A sealing arrangement includes: a first machine element and a second machine element, each made of an electrically-conductive material; and a seal. The first and second machine elements are sealed against one another by the seal. At least one of the machine elements is made of an electrically-conductive plastic which is at least partially covered by an electrically-insulating, injection-molded skin as a result of production. The seal has an electrically-conductive support body. The support body has at least one substantially mandrel-shaped projection comprising an electrically-conductive material which is arranged on a side of the support body facing the injection-molded skin and completely penetrates the injection-molded skin.
A heat dissipation device is provided. The heat dissipation device includes a container including a first plate, and a second plate spaced apart from the first plate to define an interior space, at least one filler disposed between the first plate and the second plate and configured to support the first plate and the second plate, a wick layer located on an inner wall defined in the interior space by the first plate or the second plate, and a working fluid configured to flow in the interior space in a gaseous state, and flow in the wick layer in a liquefied state, wherein the container further includes a fluoride-based polymer having a predetermined gas permeability.
An example electrical connector includes a body to receive a circuit board. The body includes a first end and a second end. The electrical connector also includes a first latch rotatably attaches to the first end. The electrical connector further includes a second latch rotatably attaches to the second end. The electrical connector further includes a link member attached to the body. In response to a rotation of the first latch, the link member is to slide across the body from the first latch towards the second latch to rotate the second latch.
A grid array connector system is provided that includes cables connected to pedestals that are mounted on a board. The cables include conductors that are connected to support vias positioned in openings in the board and the conductors are connected to the support vias.
A low-erosion radio frequency ion source is disclosed having a hollow body with conductive interior walls that define a cylindrical cavity, with a gas supply inlet for plasma-forming gases and a power supply inlet for injecting radio frequency energy into the cavity; an expansion chamber connected to the cavity by means of a plasma outlet hole; an ion-extraction aperture in contact with the expansion chamber; coaxial conductor disposed in the cavity, parallel to the longitudinal axis thereof, one or both ends of the coaxial conductor being in contact with a circular interior wall of the body, forming a coaxial resonant cavity; the coaxial conductor having a conductive protuberance opposite the plasma outlet hole and which extends radially into the cavity. It substantially reduces the erosion of the conductive materials.
The invention relates to a method for controlling a current to a light-emitting diode in order for it to emit a desired light flux, wherein the current is determined depending on a time period during which the light-emitting diode is supplied with current, in order to generate the desired light flux for said light-emitting diode.
An apparatus includes a light-emitting diode (LED) driver circuit, one or more LEDs of an LED array, and an electronic switching circuit. The LED driver circuit is configured to generate an electric current. The one or more LEDs are electrically connected to the LED driver circuit. The electronic switching circuit is electrically connected to the one or more LEDs and configured to be placed in one of multiple switching configurations. The electronic switching circuit is further configured to direct a portion of the electric current away from the one or more LEDs, such that a remaining portion of the electric current drives the one or more LEDs. The portion of the electric current corresponds to the one of the multiple switching configurations.
The present application relates to an electronic vaporizer device. An electronic vaporizer device, comprising: an electronic vaporizer device body and an electronic vaporizer, wherein the electronic vaporizer is connected to the electronic vaporizer device body in a pluggable manner.
A heater device includes a heat generation layer that has a heat generation portion configured to generate heat when energized, a pair of electrodes disposed on one side of the heat generation layer and being spaced from each other, a detection portion configured to generate an electric field between the pair of electrodes and detect an object around the pair of electrodes, and a controller configured to control the amount of electric power supplied to the heat generation portion based on a detection result by the detection portion.
The present technology relates to a transmission apparatus, a transmission method, a reception apparatus, and a reception method that enable channel selection information and time information to be transmitted effectively. A transmission apparatus acquires channel selection information for selecting a service and time information used for synchronizations on a transmission side and a reception side, generates, as a physical layer frame constituted of a preamble and a data portion, the physical layer frame in which specific information including at least one of the channel selection information and the time information is arranged at a head of the data portion right after the preamble, and transmits the physical layer frame as digital broadcast signals. The present technology is applicable to IP packet broadcasting, for example.
A wireless communication apparatus performs communication with a relay apparatus that performs change processing for changing a channel for wireless connection upon detecting an interference condition. The wireless communication apparatus includes a wireless communication unit and a communication control unit. The wireless communication unit establishes the wireless connection with the relay apparatus. The communication control unit performs control for disconnecting the wireless connection, when the communication with the relay apparatus through the wireless connection stops for a period based on a set timeout time. The communication control unit increases the period before the control for disconnecting the wireless connection is performed, when the wireless connection is performed through a target channel on which the change processing is performed.
The present inventions, in one aspect, are directed to systems and circuitry for and/or methods of establishing communication having one or more pairing facilitator-intermediary devices (for example, a network connected server) to enable or facilitate pairing and/or registering at least two devices (e.g., (i) a portable biometric monitoring device and (ii) a smartphone, laptop and/or tablet) to, for example, recognize, interact and/or enable interoperability between such devices. The pairing facilitator-intermediary device may responsively communicates information to one or more of the devices (to be paired or registered) which, in response, enable or facilitate such devices to pair or register. The present inventions may be advantageous where one or both of the devices to be paired or registered is/are not configured (e.g., include a user interface or certain communication circuitry that is configured or includes functionality) to pair devices without use of a facilitator-intermediary device.
The present invention relates to a method for performing a random access procedure by a user equipment in a wireless communication system. In particular, the method includes transmitting a first number of random access preambles; detecting a second number of random access responses corresponding to the first number of random access preambles; and transmitting an payload using one uplink grant for which a listen before talk (LBT) procedure is firstly successful among a second number of uplink grants included in the second number of random access responses.
A method to reserve a directional channel, such as in an unlicensed spectrum for instance, is disclosed. In an example embodiment, the method may be performed by a receiving node, such as a user equipment (UE) for instance. In such method, the receiving node may receive an enhanced directional transmit request message from a transmitting node and transmit an enhanced directional transmit confirmation message using one or more first beams, with at least one first beam being directed in a first direction towards the transmitting node. Further, the receiving node may transmit at least one additional enhanced directional transmit confirmation message using one or more second beams, with at least one second beam being directed in a second direction towards a potentially interfering node. In the method, the second direction is a different direction than the first direction.
A base station schedules a user equipment (UE) for uplink air link resources, e.g., unlicensed spectrum PUSCH resources, corresponding to one or more slots and, in some embodiments, at least one mini-slot. There may be, and sometimes are gaps between two scheduled slots and/or between a scheduled slot and a scheduled mini-slot. Different uplink air link resources corresponding to a schedule slot or mini-slot may, and sometimes do, use different set of frequencies. The base station generates and sends to the UE a single UL grant which grants uplink air link resources corresponding to the composite of resource allocations corresponding to the one or more slots and, in some embodiments, at least one mini-slot. The single UL grant may, and sometimes does, communicates gap information and frequency information.
A method comprises constructing, by an access point (AP), a radio frame within a scheduling window, the radio frame including at least a preamble part compatible with an existing IEEE 802.11 preamble legacy preamble, a preamble part used in a next-generation IEEE 802.11 standard (HEW preamble), and the first downlink subframe (DL subframe); sending the Legacy preamble, the HEW preamble and the first DL subframe in the radio frame; receiving at least one uplink subframe (UL subframe) located after the first DL subframe; wherein each of the at least one UL subframes is triggered by one DL subframe located before the UL subframe.
Solutions for interference aware uplink cell selection for a user equipment (UE) include: determining a path loss (PL) between the UE and a considered cell; determining a PL between the UE and a neighbor cell; based on at least the PL between the UE and the considered cell and the PL between the UE and the neighbor cell, determining a cell with an uplink frequency band having a minimum relative PL for the UE; and assigning, to the UE, the cell with the uplink frequency band having the minimum relative PL. In some examples, the network includes both 5G and 4G cells. Some examples include determining whether the PL for the cell having the minimum relative PL for the UE meets a PL threshold and if so, assigning, to the UE, the cell with the uplink frequency band having the minimum absolute PL for the UE.
Systems and methods for iterative distributed beam selection include a device including at least one of a first head wearable display (HWD), a second HWD, a first console or a second console. The device detects a predefined condition. The device performs a first distributed beam selection responsive to detecting the predefined condition. Performing the first distributed beam selection includes performing beamforming to provide a first plurality of beams for a first link between the first HWD and the first console, selecting a first beam of the first link with a highest signal-to-interference-plus-noise ratio (SINR) from the first plurality of beams, performing beamforming to provide a second plurality of beams for a second link between the second HWD and the second console while the first beam of the first link is active, and selecting a second beam of the second link with a highest SINR from the second plurality of beams.
Base stations and user equipments (UEs) for random access and contention resolution. A method for operating a UE includes receiving configurations for a first control resource set (CORESET) that includes a first number of resource blocks (RBs) in a frequency domain and a first number of symbols in a time domain, a second CORESET that includes a second number of RBs in the frequency domain and a second number of symbols in the time domain, and a reference signal received power (RSRP) threshold. The method further includes determining a first RSRP value and receiving a first physical downlink control channel (PDCCH). The first PDCCH reception is in the first CORESET when the first RSRP value is larger than the RSRP threshold and the first PDCCH reception is in the second CORESET when the first RSRP value is smaller than the RSRP threshold.
A wireless device and network node are provided. According to one aspect, the wireless device includes processing circuitry configured to determine at least a first timing adjustment parameter based on at least a first numerology 5 parameter and adjust the timing of an uplink transmission based on the first timing adjustment parameter. According to another aspect, a method includes a timing adjustment parameter determiner module configured to determine at least a first timing adjustment parameter based on at least a first numerology parameter. The method also includes a timing adjustment module configured to adjust the timing of an uplink transmission based on the first timing adjustment parameter. These arrangements allow for the preservation of network node reception performance.
An information transmission method, a terminal and a network device are provided. The information transmission method includes: determining a plurality of PUCCH resources corresponding to UCI; determining a target PUCCH resource for the UCI transmission from the plurality of PUCCH resources, according to Scheduling Request (SR) states of a plurality of SR configurations; and sending the UCI through the target PUCCH resource.
Apparatus and methods for segmentation of resource/control messages in a wireless system. In one embodiment, the messages being segmented are radio resource control (RRC) messages used in a downlink direction for a 3GPP 5G New Radio (NR) system. In various implementations, RRC segmentation in the downlink direction is enabled in a generic manner when message size exceeds a prescribed limit. A container format is specified, and messaging exchanged between the UE and base station (gNB) indicates (i) the UE's capability for receiving segmented messages, and (ii) data related to the segmented message that the UE can utilize to receive and reassemble the message, as well as a protocol to be followed upon detection of link failure. In one variant, a 4G/4.5G LTE/LTE-A configuration is disclosed.
An apparatus, and an associated method, for facilitating communication operations with a wireless device that is ICS or DTM capable. Signaling protocols and apparatus are provided for operation of the wireless device when an ICS with the wireless device is ongoing, and the device leaves an area that provides for ICS as well as when the ICS can be provided using circuit-switched connections.
Methods, systems, and devices for wireless communications are described. A wireless device (e.g., a user equipment and/or base station) may operate in a first mode in a wireless network over a radio frequency spectrum band. The wireless device may receive a signal indicating that a value of the radio frequency spectrum band has satisfied a threshold value. The wireless device may switch, based at least in part on the signal indicating that the value has satisfied the threshold value, from the first mode to a second mode for wireless communications in the wireless network, wherein a first length of a first synchronization signal block associated with the first mode is shorter than a second length of a second synchronization signal block associated with the second mode.
A method of controlling power in a transmission system may include determining a first transmit power of a first transmit path, determining a second transmit power of a second transmit path, and controlling the first transmit path and the second transmit path based on a combination of the first transmit power and the second transmit power. The combination of the first transmit power and the second transmit power may include a sum of the first transmit power and the second transmit power. Controlling the first transmit path and the second transmit path may include determining a first effective power target for the first transmit path based on the first transmit power and the second transmit power, and determining a second effective power target for the second transmit path based on the first transmit power and the second transmit power.
