stream, decompress the video stream through a neural network including a plurality of channels and a plurality of layers with a parameter set based on learning, and perform image compensation determined based on learning about the decompression with respect to the video stream.
US11308647B2

An image compression method includes segmenting, by a processor, an image file to be compressed into a plurality of blocks; performing, by the processor, a first pixel conversion based on pixel difference values between blocks from among the plurality of blocks; and storing the image file of which the first pixel conversion is completed in a first format.
US11308640B2

A method of registering features in a repeating pattern can include (a) providing an object having a repeating pattern of features and a fiducial; (b) obtaining a target image of the object, wherein the target image includes the repeating pattern of features and the fiducial; (c) comparing the fiducial in the target image to reference data, wherein the reference data includes xy coordinates for a virtual fiducial; and (d) determining locations for the features in the target image based on the comparison of the virtual fiducial in the reference data to the fiducial in the data from the target image. The fiducial can have at least concentric circles that produce three different signal levels. The locations of the features can be determined at a variance of less than 5 μm.
US11308630B2

A system includes a first sensor and a sensor client. During an initial time interval, the sensor client receives top-view images generated by the first sensor and detects contours in the images. The sensor client determines, based on the contours, regions of the top-view images generated by the first sensor to exclude during object tracking. During a subsequent time interval, the sensor client receives a second top-view image generated by the first sensor and detects a contour in the image. The sensor client determines pixel coordinates of the second contour and determines whether at least a threshold percentage of the second pixel coordinates overlap with the region to exclude during object tracking. If at least the threshold percentage of the second pixel coordinates overlap with the region to exclude, a position for tracking the second contour is not determined.
US11308623B2

Methods, systems, apparatus, and computer programs, for processing images through multiple neural networks that are trained to detect a pancreatic ductal adenocarcinoma. In one aspect, a method includes actions of obtaining a first image that depicts a first volume of voxels, performing coarse segmentation of the first image using a first neural network trained (i) to process images having the first volume of voxels and (ii) to produce first output data, determining a region of interest of the first image based on the coarse segmentation, performing multi-stage fine segmentation on a plurality of other images that are each based on the region of interest of the first image to generate output data for each stage of the multi-stage fine segmentation, and determining based on the first output data and the output data of each stage of the multi-stage fine segmentation, whether the first image depicts a tumor.
US11308617B2

The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, and/or the like. In some embodiments, the systems, devices, and methods described herein are further configured to generate one or more assessments of plaque-based diseases from raw medical images using one or more of the identified features and/or quantified parameters.
US11308616B2

Systems and methods are disclosed for grouping cells in a slide image that share a similar target, comprising receiving a digital pathology image corresponding to a tissue specimen, applying a trained machine learning system to the digital pathology image, the trained machine learning system being trained to predict at least one target difference across the tissue specimen, and determining, using the trained machine learning system, one or more predicted clusters, each of the predicted clusters corresponding to a subportion of the tissue specimen associated with a target.
US11308615B1

Systems and methods for medical imaging and analysis are described. The systems and methods comprise generating raw medical image data from a medical imaging hardware device, processing the raw medical image data, generating a processed raw medical image file, transmitting the processed medical image data file and imaging data, identifying a normalization factor based on the imaging detail data, normalizing the processed medical image data file using the normalization factor, and comparing the processed medical image data file with at least one other processed medical image data file. The difference between the processed medical image file and the at least one other processed medical image file is subtracted. A graphical representation of the difference is generated and displayed.
US11308610B2

A system for generating a bullseye plot of a heart of a subject is provided. The system may obtain multiple slice images in a plurality of groups, wherein each group corresponds to one of a plurality of sections of the heart and includes at least one slice image of the corresponding section, and each slice image includes part of the right ventricle, part of the left ventricle, and part of the myocardium. The system may also identify at least one landmark associated with the left ventricle by applying a landmark detection network in each of the slice images. The system may further generate the bullseye plot of the heart based on the at least one landmark identified in each of the multiple slice images, wherein the bullseye plot includes a plurality of sectors, each of which represents an anatomical region of the myocardium in one of the plurality of sections.
US11308605B2

There is a need for more effective and efficient printed circuit board (PCB) design. This need can be addressed by, for example, solutions for performing automated PCB component estimation. In one example, a method includes identifying a PCB image of a PCB; performing chromaticity-based background subtraction on the PCB image to generate a background-subtracted PCB image; performing morphological noise removal on the background-subtracted PCB image to generate a noise-removed PCB image; and performing object localization on the noise-removed PCB image to identify one or more PCB component estimations within the noise-removed PCB image.
US11308604B2

An embodiment provides a method of operating wire harness manufacturing equipment, including: adding, using the manufacturing equipment, an element to a wire to form a combination of the element and the wire; capturing, using an imaging device, an upper image and a lower image of the combination; analyzing, using one or more processors operatively coupled to the imaging device, the upper image and the lower image to detect a defect; and thereafter indicating that the defect has been detected. Other embodiments are described and claimed.
US11308601B2

A system for inspecting a glass container and methods of inspecting glass containers are provided. The system includes a panel including a plurality of light sources configured to illuminate the glass container. The system includes a camera configured to image the illuminated glass container. The system includes a controller configured to adjust the amount of power applied to each of the light sources individually. The system includes a processor configured to evaluate the image of the illuminated glass container for indications of defects in the container. Methods of calibrating the system are also provided.
US11308599B2