An uplink channel sending method includes sending, by a terminal device, a first uplink channel to a network device at a first power in a first time unit of a first Bandwidth Part (BWP) region, and sending, by the terminal device, the first uplink channel to the network device at a second power in a second time unit of a second BWP region. The second time unit is adjacent to the first time unit, the second BWP region is different from the first BWP region, and the second power is determined using a reset accumulated closed-loop power, an absolute closed-loop power, or the first power and an offset value.
A method for establishing and controlling a connection of a user equipment (UE) to a radio access network (RAN) included in a heterogeneous wireless network (HWN), including: selecting, via the UE, a RAN from a plurality of heterogeneous RANs detected by the UE based at least in part on a first set of parameters; establishing connection of the UE to the selected RAN; and determining, via a heterogeneous management controller, whether to persist connection of the UE to the selected RAN. Determining whether to persist connection of the UE to the selected RAN includes monitoring a plurality of attributes associated with at least one of the UE, the selected RAN, and the connection between the UE and the selected RAN; and evaluating the plurality of attributes based on a second set of parameters, the second set of parameters being different from the first set of parameters.
[Object] To simplify the operation of a terminal device for performing D2D communication in which the same communication scheme as the communication scheme of cellular communication is adopted.
[Solution] Provided is a terminal device including: a detection unit configured to detect a synchronization signal for wireless communication with a base station; and a control unit configured to control transmission of a synchronization signal for inter-device communication. A radio frame used in the wireless communication with the base station and a radio frame used in the inter-device communication have a same frame structure. A timing of the synchronization signal for the inter-device communication in the same frame structure is same as a timing of the synchronization signal for the wireless communication with the base station in the same frame structure.
A system and method for device to device (D2D) network-assisted device discovery are provided. The method includes initiating the D2D network-assisted device discovery of a receiving UE to enable a target UE and the receiving UE to establish a D2D communication. The method also includes performing a discovery feasibility measurement to determine whether a D2D communication between the target UE and the receiving UE is feasible. The method further includes transmitting a discovery setup message and receiving a discovery report from the target UE.
This application provides a cell measurement method and terminal device. The cell measurement method includes: first determining, by a terminal device, whether a cell meets a first preset condition; and when the terminal device determines that the cell meets the first preset condition, measuring or evaluating, by the terminal device, the cell by using a first period; or when the terminal device determines that the cell does not meet the first preset condition, measuring or evaluating, by the terminal device, the cell by using a second period, where the cell being a serving cell or a neighboring cell of the terminal device corresponds to different first preset conditions, and the first period is different from the second period.
The present invention relates to methods and apparatuses for controlling commissioning and/or control of a combo network device with dual connectivity in a wireless network by using a smart device. In a factory new state, the combo network device has not yet joined any wireless network by its first connectivity (e.g. Zigbee) and thus broadcasts a beacon with beacon information to solicit a connection from the smart device by its second connectivity (e.g. BLE). If the combo network device joins a wireless network, it enters an associated state in which the beacon information will now contain an identification of the wireless network. Thus, the beacon information changes based on the status of the combo network device and supports a handover process for an installer or controller.
Methods, apparatus, systems and articles of manufacture are disclosed to determine virtual WiFi data rate. An example disclosed herein includes a control frame receiver to capture control frames from a user device. The example disclosed herein further includes a bitrate calculator to calculate a bitrate for each control frame by dividing a bitmap of a control frame by an amount of time between the control frame and a previously captured control frame. The example disclosed herein further includes an interval timer to control a length of time that the control frames are captured before calculating the virtual bandwidth. The example disclosed herein further includes a virtual bandwidth calculator to calculate the virtual bandwidth after the length of time, the virtual bandwidth calculated by dividing an average bitrate from the control frames by the length of time.
Provided is a measurement reporting method, measurement configuration method, terminal and network side device, wherein the measurement reporting method comprises: the terminal reports the measurement result of the reference signal of the first predetermined bandwidth portion BWP.
A load migration method, apparatus, and system. The method includes obtaining, by a first controller, in a process of migrating a user equipment (UE) to the first controller from a second controller, a first temporary user identifier of the UE, the first temporary user identifier comprising a second identifier of the second controller, allocating, by the first controller, a second temporary user identifier to the UE, the second temporary user identifier comprising a first identifier of the first controller, transmitting, by the first controller, the second temporary user identifier to a database server for updating the first temporary user identifier by the second temporary user identifier, and sending, by the first controller to an external network element, the first identifier of the first controller.
An information handling system includes an application processor that executes instructions to determine one or more communication link options and a wireless adapter that communicates with a conditional shared spectrum wireless link option. The application processor determines whether a higher priority user is occupying the conditional shared spectrum wireless link option and determines an optimal wireless link from among the communication link options, including any available conditional shared spectrum wireless link options, and selects a wireless link from among the wireless link options based on a spatial-temporal radio frequency profile that indicates signal quality for wireless links available at the location and a spatial-temporal user profile, including wireless service usage trend data for the location.
An object of the present invention is to provide a radio communication apparatus, a wireless LAN router, an unauthorized access prevention method, and a radio communication system that have security for protection against unauthorized access. A radio communication apparatus (1) according to the present invention includes: first radio communication means (10) for functioning as an access point for radio communication; second radio communication means (20) for functioning as an access point for radio communication; and storage means (21) for storing dummy information. The first radio communication means (10) has a security level higher than that of the second radio communication means (20), and the second radio communication means (20) is capable of transmitting the dummy information stored in the storage means (21).
Apparatuses, methods, and systems are disclosed for user equipment authentication. One method includes transmitting, from a user equipment, a request message to one or more network devices. The method includes, in response to transmitting the request message, attempting authentication with the one or more network devices. The method includes, in response to successfully authenticating with the one or more network devices, transmitting a message comprising first location information corresponding to the user equipment to the one or more network devices.
A relay device transfers a plurality of original data fragments corresponding to a plurality of secret sharing values of original data to a plurality of secure computation devices, transfers, to each of the secure computation devices, a request to send a result fragment based on a secure computation result corresponding to any one of the original data fragments, and transfers the result fragment. The relay device controls timing with which the original data fragments are transferred and timing with which the request to send is transferred.
A secure infrastructure onboarding system includes an infrastructure device with an infrastructure device wireless subsystem that it may use to perform wireless key management system discovery operations in response to initialization. A key management system includes a key management system wireless subsystem it uses to perform the wireless key management system discovery operations with the infrastructure device. The key management subsystem may then wirelessly receive an infrastructure device certificate along with an infrastructure device validation key from the infrastructure device, and validate the first infrastructure device based on the first infrastructure device certificate and the first infrastructure device validation key. In response, the key management system may wirelessly transmit a first credential generation key that is configured for use by the first infrastructure device to generate first authentication credentials.
A wirelessly enabled mirror includes a mirror, a wireless data system, and a data output interface. The mirror has a front side and a back side. The wireless data system includes a wireless data module. The wireless data system is fixed to the back side of the mirror. The wireless data module is configured to communicate with a user device and to receive wireless data from the user device. The data output interface is configured to receive data from the wireless data module, and the data is derived from a wireless stream of data.
A method and apparatus are disclosed from the perspective of a UE (User Equipment) with a first USIM (Universal Mobile Telecommunications System Subscriber Identity Module) and a second USIM. In one embodiment, the method includes the UE transmitting, to a first network node associated with the first USIM, a message carrying information related to a signaling activity between the UE and a second network node associated with the second USIM.
A method, a computer-readable medium, and an apparatus are provided for wireless communication at a user equipment (UE). The apparatus determines that a first subscriber identity module (SIM) and a second SIM of the UE share a cross switch and determines whether to modify concurrent operation of the first SIM or the second SIM based, at least in part, on a determination that the first SIM and the second SIM of the UE share the cross-switch. The concurrent operation of the first SIM and the second SIM may include the first SIM performing SRS antenna switching and the second SIM performing an idle mode activity.
Vehicles can employ onboard telematic monitoring devices to collect vehicle and operation data, such as for improved vehicle fleet management. Such telematic monitoring devices are dependent on power from a vehicle, such that data collection and communication can be interrupted if a telematic monitoring device is disconnected or has a poor connection. The present disclosure relates to battery devices, which provide power to telematic monitoring devices as needed in order to maintain data collection and communication, or other more limited functionality. The present disclosure also relates to systems including battery devices, and methods for operating battery devices. The present disclosure also relates to detecting temperature of batteries, as well as emergency input and messages for telematic monitoring systems.
Design of search spaces and grants in enhanced machine-type communication (eMTC) is discussed in which the search space for common control information is determined based on the search space for non-common control information. In addition, the monitoring of search spaces by mobile devices is also discussed. Additionally, communication schemes between base stations and mobile devices in which information is provided in multiple transmission modes is also discussed. Other aspects discuss schemes for the transmission of control information.
A method of validating a set of location sensors deployed in a facility includes: receiving sensor data from at least a subset of the location sensors; generating a current location of a mobile reference target within the facility based on (i) the sensor data and (ii) expected positions corresponding to the location sensors; based at least on the current location: (i) selecting at least one of the location sensors, and (ii) setting an inspection indicator for the selected location sensor; presenting sensor status data including the inspection indicator via an output device associated with the mobile reference target; and repeating the generating, the selecting, the setting, and the presenting until inspection indicators have been set for each of the location sensors.
A locating and communication method for a radio terminal by means of a satellite locating and communication system, which implements a first step, in the course of which the radio terminal transmits to a non-geostationary satellite a repeating sequence a predetermined number of times N for the same data packet, which is time-shifted by the same predetermined time shift Δτ each time is provided. Subsequently, a satellite access and processing ground station determines the location of the radio terminal from the data packets with access, which are extracted from a listening signal digitized and dated by the satellite and from the same detected sequence associated with said radio terminal, and from the ephemerides of the satellite by using a technique for measuring angle or angles of arrival by means of sequenced interferometry associated with a technique for measuring Doppler drift or drifts.
Methods, systems, and devices for wireless communications are described. A first user equipment (UE) may receive, from a second UE, a first control signal indicating a range value corresponding to a threshold distance for triggering feedback reporting from the first UE for transmissions from the second UE. The first UE may calculate a traversable distance corresponding to a traversable route between the first UE and the second UE, determine, based on the calculated traversable distance and the range value, whether the first UE is within the threshold distance for triggering feedback reporting, and perform, based on whether the first UE is within the threshold distance, a feedback procedure for the feedback reporting. The first UE may receive, from the second UE, a second control signal indicating a type of distance measurement corresponding to the threshold distance for triggering feedback reporting.
To avoid damage from overheating, playback device operation can be modulated based on input from temperature sensors. An example method includes obtaining, via one or more temperature sensors carried by the playback device, temperature data. Based on the temperature data, a first temperature parameter is detected. In response to detecting the first temperature parameter, a gain of audio playback is decreased by a first amount. After decreasing the gain of audio playback by the first amount, a second temperature parameter is detected. In response to detecting the second temperature parameter, the gain of audio playback is decreased by a second amount different than the first amount.
A hearing aid contains a housing having a baseplate and a housing shell, a number of electrical units, and a transmitting and receiving unit for transmitting and receiving electromagnetic waves. The number of electrical units are fastened on the baseplate. The transmitting and receiving unit includes an electronic circuit for generating a transmission signal and an antenna unit coupled thereon, and the antenna unit includes a first antenna arm and a shielding element for shielding the first antenna arm against the number of electrical units.
Disclosed is a speaker unit for an earphone. The speaker unit includes a frame, a magnet, a plate fixed to the frame and coming into contact with the magnet, a diaphragm, a coil disposed to be radially overlapped with the magnet and the plate, and a flexible printed circuit board (FPCB). Here, the FPCB includes a first area fixed to the diaphragm, a second area connected to the frame, and a plurality of third areas configured to connect the first area to the second area. The third area includes a contact point connected to the coil. The third areas each include at least one bent area, and a space is disposed between the third areas adjacent to each other.
An electroacoustic transducer assembly includes an electrostatic diaphragm having a surface. The diaphragm includes a film of flexible insulating material and electrically conductive material within the film to achieve a uniform electrical resistivity over the surface.
An ear-plug device is an in-ear device that presents audio content to an ear canal of a user. The in-ear device includes a body configured to at least partially fit inside the ear canal of the user, and a transducer assembly coupled to the body. The transducer assembly comprises at least one transducer located within the ear canal. The at least one transducer is configured to vibrate a portion of the ear canal to cause the ear canal to create an airborne acoustic pressure wave in the ear canal in accordance with vibration instructions. The airborne acoustic pressure wave corresponds to and is for presentation of the audio content to the user.
Systems and methods include, responsive to obtaining measurement data from an optical network and determining viability of a plurality of paths based on Signal-to-Noise Ratio (SNR) and availability of the plurality of paths, providing a User Interface (UI) that displays one or more photonic services and a path viability visualization for each of the one or more photonic services, wherein the path viability visualization, for each photonic service, includes visual elements for available paths of the plurality of paths and an indicator associated with each visual element indicative of path viability; and updating the UI responsive to a change in any of the viability and the availability of the plurality of paths. The steps can further include periodically obtaining the measurement data from the optical network and determining the viability of the plurality of paths.
Method, system and computer program product for providing additional information to a handheld device (HHD) about a displayed point of interest in video programming displayed on a multimedia display. A image of the video programming captured by a HHD camera can be used at a remote server to identify the video programming by matching it with archived programming. If identified, additional information related to the video programming can be obtained/provided. A region within a particular frame of displayed video programming can be selected at the HHD to access additional information about a point of interest associated with the region. The additional information can be displayed on the HHD or a secondary display, in response to selecting the region to access the additional information from a remote server.
The present technology relates to a receiver for efficiently acquiring a component configuring a service, a reception method, a transmitter, and a transmission method.
The receiver acquires first signaling data distributed on a broadcast wave of digital broadcasting in an IP transmission system, acquires broadcast signaling data as second signaling data, acquires communication signaling data as the second signaling data when flag information included in the broadcast signaling data indicates that the communication signaling data is provided from a server over the Internet together with the broadcast signaling data, and connects to a stream of a broadcast component or a stream of a communication component thereby to control reproduction of the component on the basis of at least one of the broadcast signaling data and the communication signaling data. The present technology is applicable to TV receivers, for example.
Disclosed example audience measurement apparatus determine a first audience metric based on set-top box return path tuning data obtained from set-top boxes located in a first geographic area; determine a second audience metric from a portion of audience measurement data corresponding to a second geographic area, the portion of the audience measurement data associated with monitored sites in the second geographic area having second set-top box characteristics that correspond with first set-top box characteristics of the set-top boxes located in the first geographic area; determine ratios of (i) respective first audience metrics determined for respective demographic stratifications to (ii) corresponding second audience metrics determined for the respective demographic stratifications; and combine the ratios after multiplication with third audience metrics determined, for the respective demographic stratifications, from the audience measurement data to determine an audience exposure metric that estimates exposure to media in the first geographic area.
When a media client is receiving a media stream, the media client determines an upcoming time point at which the media client is to perform a content revision involving insertion (e.g., substitution or overlaying) of new content. The media client further determines an advanced time point when the media client should initiate a process of acquiring the new content, setting the advanced time point sufficiently in advance of the upcoming content-revision time point to enable the media client to obtain at least enough of the new content to be able to start the content revision on time. In an example implementation, the media client could determine the advanced time point by predicting how long the content-acquisition process will take, based on consideration of past instances of content acquisition, possibly correlated with operational factors such as content source, processor load, memory load, network speed, and time of day.
The present invention provides to a web-based software and hardware system that act together with a user device to capture an audio feed, to easily encode and add meta data to the audio content using input from studio systems, parse the content based on its type, and to provide the means to incorporate a feed segment produced from the encoded audio feed into a secondary production which is used to provide an indexed archive of audio and on-demand broadcast content, for example, by the creation and publication of pod-casts or on-demand broadcast, which includes ad positions inserted and dynamically served.
An intra-frame prediction method and device, according to the present invention, enables deriving an intra-frame prediction mode of a current block, determining a pixel line, among a plurality of pixel lines, for the intra-frame prediction of the current block, and carrying out the intra-frame prediction of the current block on the basis of the intra-frame prediction mode and the pixel line. In addition, a first reference pixel of the determined pixel line may be selectively filtered, and a prediction pixel of the current block may be selectively corrected, and thus the accuracy of the intra-frame prediction may be improved.
In one example, a video coder is configured to code a first slice, wherein the first slice comprises one of a texture slice and a corresponding depth slice, wherein the first slice has a slice header comprising complete syntax elements representative of characteristics of the first slice. The video coder is further configured to determine common syntax elements for a second slice from the slice header of the first slice. The video coder is also configured to code the second slice after coding the first slice at least partially based on the determined common syntax elements, wherein the second slice comprises one of the texture slice and the depth slice that is not the first slice, wherein the second slice has a slice header comprising syntax elements representative of characteristics of the second slice, excluding values for syntax elements that are common to the first slice.
A video encoding system in which pixel data is decomposed into frequency bands prior to encoding. The frequency bands are organized into blocks that are provided to a block-based encoder that encodes the blocks and passes the encoded blocks to a wireless interface that packetizes the blocks for transmittal over a wireless connection. The encoder may categorize the encoded frequency bands into multiple priority levels, and may tag each frequency block with metadata indicating the frequency band represented in the block, the priority of the frequency band, and timing information. The wireless interface may then transmit or drop packets according to the priority levels of the encoded frequency blocks in the packets and/or according to the timing information of the frequency blocks in the packets.
Aspects of the disclosure provide a method and an apparatus including processing circuitry for video decoding. The processing circuitry decodes, from a coded video bitstream, coding information for a current picture. The coding information indicates that a geometric merge mode is enabled for a coding level higher than a picture level of the current picture and a maximum number of merge candidates satisfies a condition. The processing circuitry determines, based on a picture level parameter signaled for the current picture in the coded video bitstream, a maximum number of geometric merge mode merge candidates based on the picture level parameter and the maximum number of merge candidates. The maximum number of geometric merge mode merge candidates can be (i) 0 or (ii) one of 2 to the maximum number of merge candidates. The picture level parameter indicates the maximum number of geometric merge mode merge candidates.
A decoding method includes obtaining an identifier from a bitstream, where the identifier indicates a minimum decoding time interval k between library pictures that is allowed in the bitstream, obtaining, when parsing the bitstream, a decoding moment ti of a current decoded picture and a decoding moment tj of a first decoded picture that is closest to the current decoded picture and that references a new library picture when the current decoded picture is decoded by referencing a library picture, where the new library picture is a library picture that is not decoded or needs to be re-decoded when the first decoded picture is decoded, and determining a preset quantity of library pictures as candidate reference pictures of the current decoded picture based on a relationship between k and a difference between ti and tj.
A method of decoding an encoded video bitstream using at least one processor includes determining, based on the encoded video bitstream, that a single-value string matching mode is enabled; obtaining, from the encoded video bitstream, an index indicating a reference sample within a set including a plurality of reference samples; based on the reference sample indicated by the index, determining a color value to be used for samples included in a current string of a current block; reconstructing the samples included in the current string based on the determined color value; and reconstructing the current block using the reconstructed current string.
Disclosed herein are a method, an apparatus and a storage medium for performing encoding/decoding on an image using a subpicture. A picture may be partitioned into various units such as subpictures and slices, and various syntax elements and structures may be used to specify the units. In an embodiment, there is a method for configuring a reference picture list for motion compensation in the case where the location of a reference subpicture to be referred to for motion compensation is different from the location of a target subpicture. Further, in an embodiment, there is provided a method for providing the configuration of a reference picture list and an override on the number of activated reference indexes.
An image display device includes a display panel, a barrier panel, a light projecting unit, and a controller. The display panel is configured so as to include a first display region. The barrier panel is configured so as to include a first barrier region. The light projecting unit is configured so as to include a first light emitting region. The controller is configured so that a portion located in the first display region is displayed as one parallax image frame including two subframes, and configured so that a light quantity of light emitted from the first light emitting region is reduced during a frame change period including a timing of changing display from the parallax image frame to a new parallax image frame.
A display processor and computer-implemented method are provided for processing three-dimensional [3D] image data for display on a 3D display. The 3D display is arranged for emitting a series of views of the 3D image data which enables stereoscopic viewing of the 3D image data at multiple viewing positions. The series of views may be displayed on the 3D display using overscan. The degree of overscan may be determined as a function of one or more depth range parameters, the one or more depth range parameters characterizing, at least in part, a degree of depth perceived by a viewer when the series of views is displayed on the 3D display.
Disclosed are a terminal, an operating method thereof, and a computer-readable recording medium. The operating method includes establishing a video call session between a first terminal and a second terminal, receiving, by the second terminal, data obtained by the first terminal, sequentially storing, by the second terminal, the data received from the first terminal in a buffer size, performing, by the second terminal, a validity check on the data stored in the buffer, and processing, by the second terminal, the data in response to a result of the validity check.
A video conference system including a transmitter device and a receiver device is provided. The transmitter device includes a transmitter control unit, a transmitter input interface, a transmitter video circuit and a first wireless transmission module. The transmitter control unit is coupled to a video output port of an information system and receive a first video data from the video output port. The transmitter input interface receives a second video data from a first video source. The transmitter video circuit combines the first video data and the second video data as a combined video data. The first wireless transmission module transmits the combined video data to the receiver device. The receiver device, coupled to the display device, includes a second wireless transmission module, which receives the combined video data. The receiver device transmits the combined video data to the display device.
A signal processing circuit includes a reference signal line, a processing circuit that processes a potential of the reference signal line and a potential of an input signal, a first reference voltage supplying circuit that outputs a predetermined potential to one end of the reference signal line, and a second reference voltage supplying circuit that outputs a predetermined potential to the other end of the reference signal line.
The dynamic range of a pixel is increased by using selective photosensor resets during a frame time of image capture at a timing depending on the light intensity that the pixel will be exposed to during the frame time. Pixels that will be exposed to high light intensity are reset later in the frame than pixels that will be exposed to lower light intensity.
A system for illuminating a character for a scene includes a computing platform communicatively coupled to a lighting source and a camera, the computing platform including a hardware processor and a system memory storing a software code. The hardware processor executes the software code to identify a background for the scene, generate, using the lighting source, a simulation of the background on a surface illuminated by the lighting source, and utilize the simulation of the background generated on the surface illuminated by the lighting source to illuminate the character for the scene. The hardware processor also executes the software code to track, using the camera, a plurality of parameters of the camera during recording of an image of the illuminated character and the simulation of the background, and to remove the simulation of the background from the image based on the plurality of parameters of the camera.
An image capturing apparatus includes an image capturing unit configured to change a charge accumulation time for each area, a histogram calculation unit configured to calculate a histogram of a pixel value for the each area, an area increase/decrease unit configured to increase or decrease the number of divisions of the area based on the histogram calculated by the histogram calculation unit, and a determination unit configured to determine a charge accumulation time of the each area of which number has been increased or decreased by the area increase/decrease unit.
The present invention is to realize a simple communication connection. A shooting system S includes: a display device 2 configured to change identifiers periodically so as to present an identifier; a management server 1 configured to share the identifier with the display device 2; and a user terminal 4 configured to acquire the identifier presented on the display device 2 when an identifier acquisition operation by a user is detected, and to transmit, to the management server 1, the acquired identifier and an operation instruction to operate a camera 3 identified by the acquired identifier. The management server 1 includes an information control block 114 which performs control to associate image data acquired with the camera 3 based on the operation instruction transmitted by the user terminal 4 with the identifier presented on the display device 2 when the identifier acquisition operation by the user is detected.