Provided is processing of allowing an information processor to output characteristic information on at least either sports equipment or a method for using the sports equipment by a user, the information processor executing: image acquisition processing acquiring an image of the sports equipment after use, of the sports equipment with a mark attached, or of an installed tool installed, during use of the sports equipment, on the sports equipment; position identification processing identifying a position likely to be damaged of the sports equipment by performing detection of a color change place, a shape change place, or the mark on the image acquired in the image acquisition processing; and information outputting processing outputting the characteristic information based on the position identified in the position identification processing.
US11308597B1

An image capture device may detect presence of an on-housing hand within a periphery of a field of view of an optical element during capture of visual content through the optical element. The image capture device may generate an alarm to indicate the presence of the on-housing hand within the periphery of the field of view of the optical element.
US11308587B2

The present invention relates to a learning method of generative adversarial network (GAN) with multiple generators for image denoising, and provides a generative adversarial network with three generators. Such generators are used for removing Poisson noise, Gaussian blur noise and distortion noise respectively to improve the quality of low-dose CT (LDCT) images; the generators adopt the residual network structure. The mapped short connection used in the residual network can avoid the vanishing gradient problem in a deep neural network and accelerate the network training; the training of GAN is always a difficult problem due to the unreasonable measure between the generative distribution and real distribution. The present invention can stabilize training and enhance the robustness of training models by limiting the spectral norm of a weight matrix.
US11308575B2

The present invention discloses an omnidirectional image processing method and device. Format information is extracted from a code stream, positions in a decoded omnidirectional image is mapped to positions on a sphere by using a special mapping relationship according to the format information, and the decoded omnidirectional image at least includes one region which meets the special mapping relationship. The present invention can enable the regions in the decoded omnidirectional image to be distributed more uniformly than the sphere, thereby improving representation efficiency, and reducing conversion distortion. While designing the omnidirectional image processing method, the present invention also designs the corresponding device.
US11308569B2

Disclosed embodiments provide systems and methods related to monitoring logistics. A method for monitoring logistics comprises capturing attendance data and timekeeping data for a first plurality of workers from a first management system, data identifying work performed by a second plurality of workers, the data comprising a location of performed work, an associated scan event, or clock-in information associated with each of a second plurality of workers, from a second management system, and work data related to a third plurality of workers from a third management system. The method further comprises consolidating the captured data on workers having corresponding data in one of the captured sets of data, receiving a request from a user device, for a visualization including analysis of the consolidated data, and providing a visualization to the user device, wherein the visualization is generated by analyzing the consolidated data.
US11308567B2

The technology provides for utilizing and displaying physician analytics. For example, a result metric for a physician is based on a value metric, a quality metric, and/or a quantity metric. The value metric, quality metric, and/or quantity metric may all be received from different sources. The result metric may be displayed on a chart, or the result metric may be utilized for determining referral recommendations for a physician. The result metric may be displayed as a physician indicator on the chart. An insight for the physician may also be determined from the result metric. The insight may be based on the location of the physician indicator on the chart, and the insight may be represented by the color or other visual attribute of the physician indicator. For referral recommendations, the result metric may be used to adjust the rank of a physician in a referral search result.
US11308565B2

An apparatus and a method are provided for an online jury research system which enables a multiplicity of end-users to build surrogate jury surveys by way of a communications network, such as the Internet. The online jury research system comprises a survey builder which enables the end-users to upload information for which responses of surrogate jurors are desired and to assemble surrogate jury surveys. The uploaded information may include questions, videotaped opening or closing statements, depositions, exhibits, and graphics. A host site is accessible to the end-users by way of the communications network and provides access to a jury services package. In an embodiment, the survey services package comprises services operated by one or more third-party service providers. The online jury research system provides the surrogate jury survey to selected respondents and then compiles the results for review by the end-users.
US11308557B2

The disclosed embodiments relate to implementation of a trading system, which may also be referred to as a trading system architecture, having improved performance which further assures transactional determinism under increasing processing transaction loads while providing improved trading opportunities, fault tolerance, low latency processing, high volume capacity, risk mitigation and market protections with minimal impact, as well as improved and equitable access to information and opportunities.
US11308556B2

For presenting trading data, a method presents a market indicator for at least one trading unit as a dynamic display on price data. The method selects the market indicator through a single action of a user input device positioned over the market indicator. The method presents a technical indicator for the market indicator in real time. The technical indicator is summed across a plurality of time frames.
US11308552B1

A distributed system includes a user device that is configured to identify a service provided by a service device; determine a specific amount of funds associated with the service; send, to a lending device, a real-time loan request associated with a loan, where the real-time loan request specifies at least an identifier of the user device and the specific amount of funds for the loan; receive, from the lending device, a digital token that specifies usage restrictions that are associated with (i) an approved amount of funds, (ii) a duration of the loan, and (iii) a payee associated with the service device; and send, to the service device, a real-time transaction request for the service provided by the service device, where the real-time transaction request includes the digital token that is redeemable by the payee associated with the service device for the approved amount of funds for the loan.
US11308545B2

Examples of automated order troubleshooting are described. In an example embodiment, sales-specific data sources associated with at least one of a process, an organization, and an industry relevant for sales operations are monitored. From the monitored sales-specific data, an operation behavioral pattern is identified, based on predefined rules. Subsequently, a behavior model capturing the operation behavioral pattern is constructed using a pre-existing behavior model library. Using the behavior model, a potential event relating to an order received to be fulfilled using the sales operation is predicted, the potential event being indicative of an issue affecting the order. Accordingly, the issue affecting the order is proactively remediated to automatically troubleshoot the order.
Patent Agency Ranking