A camera module of an embodiment includes: a liquid lens including a common electrode and a plurality of individual electrodes; and a control circuit electrically connected to the common electrode and the individual electrodes and configured to control the liquid lens, wherein, when a driving voltage for driving the liquid lens is changed, the control circuit floats at least one of the plurality individual electrode in a state in which a first voltage is applied to the common electrode.
Provided is an imaging unit that includes two or more imaging devices that are different from each other in imaging direction, and a substrate formed with each of the imaging devices. The substrate has a coupler formed between the imaging devices. The imaging unit including the plurality of imaging devices is able to yield a high-quality image when capturing an image of a wide range.
Methods and apparatus for Real-time Satellite Imaging System (10) are disclosed. More particularly, one embodiment of the present invention an imaging sensor (14) on a geostationary satellite having one or more co-collimated telescopes (18). The telescopes (18) illuminate local planes (22) which are sparsely populated with focal plane arrays (24). The focal plane arrays (24) record the entire observable Earth hemisphere at one time, at least once every ten seconds.
A mobile client device includes a photo controller to identify when a client device captures a picture. Photo filters are designated based upon attributes of the mobile client device. The picture with a selected photo filter is sent to a server for routing to other client devices.
In an imaging element in which a plurality of phase difference detection pixels and a plurality of normal pixels for imaging are two-dimensionally arranged in a horizontal direction and a vertical direction, the phase difference detection pixel includes a first phase difference pixel ZA and a second phase difference pixel ZB including opening portions for pupil separation at different positions in the horizontal direction. The first phase difference pixel ZA and the second phase difference pixel ZB are adjacently arranged to have the opening portions facing each other. RGB color filters are arranged in the plurality of normal pixels in the Bayer arrangement. The imaging element includes a normal pixel row in which only the normal pixel is arranged in the horizontal direction and a phase difference pixel row in which the first phase difference pixel ZA, the second phase difference pixel ZB, and one normal pixel are periodically arranged in the horizontal direction.
The present embodiment relates to a light-emitting module comprising: a substrate; a light source which is arranged on the substrate and emits laser light; a holder arranged on the substrate; a diffuser lens arranged in the holder and over the light source; and a diffuser ring for supporting the diffuser lens, wherein the diffuser lens comprises a plurality of microlenses, and the holder comprises an opening formed above the diffuser lens and a stopping protrusion for inhibiting the diffuser lens from being separated through the opening.
An image processing system includes an information processing apparatus and an image processing apparatus. The image processing apparatus generates a plurality of pieces of image data by scanning a plurality of documents, associates, with image data generated by scanning a handwritten document out of the plurality of pieces of image data, information indicating that the image data is image data generated by scanning a handwritten document, and transmits, to the information processing apparatus, the plurality of pieces of image data and the information. The information processing apparatus receives the information and the plurality of pieces of image data; and executes character recognition processing on first image data with which the information is not associated, and obtains character information based on the first image data, wherein character information based on second image data with which the information is associated is obtained by executing processing different from the character recognition processing.
A measurement apparatus includes a light irradiator that irradiates a measurement target with light and a processor that controls the light irradiator, in which the processor is configured to irradiate a specific place of the measurement target with the light from plural places having different positions in one direction, and irradiate the specific place of the measurement target with the light from the plural places having different positions in a direction intersecting the one direction.
Systems and methods for flexible and extensible contact center routing are disclosed. Incoming communications are received at a contact center from one or more customers. A pairing score is determined for each agent capable of servicing the incoming communications for each of the one or more customers based on customer attributes and/or agent attributes that are adjustable and extensible. An incoming communication is routed from a customer to an agent having a highest pairing score with the customer. The incoming communication can be routed on a first communication channel and then switched over to a second communication channel. The first communication channel and second communication channel can be different types of communication channels.
A system and method for operating and testing real-time communications between web browsers and contact centers, comprising an operator network, cloud contact center, cloud contact center agent application, and a synthetic software agent comprised of agent automation software, injected API shim code, virtual audio devices, audio processing applications, and media servers, capable of performing automated and to end communication testing. In order to provide end to end testing, especially with respect to voice quality, the synthetic agent software may control and monitor the audio channels (both send and receive) of the browser communication session.
The systems and methods disclosed herein provide automated consent management for ensuring compliance with user-consent laws, rules, and/or regulations integrated with the automatic generation and transmission of autoreply messages. In accordance with the disclosed embodiments, a computer system may be configured to communicate with a user over both first and second communication channels, where the system requires the user's consent before it can communicate with the user over the second communication channel. The system may receive an incoming communication, such as a telephone call, from the user over the first communication channel. The computer system may automatically generate an autoreply message, such as a text message, to send to the user over the second communication channel in response to the incoming communication if the computer system automatically determines that the user has provided all necessary user consents for sending the autoreply message over the second channel.
Disclosed is a transmitting method for a control instruction in long-distance transmission. The transmitting method includes the follows. A transmitting device obtains a first control instruction. The transmitting device encapsulates the first control instruction through a user datagram protocol (UDP) protocol to obtain a UDP packet. The transmitting device transmits the UDP packet to a first communication module via an input interface of the first communication module. With this disclosure, ultra-low latency transmission of the control instruction between devices in long-distance transmission can be achieved.
Systems and methods of network telemetry caching and distribution are provided. The system can receive network telemetry data and store it as a plurality of data nodes. The system can maintain a node pointer map and a node pointer queue. If the system receives an update to a data node having a corresponding node pointer not already present in the node pointer map, the system can add the node pointer to the node pointer queue and to the node pointer map with a count of zero. If the node pointer is already present in the node pointer map, the system can increment the node count for the node pointer in the node pointer map and not add the node pointer to the node pointer queue. The system can transmit data values and node counts to the client device for each node pointer in the node pointer queue.
A proxy management controller system includes a first management controller device in a first server device, a second management controller device in a second server device, and a proxy management controller manager subsystem coupled to the first and second management controller device. The first management controller device receives an instruction from the proxy management controller manager subsystem to provide a proxy management controller for the second management controller device, and creates a proxy management controller virtual container for the second management controller device. The first management controller device then receives raw data collected by the second management controller device from the second server device, stores the raw data in the proxy management controller virtual container, and converts the raw data to formatted data. The first management controller device then uses the formatted data to perform at least one management operation that is associated with the second management controller device.
Systems and methods to manage and regulate the requests of multiple proxy clients are disclosed. In one aspect, the system and methods disclosed herein aids in configuring proxy server(s) with a rate-limit functionality. Configuration of the rate-limit functionality may be realized by, but not limited to, installing configuration file(s) and/or software application(s) on the proxy server(s). The configuration provides information about the list of restricted and unrestricted domains and their respective request limit specification in a given time frame. Therefore, each time before a proxy server forwards the clients' requests to a target domain, the proxy server checks and ensures that the request count to the particular target domain is well within the limit specified in the request limit specification. Thus, the embodiments described herein aid in preventing the IP addresses of proxy service providers from being blocked or denied from the target websites.
A system and method for providing zone-specific media to a user. As a non-limiting example, various aspects of this disclosure provide a system and method that flexibly selects and provides media content (e.g., audio content), where such content is selected based, at least in part, on a user location (e.g., location within a premises).
A data processing method based on an unmanned vehicle, the method including acquiring data generated in an unmanned vehicle operating environment of the unmanned vehicle and type information of the unmanned vehicle operating environment; acquiring a data transformation logic corresponding to the type information from a pre-stored adaption repository, which stores data transformation logics corresponding to different type information; and transforming a data structure of the data according to the data transformation logic corresponding to the type information to obtain data in compliance with a preset data structure. By transforming data generated in different unmanned vehicle operating environments into data in compliance with the preset data structure, the cloud server can be assisted in analyzing and consistently processing the data in compliance with the preset data structure after they have been transmitted to the cloud server, thus improving the data processing efficiency.
Systems and methods are provided for FAA-certified avionics devices to safely interface with non-certified mobile telecommunications devices before, during, and after flight. Data transmitted to the certified devices do not affect functionality of the certified device unless and until a user acknowledges and/or confirms the data on the certified device. Thus, the integrity of the certified device is maintained.
Computer-readable media, method, and system for inviting a plurality of users to a group-based communication channel within a group-based communication system. The plurality of users are invited by transmitting a respective plurality of invitations to the users upon a sending user instruction. The outcome of a user accepting an invitation may be determined based on an approval privilege of the user and a status of the group-based communication channel.
A system is described. The system includes a distributed ledger peer-to-peer blockchain fabric comprising a plurality of peer nodes, including a first peer node to receive a workload package, examine the workload package to determine a role of the first peer node within a cluster configuration of a first set of the plurality of peer nodes and execute the workload package at resources included in the first peer node.
In one embodiment, a device receives application experience metrics for a software-as-a-service application. The device generates, based on the application experience metrics, a predictive model that predicts application experience scores for a plurality of network service providers that provide connectivity to the software-as-a-service application. The device selects a particular network service provider for use by a location, based on an application experience score predicted by the predictive model. The device sends an indication of the particular network service provider to the location.
Methods and systems for making effective use of system resources. A plurality of requests for access to a resource are received. Each request has an associated group of features. The group of features for each request is analyzed to collect observations about the plurality of requests. A function to predict an outcome of a subsequent request is generated based on the observations. Resources are allocated to service the subsequent request based on the function.
Systems and methods are provided for intent tracking asynchronous operations. An example method can include receiving, at a content management system (CMS), a first request to perform an operation on a content item stored at the CMS; adding the request to perform the operation to a queue of operations to be processed by the CMS; and prior to completing the operation: receiving, from a client device associated with a user account registered at the CMS, a second request to access the content item; in response to the second request, determining a predicted state of the content item, the predicted state of the content item reflecting a result of performing the operation on the content item; and providing, to the client device, a response including the predicted state of the content item.
A method for heterogeneous execution engines in a network centric process control system. The network centric process control system includes a plurality of nodes and each node includes one or more control service components, a middleware service component, a middleware API subcomponent, an address space subcomponent, and a communication component, where each control service component, middleware service component, and communication component is a separate executable running in a separate operating system process as provided by a real time operating system of each node. The method is performed by the network centric process control system, and includes identifying, by the communication component, a component of a node of the network centric process control system by an indication of a namespace ID of the component, forwarding, by the communication component, a request to the address space subcomponent of the identified component, wherein an item ID for runtime data of the identified component indicates an entity in the address space corresponding to the runtime data, and sending, by the communication component, an entity value, wherein the entity value corresponds to the requested runtime data. A network centric process control system, a computer program, and a computer program product for heterogeneous execution engines are also presented.
A system and method are presented for invoking integration actions in a unified collaboration system. A client communicates with a bridging web server through a ReST. The bridging web server comprises a cloud service which facilitates communication with integration servers, which may be located on-premises. In an embodiment, the integration server(s) host a number of plugins which are capable of implementing integration actions. The bridging web server decides which action implementation is the best one to service a request. The implementation may be based on prior configuration. Routing decisions on the bridging web server may be automatically selected based on prior configuration.
Various concepts for media content streaming are described. Some allow for streaming spatial scene content in a spatially unequal manner so that the visible quality for the user is increased, or the processing complexity or used bandwidth at the streaming retrieval site is decreased. Others allow for streaming spatial scene content in a manner enlarging the applicability to further application scenarios.
A method, computer program, and computer system is provided for media content preparation for 5G networks. A reverse address mapping process for 5G media streaming associated with a content preparation process is identified. A media content address is calculated based on the identified reverse address mapping process. A workflow is generated for the content preparation process based on the calculated media content address. 5G media streaming content preparation is performed according to the workflow of the content preparation process.
Systems maintain synchronicity among elements intended to be displayed at various points during a live media stream. At a multimedia player, start playback of a live media stream. The systems receive input from a user selecting a new time of the media stream to playback, which is different than the current playback time of the media stream. The systems adjust playback of the media stream to restart at the new selected time, such that the current playback time of the output media stream is updated to the new selected time. The systems monitor the current playback time of the media stream as adjusted. The systems determine a user-initiated command to execute for displaying one or more visual elements at the multimedia player by polling a command manifest file based on the current playback time as adjusted.
Security can be provided for data stored using resources that are deployed in an environment managed by a third party. Physical and logical detection mechanisms can be used to monitor various security aspects, and the resulting security data can be used to identify potential threats to these resources. In some embodiments, suspicious activity can cause resources such as data servers to be automatically and remotely rebooted such that keys stored in volatile memory on those data servers will be lost from those servers, such that an attacker will be unable to decrypt data stored on those servers. Once a determination of safety is made, the keys can be provided to the respective data servers such that data operations can resume.
Disclosed herein are techniques for detecting phishing websites. In one embodiment, a method is disclosed comprising receiving, at a server, a request for a webpage from a client device; generating, by the server, and inserting an encoded tracking value (ETV) into the webpage; inserting, by the server, dynamic tracking code (DTC) into the webpage, the inserting of the DTC further comprising obfuscating the DTC; and returning, by the server, the webpage including the ETV and DTC to the client device, the DTC configured to execute upon receipt at the client device and validate the ETV upon executing.
The disclosed computer-implemented method for identifying and mitigating phishing attacks may include (i) receiving a request for sensitive data utilized to access a network service, (ii) launching an autofill provider for providing the sensitive data to the network service, (iii) identifying, utilizing the autofill provider, a domain for the network service and a data type associated with the sensitive data utilized to access the network service, (iv) determining, utilizing the autofill provider, a reputation for the network service based on the domain and the data type, and (v) performing a security action that protects against a phishing attack based on the reputation determined for the network service. Various other methods, systems, and computer-readable media are also disclosed.
Packets may be received by a packet security gateway. Responsive to a determination that an overload condition has occurred in one or more networks associated with the packet security gateway, a first group of packet filtering rules may be applied to at least some of the packets. Applying the first group of packet filtering rules may include allowing at least a first portion of the packets to continue toward their respective destinations. Responsive to a determination that the overload condition has been mitigated, a second group of packet filtering rules may be applied to at least some of the packets. Applying the second group of packet filtering rules may include allowing at least a second portion of the packets to continue toward their respective destinations.
Systems and methods for implementing dynamic graph analysis (DGA) to detect anomalous network traffic are provided. The method includes processing communications and profile data associated with multiple devices to determine dynamic graphs. The method includes generating features to model temporal behaviors of network traffic generated by the multiple devices based on the dynamic graphs. The method also includes formulating a list of prediction results for sources of the anomalous network traffic from the multiple devices based on the temporal behaviors.
Systems and methods are provided for managing false positives in a network anomaly detection system. The methods may include receiving a plurality of anomaly reports; extracting fields, and values for the fields, from each of the anomaly reports; grouping the anomaly reports into a plurality of groups according to association rule learning, wherein each group is defined by a respective rule; for each group, creating a cluster based on common values for the fields; and marking each cluster as a possible false positive anomaly cluster.
A fraud detecting method for use in an in-vehicle network system including a plurality of electronic control units that communicate with each other via a network includes detecting whether a state of a vehicle satisfies a first condition or a second condition, and switching, upon detecting that the state of the vehicle satisfies the first condition or the second condition, an operation mode of a fraud-sensing electronic control unit connected to the network between a first mode in which a first type of detecting process for detecting a fraudulent message in the network is performed and a second mode in which the first type of detecting process is not performed.
A system, method, and computer-readable medium are disclosed for performing a security operation. The security operation includes monitoring a plurality of electronically-observable actions of an entity, the plurality of electronically-observable actions of the entity corresponding to a respective plurality of events enacted by the entity, the monitoring comprising monitoring the plurality of electronically-observable actions via a protected endpoint; converting the plurality of electronically-observable actions of the entity to electronic information representing the plurality of actions of the entity; generating a representation of occurrences of a particular event from the plurality of events enacted by the entity; and performing an anomaly detection operation based upon the representation of occurrences of the particular event from the plurality of events enacted by the entity, the anomaly detection operation determining when the representation of occurrences of the particular event exceeds a predetermined threshold.
Disclosed herein is a cloud computing server for verifying data received from an operating system. The cloud computing server may receive user and system data, associate such user and system data with user and system accounts, transmit a message to a user device such as a mobile device and receive an acceptance or a rejection from the mobile device based on the transmitted message. The cloud computing server may also associate one or more tokens with user accounts based on the acceptance received from the mobile device. In one embodiment, the user data may include user identification data. The system data may include processing system name, processing system physical address, IP address, MAC address, etc.
Techniques are disclosed for tracing memory components in asset management systems. A computing device may receive an indication that a new device has been connected to a network. The computing device receives a first set of memory specifications from the new device and a second set of memory specifications from a SoV database. The computing device then generates a memory-asset data structure that stores a third set of memory specifications, each memory specification of the third set of memory specifications being a memory specification that is in both the first set of memory specifications and the second set of memory specifications. The computing device assigns, memory specifications of the third set of memory specifications, a data privacy level that is based on a sensitivity of data stored in the component of the new device. The computing device may then transmit the memory-asset data structure.
This disclosure relates to systems, methods, and apparatuses for determining access models for applications. The access models can be determined using various techniques described herein. The access models can enable the applications to be onboarded into the enterprise system and, in some cases, can be utilized by an identity and access management (IdAM) system and/or identity and governance administration (IGA) system to facilitate ongoing identity management and access control functions for the applications in the enterprise system.
A system for providing bi-directional visualization of authority of users over SACs in an enterprise-wide network, the system including functionality for providing user-wise visualization of the authority of a given user over at least one SAC in respect of which the user has authority, and functionality for providing SAC-wise visualization for a given SAC of the authority of at least one user over the given SAC.
A biometric matching process is disclosed. The biometric matching process may be used to obtain access to a resource managed by an access device using only biometric information. In some embodiments, a biometric template is stored in relation to a user device and/or account information, and is obscured. Upon receiving a request for access to a resource from an access device, the system may identify a number of user devices in proximity to the access device. Biometric templates associated with each of those user devices may be compared to a biometric template received from the access device. Upon identifying a match, the system may provide the access device with account information stored in relation to the matched biometric template. The access device may then complete a transaction using the provided account information and grant access to the requested resource.
A virtualized gateway for applications in a zero trust network access environment is managed from a cloud-based threat management facility for an enterprise network. In order to facilitate creation of a new, centrally managed gateway, a one-time passcode for registration of the gateway to the threat management facility is encoded onto a virtual disk and distributed to a host platform along with a base gateway image for the gateway. This advantageously permits the new gateway to boot and securely register with the threat management facility without further administrative intervention.
A cloud-based access to child care planning and outcome resource is described. The resource allows multiple end-users to access content related to child care. Such content includes reports, table, graphs, multimedia, lists, forms, reminders, and/or other appropriate elements. The content may be presented via one or more graphical user interfaces (GUIs). Each such GUI may include various input elements such as tabs, buttons, icons, etc. and various content elements such as portlets, or frames, etc. Each GUI may be customized for a particular end-user and/or a particular group of end-users. In this way, an administrator or super-user may generate multiple GUIs, where each is associated with a user group (e.g., parents, teachers, administrators, etc.). In addition, each end-user may be able to customize the GUIs available to the end user. Such customization may include selection of input and/or content elements, layout of elements, graphical features, and/or other appropriate customizations.
User data is aggregated across a plurality of electronic communication channels and domains. An online system initially authenticates a user for access to the online system over a network. The online system provides a user identifier for the user to an authentication service. The authentication service generates a non-repeatable challenge from the aggregated user data for the user identifier and provides the non-repeatable challenge to the online system. The online system provides the challenge to the user and receives a response from the user. The online system provides the response to the authentication service and the authentication sends a success or failure back to the online system based on the response to the challenge, and based on the success or failure the online system makes a final determination for authenticating the user for accessing to the online system.
A mobile device securely communicates with an electronic device within an automobile. The mobile device transmits encrypted spatial state information and the electronic device provides commands to the automobile in response. Spatial state information may include location, motion, or the like. Commands to the automobile may include door unlock commands, remote start commands, horn honk commands, or the like.
Systems, methods and computer software are disclosed for providing network address translation with a tunnel identifier (TEID) in a cellular network. A HetNet Gateway (HNG) allocates at least a portion of a unique TEID for a user equipment (UE). The HNG receives a packet having a source field in the packet header including an Internet Protocol (IP) address. The HNG replaces the IP address in a source field of the packet header of the packet with the unique TEID for the UE and forwards the packet using the unique TEID to a packet gateway (PGW).
Methods, systems, computer-readable media, and apparatuses may provide management of messaging for one or more devices of a user according to the user's configurable presence schedule. A messaging management server may receive notifications of messages and the messages themselves from a messaging service provider. The messages may have originated from a first user and be intended for receipt by a second user. After a preset time period has elapsed, a notification of the message may be sent from the messaging management server to each of the second user's devices in accordance with the second user's presence schedule. Subsequent messages from the first user and intended for the second user may be routed from the messaging management server to the device on which the second user responded to the notification of the initial message and might not be routed to the second user's other devices.
This disclosure relates generally to apparatus, methods, and computer readable media for composing communications for computing devices across multiple formats and multiple protocols. More particularly, but not by way of limitation, this disclosure relates to apparatus, methods, and computer readable media to permit computing devices, e.g., smartphones, tablets, laptops, and the like, to send communications in a number of pre-determined and/or ‘determined-on-the-fly’ optimal communications formats and/or protocols. Determinations of optimal delivery methods may be intelligently based on the sender individually or the relationship with the sender in the context of a group of recipients—including the format of the incoming communication, the preferred format of the recipient and/or sender, and an optimal format for a given communication message. The techniques disclosed herein allow communications systems to become ‘message-centric’ or ‘people-centric,’ as opposed to ‘protocol-centric,’ eventually allowing consideration of message protocol to fall away entirely for the sender of the communication.
Examples of the present disclosure provide a message relay service. The message relay service provides an application programming interface (API) with which messages can be sent and received without handling specific implementation details of a messaging system. When inbound messages are received, the message relay service may provide a push notification and/or may store the message for later access. In examples, one or more source addresses are used to send messages. If the client device indicates a group of addresses should be used, one address is selected from the group and used to send a message accordingly. In some examples, the message relay service determines that a messaging gateway need not be used to message a recipient address, and transmits the message without use of the messaging gateway. The same API may be used to send and receive messages across different messaging systems without a customer handling system-specific complexities.
Disclosed are systems, methods and computer-readable media for controlling and managing the identification and provisioning of resources within an on-demand center as well as the transfer of workload to the provisioned resources. One aspect involves creating a virtual private cluster within the on-demand center for the particular workload from a local environment. A method of managing resources between a local compute environment and an on-demand environment includes detecting an event associated with a local compute environment and based on the detected event, identifying information about the local environment, establishing communication with an on-demand compute environment and transmitting the information about the local environment to the on-demand compute environment, provisioning resources within the on-demand compute environment to substantially duplicate the local environment and transferring workload from the local-environment to the on-demand compute environment. The event can be a threshold or a triggering event within or outside of the local environment.
The present disclosure generally relates to database modification, and in particular, database modification in the context of networked platforms accessible by user computing devices. One example context to which such database modification techniques can be applied is a network provider providing a plurality of individual network portals via which users may access network resources and perform other transactions. Such a network provider may maintain a network resource availability database that needs to be updated in response to each network resource access requests being received and granted via the plurality of individual network portals. The techniques described herein allow the network resource availability database of such a network provider to be updated differently depending on the context in which resource requests are granted.
An edge server receives a first request message for transmission to the host device. The edge server determines a first congestion control algorithm based on the first request message, including characteristics of the first request message. The edge server applies the first congestion control algorithm to the transport connection for application to the transmission of the first request message. Subsequently, the edge server receives a second request message for transmission to the host device over the transport connection. Based on the second request message, including characteristics of the second request message, the edge server determines and applies a second congestion control algorithm to the transport connection for application to the transmission of the second request message, wherein the second congestion control algorithm is different from the first congestion control algorithm
A system includes first, second, and third processors. The first processor is configured to detect congestion in a packet flow formed of a plurality of packets of a same type received from a first device in a network via a first network connection. The packets in the packet flow being destined for a second device in the network. The second processor is configured to send, when congestion notification packet generation is enabled for the packet flow, a congestion notification packet to the first device via the first network connection. The congestion notification packet identifies the packet flow for which congestion is detected. The third processor is configured to forward the plurality of packets in the packet flow to the second device via a second the network connection.
A system provisions global logical entities that facilitate the operation of logical networks that span two or more datacenters. These global logical entities include global logical switches that provide L2 switching as well as global routers that provide L3 routing among network nodes in multiple datacenters. The global logical entities operate along side local logical entities that are for operating logical networks that are local within a datacenter.
Problems associated with providing a large Clos network having at least one top of fabric (ToF) node, a plurality of internal nodes, and a plurality of leaf nodes may be solved by: (a) providing L2 tunnels between each of the leaf nodes of the Clos and one or more of the at least one ToF node to ensure a non-partitioned IGP L2 backbone, and (b) identifying the L2 tunnels as non-forwarding adjacencies in link state topology information stored in ToF node(s) and leaf node(s) such that the L2 tunnels are not used for forwarding traffic. Tunnel formation is prevented over L2.
A method and apparatus for routing a plurality of session packets across a network toward a destination modifies each packet to include a sequence number that is different from the sequence number of other packets in the plurality of packets. Accordingly, at this point, each of the plurality of packets is transformed into a corresponding plurality of processed packets. The method also duplicates the plurality of processed packets to produce a corresponding plurality of duplicated packets. Next, the method forwards the plurality of processed packets toward the destination using a first stateful path through the network, and correspondingly forwards the plurality of duplicated packets toward the destination using a second stateful path through the network. In preferred embodiments, the first stateful path is different from the second stateful path. For example, the two paths may be entirely distinct in that they share no common intermediary elements.
An approach for detecting anomalous flows in a network using header field entropy. This can be useful in detecting anomalous or malicious traffic that may attempt to “hide” or inject itself into legitimate flows. A malicious endpoint might attempt to send a control message in underutilized header fields or might try to inject illegitimate data into a legitimate flow. These illegitimate flows will likely demonstrate header field entropy that is higher than legitimate flows. Detecting anomalous flows using header field entropy can help detect malicious endpoints.
A method, operational at a device, includes receiving at least one packet belonging to a first set of packets of a packet flow marked with an identification value, determining that the at least one packet is marked with the identification value, determining to change a quality of service (QoS) treatment of packets belonging to the first set of packets marked with the identification value that are yet to be received, and sending a request to change the QoS treatment of packets belonging to the first set of packets marked with the identification value that are yet to be received to trigger a different QoS treatment of packets within the packet flow, responsive to determining to change the QoS treatment. Other aspects, embodiments, and features are also claimed and described.
Techniques are described for enabling a cloud-based IT and security operations application to execute playbooks containing custom code in a manner that mitigates types of risk related to the misuse of cloud-based resources and security of user data. Users use a client application to create and modify playbooks and, upon receiving input to save a playbook, the client application determines whether the playbook includes custom code. If the client application determines that the playbook includes custom code, the client application establishes a connection with a proxy application (also referred to as an “automation broker”) running in the user's own on-premises network and sends a representation of the playbook to the proxy application. The client application further sends to the IT and security operations application an identifier of the playbook and an indication that the playbook (or the custom code portions of the playbook) is stored within the user's on-premises network.
Impairments can be applied to nodes of a distributed computing environment using a software operator. For example, a system can receive, by a controller of a distributed computing environment executing a network-impairment operator, a custom resource defining a reduced-performance configuration for a worker node of the distributed computing environment. The system can deploy the reduced-performance configuration to the worker node for a predetermined period of time. Subsequent to the predetermined period of time passing, the system can remove the reduced-performance configuration from the worker node.
A method for transmitting data through a multi-media communication network includes converting transmission entities into data symbols at a first communication device, transmitting the data symbols from the first communication device to a second communication device through at least two different types of communication media using only lower PHY layers of the at least two different types of communication media, and converting the data symbols into transmission entities at the second communication device. A network implementing a universal data link includes a first communication device configured to convert transmission entities into data symbols, a second communication device configured to convert the data symbols into transmission entities, at least a first communication medium and a second communication medium communicatively coupled between the first communication device and the second communication device, and a first physical-layer translator configured to translate data symbols without converting the data symbols into transmission entities. In order to reduce processing time and end-to-end latency, the physical-layer translator only performs demodulation and modulation operations, optionally also equalization.
Facilitating ad hoc daisy-chaining of dynamically addressable devices having configurable physical layer interfaces together in a serial manner is presented herein. A system can include a group of devices communicatively coupled with respective devices of the group of devices in a daisy-chained manner via physical layer (PHY) interfaces of the respective devices including a group of available communication protocol configurations including a low voltage differential signaling (LVDS) based PHY configuration, a controller area network (CAN) based PHY configuration, and/or a single-ended serial communication PHY configuration including a complementary metal-oxide-semiconductor (CMOS) based interface or a transistor-transistor logic (TTL) based interface. Further, a host device of the system is directly connected, using a single-ended Manchester encoded serial communication interface, to a foremost device of the group of devices and to successive devices of the respective devices, via the foremost device, using the single-ended Manchester encoded serial communication interface.
Described herein are systems and methods for providing the secure transfer of assets between blockchain networks. The system can include a storage device that can store a bridge program that is programmed to perform (i) lock operations that lock native assets from a first blockchain network and mint synthetic assets representing the native assets in a second blockchain network, and (ii) unlock operations that unlock the native assets by transferring the native assets to an address in the first blockchain network in response to the synthetic assets being returned or destroyed. The system can include a computer system that loads and executes the bridge program in a secure computing enclave that provides a trusted execution environment. The computer system can then perform the lock operations and the unlock operations to provide a bridge between the first blockchain network and the second blockchain network.
An information handling system includes a provisioning server and a server. The server includes a baseboard management controller (BMC) that configures a first ownership certificate for the server, and provides it to the provisioning server. The first ownership certificate is associated with a first owner. The BMC receives a first signed provisioning configuration content, and stores the first signed provisioning configuration content in an encrypted memory. The BMC configures a second ownership certificate for the server, and provides it to the provisioning server. The second ownership certificate is associated with a second owner. The BMC receives a second signed provisioning configuration content, and stores the second signed provisioning configuration content on top of the first signed provisioning configuration content in the encrypted memory. In response to an expiration of the second ownership certificate, the BMC removes the first signed provisioning configuration content, and applies the second signed provisioning configuration content.
One or more computing devices employs a method that includes requesting a transient credential (e.g., a one-time PKI certificate) as a first identity credential for an application component instance based on a unique identifier associated with the application component instance. The method includes requesting a dynamically-created second identity credential for the application component instance of the application using a request signed (e.g., using the public key of the first identity PKI certificate) based on the transient credential. The method includes receiving the dynamically-created second identity credential and using the dynamically-created second identity credential in a cryptographic function by the application component instance; and managing the replacement of this credential in environments without persistent archival storage accessible by the device/application.
Communications methods and apparatus for providing and/or adding STIR/SHAKEN Diversion Information to requests. An exemplary method embodiment includes the steps of: receiving at a second communications network a Session Initiation Protocol (SIP) Invite request from a first communications network, the SIP Invite request being directed to a first SIP address corresponding to a first user equipment device located within the second communications network, the SIP Invite request including a SIP Identity shaken header and one or more SIP Identity div headers; determining at the second communications network whether or not the received SIP Invite request was previously diverted by the second communications network to another network; and when the SIP Invite request is determined to have been previously diverted by the second communications network to another network, processing the SIP Invite request at the second communications network as a previously received and diverted SIP Invite request.
Various embodiments include processing devices and methods for integrity verification of a news item. A processor of a network element may obtain an electronic news item that is ready for publication, and may determine a fingerprint using one or more portions of the electronic news item. The processor may determine for the electronic news item a record including the determined fingerprint and a second fingerprint of a previous electronic news item. The processor may store the determined record in a publicly available digital ledger, embed the determined fingerprint in the electronic news item, and publish the electronic news item. A computing device may obtain the published news item and may use the embedded fingerprint in the record that is stored in the digital ledger to verify the integrity of the electronic news item.
An information processing device includes a memory; and a processor coupled to the memory and configured to transmit, to a terminal, a program and a first identifier related to the program, the program being encrypted with a first public key corresponding to a first private key of the terminal, the first identifier being encrypted by using the first public key and a second public key not corresponding to the first private key; and when the terminal receives the first identifier decrypted by the first public key and encrypted by the second public key, register, in a blockchain, transaction information which includes the first identifier decrypted with the second private key corresponding to the second public key.
Some embodiments of the present invention comprise a method, system, and/or computer program product for a publish/subscribe messaging system. A processor identifies a subscriber of a pub/sub messaging system. The processor retrieves a stored encrypted key for the identified subscriber of the pub/sub messaging system. The processor communicates the retrieved encrypted key to a user selected from a group comprising a publisher of the pub/sub messaging system and the identified subscriber of the pub/sub messaging system. The processor implements end-to-end encryption of messages of the pub/sub messaging system based on key-groups.
Provided is a non-transitory computer readable medium. The non-transitory computer readable medium storing program code that, when is executed by a processor, causes the processor to calculate a message, based on a first cipher text, a second cipher text, and a private key, to compare a coefficient of the message with a reference value based on a prime number, to decide a coefficient of a modified message, based on a comparison result between the coefficient of the message and the reference value, and to decrypt the modified message.
A request is received from a computing device for substitute data, with access to the substitute data being contingent upon successful multi-factor authentication of the first service. Signature data based on the request is generated using a first key of public-private key pair. Credential proof and the signature is provided to a second service, which verifies the credential proof as a first factor of the multi-factor authentication and verifies, using a second key, the signature as a second factor of the multi-factor authentication. The substitute data is obtained as a result of authentication by the second service. The computing device is caused, by providing the substitute data to the computing device, to input the substitute data into the interface in place of data associated with the first entity.
The present disclosure includes methods, devises and systems for preparing and installing one or more application keys owned by application owners in a remote device. The present disclosure further proposes methods, devices and systems for secure installation of subsequent application keys on a device utilising corresponding key derivation functions to associate an application with a respective policy and identifier using significantly low bandwidth for transfer of keys for execution of the respective application on the device.
Methods and systems are described for measuring a vertical opening of a signal eye of a pulse amplitude modulated (PAM) signal received over a channel to determine a vertically-centered voltage decision threshold of a sampler receiving a sampling clock, determining channel-characteristic parameters indicative of a frequency response of the channel, determining a correctional vernier value from the channel-characteristic parameters, and generating a horizontally-centered voltage decision threshold that introduces a horizontal sampling offset in the sampling clock in a direction closer to a horizontal center of the signal eye by combining the vertically-centered voltage decision threshold and the correctional vernier value.
A method and a device for transmitting a PPDU in a WLAN system are proposed. Specifically, an AP generates a PPDU and transmits the PPDU to a STA through a broadband. The PPDU includes an EHT-LTF and a data field. The data field includes a pilot tone. The coefficient of the pilot tone is set to a second pilot sequence in which a first pilot sequence is repeated. The first pilot sequence is {1 1 1 −1 −1 1 1 1}.
Embodiments disclose a reference signal transmission method and an apparatus. The method includes receiving reference signal resource configuration information sent by a base station, where the reference signal resource configuration information includes antenna port quantity information and a resource configuration index. The method also includes determining a reference signal configuration from a reference signal configuration set according to the antenna port quantity information and the resource configuration index. The method also includes obtaining, according to the determined reference signal configuration, positions of the resource elements (REs) that are used to send the reference signal on the antenna ports in the antenna port set, and receiving reference signals according to the positions of the REs.
Demodulation references are short messages exhibiting modulation levels of a modulation scheme, to assist the receiver in demodulating a message. Disclosed are short-form demodulation references suitable for pulse-amplitude modulation (PAM) messages in 5G and 6G. Each resource element of the short-form PAM demodulation reference provides two amplitude calibrations, one for each I or Q branch, from which the remaining amplitude levels of the modulation scheme can be readily calculated in real-time. The receiver can then demodulate a message by matching the branch amplitude values of each message element to the calibrated amplitude levels as determined from the demodulation reference. To indicate the start and end of the message, different configurations can be placed before and after the message. To mitigate high levels of background, a short single-symbol demodulation reference can be embedded in the message at multiple positions. Configurations are suitable for adoption as a demodulation standard.
Systems and techniques or transmitting and receiving a sounding reference signal (SRS) in a wireless communication system. In some implementations, a method for transmitting, by a terminal, an SRS in a wireless communication system includes: receiving configuration information for transmission of the SRS from a base station; and transmitting the SRS to the base station by using one or more SRS resources for transmission of the SRS, the configuration information including the one or more SRS resources and information relating to usage of the one or more SRS resources, wherein a guard period relating to the one or more SRS resources is configured, and when the transmissions of the guard period and a particular uplink channel configured for the terminal overlap each other, the priority between the guard period and the particular uplink channel is configured to be the same as that between the SRS and the particular uplink channel.
A method and apparatus for improved transmission of ACK and NACK bits to a base station The example method may determine a distance between a first UE and a second UE based on one or more of a sequence length, a number of hypothesis, or a number of UEs sharing an OFDM symbol. The example method may determine a plurality of cyclic shifts for each of the first UE and the second UE. The example method may assign one or more sequences to each UE. The example method may receive, at the base station, a multiplexed signal, wherein the multiplexed signal includes at least one bit of uplink control information (UCI) from the first UE and the second UE multiplexed on an uplink short burst transmitted via the OFDM symbol. The method may enable the receipt of UCI from multiple UEs in a multiplexed signal.
Disclosed are a method and apparatus for transmitting HARQ information, and a computer storage medium. The method includes: a terminal device determines first HARQ information that is HARQ information corresponding to a first downlink data channel and received by the terminal device on a first downlink time unit, the first downlink data channel corresponding to a first time sequence value, and the first downlink time unit being a time unit in a first downlink transmission opportunity; and the terminal device transmits first uplink control information including the first HARQ information on a first uplink time unit, the first uplink time unit being a time unit in a first uplink transmission opportunity that is later than the first downlink transmission opportunity, and a time distance between the first uplink time unit and the first downlink time unit being greater than or equal to the first time sequence value.
User equipments (UEs) and methods for hybrid automatic repeat request acknowledgement (HARQ-ACK) operation in a sidelink. A user equipment configured to receive a physical sidelink control channel (PSCCH) that includes a sidelink control information (SCI) format scheduling a reception of a physical sidelink shared channel (PSSCH) that includes a transport block (TB) and to provide HARQ-ACK information for the TB decoding in a physical sidelink feedback channel (PSFCH).
A channel encoding method and apparatus. The method includes: obtaining A to-be-encoded information bits; mapping the A to-be-encoded information bits and L CRC bits to a first bit sequence based on an interleaving sequence, where the L CRC bits are obtained based on the A to-be-encoded information bits and a CRC polynomial, the interleaving sequence is obtained from a prestored interleaving sequence table or is obtained based on a maximum-length interleaving sequence, A+L is less than or equal to Kmax, and Kmax is a length of the maximum-length interleaving sequence; and encoding the first bit sequence. In this way, not only an encoding delay can be reduced, but also decoding has an early stop capability, so that decoding can end in advance, thereby reducing a decoding delay.
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a receiving node may determine a cyclic redundancy check (CRC) based at least in part on log-likelihood ratios (LLRs) associated with downlink control information (DCI) received from a transmitting node. The receiving node may perform a full unmasking of the CRC using a radio network temporary identifier (RNTI) based at least in part on a descrambling of the CRC with the RNTI, wherein a number of bits associated with the RNTI is associated with a number of bits associated with the CRC. The receiving node may initiate an early termination of a decoding of the LLRs based at least in part on the full unmasking of the CRC. Numerous other aspects are described.
A transmission configuration and/or configuration errors and recovery may be determined or implemented by temporal interpretation of one or more signals. A transmitter may interpret one or more signals a first way during one or more time windows and a second way during one or more other time windows. Video resolution may be indicated in a V-by-One® interface by temporal interpretation of HPD and/or CDR lock. Transmission format may be indicated before or after transmission begins. Transmitter configuration error detection and recovery may be implemented by temporal interpretation. A transmitter may transmit data in an assumed/default format. A receiver may indicate the assumed transmission format is incompatible with the receiver configuration. A receiver may indicate a compatible transmission format, for example, based on timing or pulsing transitions in a temporally repurposed signal. A transmitter may respond to the repurposed signal indication by transmitting a different (e.g., compatible) format.
A method for operating a user equipment (UE) is provided. The method comprises obtaining configuration information for one or more repetitions for one or more channels of a physical downlink control channel (PDCCH), a physical downlink shared channel (PDSCH), or a physical uplink shared channel (PUSCH), wherein the configuration information comprises a parameter to extend a maximum number of repetitions for the one or more channels; and transmitting or receiving the one or more repetitions according to the configuration information.
A RAN node may determine an aggregate signal-to-noise ratio (SNR) of each resource block of a plurality of resource blocks, where the aggregate SNR of a given resource block of the plurality of resource blocks is based on SNRs of subcarrier frequencies of the given resource block. The RAN node may determine, based on a type of network traffic on each network slice of a plurality of network slices, an index value of each network slice of the plurality of network slices. The RAN node may map, based on the aggregate SNR of each resource block, based on the index value of each network slice, and for each resource block of the plurality of resource blocks, a resource block of the plurality of resource blocks to a network slice of the plurality of network slices.
In an acoustic wave device, an antenna end resonator that is electrically closest to a first terminal is a first acoustic wave resonator. In each of the first acoustic wave resonator and a second acoustic wave resonator, a thickness of a piezoelectric layer is about 3.5λ or less when a wavelength of an acoustic wave is denoted as λ. The first acoustic wave resonator and the second acoustic wave resonator satisfy at least one of a first condition, a second condition, and a third condition. The first condition is a condition that the first acoustic wave resonator further includes a dielectric film provided between the piezoelectric layer and an interdigital transducer electrode, and the second acoustic wave resonator does not include the dielectric film.
Aspects of the subject disclosure may include, for example, identifying a request to facilitate communications between first and second processing nodes, determining that the communications are to be established via quantum teleportation between, and identifying a network path comprising a first path segment to obtain a quantum channel, wherein quantum entanglement is established between the first and second processing nodes based on transportation of a first quantum entangled object via the quantum channel. A classical communication channel is facilitated between the first and second processing nodes, adapted to exchange between the nodes, quantum state information of a measurement performed upon the first quantum entangled object. Information is exchanged between the first and second processing nodes via the quantum channel according to the transported first quantum entangled object and the exchanged quantum state information. Other embodiments are disclosed.
The present invention relates to a transmitter for transmitting data and for emitting electromagnetic radiation in the visible spectral range, wherein the transmitter comprises a) a radiation source for generating and emitting first electromagnetic radiation, b) a modulator being adapted to modulate the first electromagnetic radiation depending on the data to be transmitted generating modulated first electromagnetic radiation, and c) a frequency converter for converting at least a part of the modulated first electromagnetic radiation into modulated second electromagnetic radiation, said modulated second electromagnetic radiation being different from the modulated first electromagnetic radiation, wherein the frequency converter comprises a polymeric matrix material comprising at least one organic fluorescent colorant. Furthermore, the invention relates to an illumination device comprising such transmitter. Moreover, the invention relates to a data transmission system comprising such a transmitter as well as a receiver and a data analyzer.
An example apparatus includes a first communications module having a first transceiver. The first communications module is operable to transmit, using the first transceiver, a plurality of first groups of optical subcarriers to a plurality of second communications modules via free-space optical communication. The first groups of optical subcarriers carry first data, and each of the first groups of optical subcarriers is associated, respectively, with a different one of the second communications modules. The first communications module is also operable to receive, using the first transceiver, plurality of second groups of optical subcarriers from the second communications modules via free-space optical communication. The second groups of optical subcarriers carry second data and each of the second groups of optical subcarriers is associated, respectively, with a different one of the second communications modules.
Clothing equipment having a visual light communication emitter arranged to communicate a status of the clothing equipment, includes a light emitter arranged to emit flash light which is modulated at at least one target frequency in a dedicated non-visible spectrum, the light emitter including three fixed emitting portions distant from each other by predetermined distances, so as to authenticate the status of the clothing equipment.
An extinction ratio testing system (10) includes a microcontroller (102), an extinction ratio tester (104), and a thermostat (106). The microcontroller (102) controls the thermostat (106) to maintain an optical transceiver module (20) at a predetermined high temperature, and then the microcontroller (102) controls the extinction ratio tester (104) to test an extinction ratio of the optical transceiver module (20). If the extinction ratio is lower than a standard extinction ratio, the microcontroller (102) controls the optical transceiver module (20) to increase a laser operating current (212) of the optical transceiver module (20) to increase the extinction ratio.
A system and method for providing communication in a distributed LMR system architecture is provided herein, wherein the system includes a plurality of LMR subsystems interconnected by a data network. In some embodiments, a subsystem may include a distributed simulcast architecture comprising a plurality of LMR sites, each site having a subsystem controller and a plurality of repeaters. In one embodiment, one subsystem controller operates in an active mode and the remaining subsystem controllers operate in standby to provide redundancy. The repeaters include integrated voter comparator and simulcast controller functionality and circuitry. In some embodiments, the repeaters are operable in an active or standby mode, wherein repeaters in the active mode perform voter comparator and simulcast controller functionality. The distributed simulcast architecture provides simulcast controller and voter comparator redundancy, network failure redundancy, and site redundancy.
An active repeater device includes a primary sector and at least a secondary sector communicatively coupled to the primary sector receives or transmits a first beam of input RF signals having a first beam pattern from or to a base station, respectively. The primary sector includes an baseband signal processor and a first radio head (RH) unit. The secondary sector comprises a second RH unit. The first beam pattern covers a first geographical area. Beamforming coefficients are generated to convert the first beam pattern of the first beam of input RF signals to a second beam pattern. A second beam of output RF signals in the second beam pattern is transmitted from or received by, respectively, the secondary sector to or from, respectively, a plurality of user equipment (UEs) based on the generated beamforming coefficients and the received first beam of input RF signals.
Embodiments of this application disclose beam training methods, apparatuses, and systems. One method includes: receiving, from a network device, interference-related information; receiving, from the network device, a downlink signal sent through two or more beams, wherein the two or more beams comprise an interfering beam that causes interference to a terminal device; and transmitting, to the network device, information related to a beam selected from the two or more beams, wherein the beam is selected by the terminal device based on the interference-related information and a measurement result obtained from measuring the downlink signal.
A wireless multiple antenna system (200) uses a multi-antenna subsystem (211) to generate a composite sample waveform by continuously sweeping a plurality of receive beams (RX1-RXM) during each SSB transmission in a plurality of transmit beams (TX1-TX64), generating a composite received signal strength metric value from a batch of samples collected over the plurality of receive beams to determine the presence of the SSB, and then jointly searching the composite sample waveform for an optimal receive beam and an SSB frequency of any detected SSB that are used by the UE (210) to perform a cell search which matches a transmit beam from the base station (201) to the optimal receive beam.
A computer-implemented method is provided for finding a data transmission beam from an Access Point (AP) to a User Equipment (UE) in a communication system. The method includes selecting a probing beam from a set of probing beams. The method further includes sending a plurality of probing packets from the AP to the UE using a dedicated probing beam selected for each probing packet from among the set of probing beams. The method also includes receiving feedback from the UE regarding the plurality of probing packets. The method additionally includes computing the data transmission beam based on the received feedback and the set of probing beams.
Aspects of the disclosure provide a method of beam failure handling. The method can include performing beam quality measurement of one or more beams transmitted from a base station (BS) at a user equipment (UE) in a beamformed wireless communication system, determining a beam failure occurs based on the beam quality measurement, and performing a beam recovery process that includes at least one of a contention-free beam recovery process or a contention-based beam recovery process. The one or more beams are used for transmitting physical downlink control channels (PDCCHs).
The present disclosure describes methods, device, system that provide a codebook indication operation. In one example, a codebook indication method includes: receiving by a terminal device, a transmission parameter indication information indicating an index of one codebook subset configuration of three codebook subset configurations in the terminal device from a base station, wherein the three codebook subset configurations in the terminal device are related to fully coherent, partial coherent, and incoherent respectively, and the codebook subset configuration related to fully coherent includes M indexes, the codebook subset configuration related to partial coherent includes N indexes, and the codebook subset configuration related to incoherent includes K indexes, wherein M is an integer larger than N, and N is larger than K; and determining a transmission layer and precoding matrix associated with the index according to the transmission parameter indication information.
A wireless communication method and device are provided. The method comprises: a terminal device determining a first feedback mode for feeding back the signal quality of multiple transmitting beams of a network device, wherein the first feedback mode differs from the other feedback modes supported by the terminal device in at least one of the following aspects: receiving the capability of receiving beams or receiving beam groups for signal quality feedback, and the number of receiving beams or receiving beam groups for signal quality feedback; and the terminal device feeding back the signal quality to the network device according to the first feedback mode.
An electronic device operating on a base station side and includes a processing circuit configured to perform control to cause the electronic device to: estimate channel correlation in a first direction among a plurality of terminals communicating with the base station; and in response to that the estimated channel correlation in the first direction among the plurality of terminals satisfies a predetermined condition, transmit a first indication signal to indicate that a second measurement process is to be performed to determine channel information in a second direction after a first measurement process is to be performed to determine channel information in the first direction, and transmit, based on the channel information in the second direction, a second indication signal to indicate a precoding scheme for data to be transmitted from the base station to the plurality of terminals, the precoding scheme including linear precoding or non-linear precoding.
A method of using customer premise cable modem equipment to generate a signal that can be used for leakage detection. Various signal types are described which are usable for the purposes of leakage detection.
A high-frequency module includes a transmission signal amplifier that outputs a transmission signal to an antenna terminal side; a reception signal amplifier that amplifies a reception signal supplied from an antenna terminal; a switch that selectively connects the antenna terminal to either an output of the transmission signal amplifier or an input of the reception signal amplifier; and a directional coupler that is provided on a transmission signal path and detects a signal level of the transmission signal. The transmission signal amplifier is controlled by a first control signal supplied from a first control circuit. The reception signal amplifier is controlled by a second control signal supplied from a second control circuit. The switch is controlled by a switch control signal supplied from the first control circuit. The directional coupler is controlled by a coupler control signal supplied from the first control circuit.
The disclosed principles provide for an RF front-end design capable of up-converting, down-converting, and conditioning broadband signals for wireless transmission with an instantaneous bandwidth of up to 3.5 GHz within the frequency range of 2-12 GHz. In addition, embodiments of the disclosed principles provide flexibility that enables RF front-ends designed as disclosed herein to be applied to many different applications including covert communications, drone communications, high data rate communications, signals intelligence, direction finding, multi-function apertures, radars and emulators, and electronic warfare. Embodiments and their related advantages and improvements of RF front-ends designed in accordance with the disclosed principles are discussed herein.
A radio-frequency module includes a module substrate having a first major surface and a second major surface, a first receive filter configured to pass a receive signal in a first communication band, a second receive filter configured to pass a receive signal in a second communication band, an antenna switch configured to control connection between the first receive filter and an antenna connection terminal and also control connection between the second receive filter and the antenna connection terminal, and a matching circuit coupled between the antenna connection terminal and the first receive filter. The matching circuit includes matching switches and at least one of an inductor and a capacitor. The first receive filter and the second receive filter are disposed at the first major surface. The antenna switch and the matching switches are included in a single semiconductor integrated circuit disposed at the second major surface.
The present disclosure relates to a method for controlling a device comprising an oscillation circuit, configured to provide a clock signal to a radio frequency circuit, and an antenna, in which the enabling of the passage of the signal from the circuit to the antenna is delayed with respect to an instant from which a power amplifier of the circuit is enabled.
Systems and methods are provided herein that include an improved RF switch assembly. In at least one embodiment, the RF switch assembly may have an optimized topology including a common node shared by each signal path, reducing the size and cost of the RF switch assembly and providing improved performance.
The present disclosure relates to a predistortion method and a predistortion system for a non-linear device-under-test, DUT. The predistortion method comprises the steps of: providing a reference input waveform to the DUT; deriving a predistorted waveform for the DUT based on the reference input waveform using an iterative direct digital predistortion technique; analyzing a relationship between the reference input waveform and the calculated predistorted waveform using a mathematical model; deriving a predistortion algorithm for the DUT based on said analysis; and applying said predistortion algorithm to an input signal and feeding the, thus, predistorted input signal to the DUT.
Transmitters, sensor systems, and methods of transmission include a frequency adjuster coupled to a ring oscillator to reduce latency and power consumption and to receive a signal from the ring oscillator. The frequency adjuster includes logic circuits to adjust the signal to a selected transmission frequency band. A band switch is coupled to the ring oscillator and the frequency adjuster to select logic circuits within the frequency adjuster to determine the selected transmission frequency band from a set of output frequency bands. A first radio front end is coupled to the frequency adjuster to transmit the signal on the selected transmission frequency band.
A communication system that may be used in room and building automation. A mesh network may be associated with a room of a building, or the like. Connectivity may be provided for devices with servers and a cloud in one mode. Connectivity may be provided for devices to mobile devices and a room-level information module in another mode. These modes of connectivities of various modes may be effected with a software definable radio or radios. Other modes of connectivity may be implemented. Examples of modes may incorporate Bluetooth low energy (BLE) and non-BLE formats. The modes may be multiplexed to operate one at a time and be switched back and forth as needed.
Certain aspects of the present disclosure generally relate to techniques for puncturing of structured low-density parity-check (LDPC) codes. Certain aspects of the present disclosure generally relate to methods and apparatus for a high-performance, flexible, and compact LDPC code. Certain aspects can enable LDPC code designs to support large ranges of rates, blocklengths, and granularity, while being capable of fine incremental redundancy hybrid automatic repeat request (IR-HARQ) extension while maintaining good floor performance, a high-level of parallelism to deliver high throughout performance, and a low description complexity.
An electronic device may include digital circuitry to operate via digital signals and analog circuitry to operate via analog signals. The electronic device may also include a fractal digital to analog converter (DAC) to convert a digital signal into an analog signal. The fractal DAC may include a unit cell array having a branching data path and multiple unit cells disposed in a fractal pattern. The fractal DAC may also include multiple decision units disposed within the unit cell array on the branching data path. Each decision unit may receive an incoming signal representative of at least a portion of the digital signal and direct each decision unit output to different branches of the unit cell array. The unit cells may be enabled based at least in part on the decision unit outputs to generate the analog signal.
A frequency measurement circuit includes a counter circuit to receive a first digitally-controlled oscillator (DCO) clock signal corresponding to a first DCO input codeword and a measurement signal. The counter circuit is responsive to the measurement signal to generate a count representing a measured frequency of the first DCO clock signal. A control circuit is configured to selectively adjust a parameter of the measurement signal for generating a second count of a second DCO clock signal corresponding to a second DCO codeword. The control circuit selectively adjusts the parameter based on a received control signal.
An apparatus is disclosed for providing frequency stabilization. The apparatus includes a first supply voltage node, a second supply voltage node, an oscillator circuit coupled to the first supply voltage node, at least one clock buffer coupled to the second supply voltage node and an output of the oscillator circuit, and at least one load circuit. The at least one clock buffer is configured to selectively be in a disabled state or an enabled state to pass the clock signal to at least one client of multiple clients. The at least one load circuit includes an input coupled to the output of the oscillator circuit. The at least one load circuit also includes an output configured to be coupled to a ground. The at least one load circuit is configured to be connected to the first supply voltage node for at least a portion of time.
An automatic frequency calibration and lock detection circuit includes a frequency error generator circuit, an automatic frequency calibration signal generator circuit, and a lock flag generator circuit. The frequency error generator circuit generates a frequency error signal based on a reference frequency signal and an output frequency signal. The frequency error signal represents a difference between a frequency of the output frequency signal and a target frequency. The automatic frequency calibration signal generator circuit generates an automatic frequency calibration output signal and an automatic frequency calibration done signal based on the frequency error signal and a first clock signal. The lock flag generator circuit generates a lock done signal based on the frequency error signal, the automatic frequency calibration done signal and a second clock signal. The frequency error generator circuit is shared by the automatic frequency calibration signal generator circuit and the lock flag generator circuit.
A clock generating circuit includes a first delay line, a second delay line, a selected phase mixing circuit and, a delay control circuit. The first delay line delays, based on a delay control signal, an input clock signal to generate a first delay clock signal. The second delay line delays, based on the delay control signal, the input clock signal to generate a second delay clock signal. The selected phase mixing circuit generates, based on a first selection signal and a second selection signal, an output clock signal from at least one between the first delay clock signal and the second delay clock signal. The delay control circuit monitors duty cycles of the first delay clock signal and the second delay clock signal to generate the first selection signal and the second selection signal thereby selecting at least one between the first delay line and the second delay line.
A drive circuit has a control signal input for receiving a first control signal at a first circuit input, an optocoupler which is connected to the control signal input and which is adapted to generate a galvanically decoupled second control signal in accordance with the first control signal, an output circuit for controlling at least one circuit output terminal of the drive circuit in accordance with a third control signal, and an electronic control circuit comprising an energy supply, an input for receiving the second control signal, and an output for outputting the third control signal in accordance with the second control signal received at the input.
A numerically-controlled oscillator (NCO) includes a phase accumulator (PA) which has a first input adapted to receive a phase increment, a second input adapted to receive a clock signal, and a third input adapted to receive a reset signal. The PA provides an instantaneous phase at an output. The NCO includes a dithered splitter which has an input coupled to receive the instantaneous phase. The dithered splitter dithers the instantaneous phase using a pseudo-random binary sequence (PRBS) and provides a dithered course phase and a dithered fine phase. The NCO includes a polynomial approximation unit which has a first input coupled to receive the dithered course phase and a second input coupled to receive the dithered fine phase. The polynomial approximation unit provides a sequence of numbers representing a discrete sinusoidal signal.
A phase rotator calibration system is provided. The phase rotator calibration system includes a phase rotator portion having input for receiving an input signal and an output for providing an output signal. A calibration portion is coupled to the phase rotator portion. The calibration portion is configured to determine a phase error based on a phase estimation. The phase estimation is generated by way of an arccosine function.
A semiconductor device that can automatically transition from a standby mode to a deep power down (DPD) mode is provided. The semiconductor device includes a DPD controller supporting the DPD mode and multiple internal circuits. The DPD controller measures a time since a time point of entering the standby mode and generates multiple power down enable signals for further reducing power consumption in the standby mode in response to elapse of a measurement time, so that operations of the multiple internal circuits are stopped in stages.
A micro-resonator includes a first electrode positioned on a piezoelectric plate at a first end of the piezoelectric plate, the first electrode including a first set of fingers and a second electrode positioned on the piezoelectric plate at a second end of the piezoelectric plate. The second electrode including a second set of fingers interdigitated with the first set of fingers with an overlapping distance without touching the first set of fingers, the overlapping distance being less than seven-tenths the length of one of the first set of fingers or the second set of fingers. At least one of the first end or the second end of the piezoelectric plate may define a curved shape.
A multi-stage matching network filter circuit device. The device comprises bulk acoustic wave (BAW) resonator device having an input node, an output node, and a ground node. A first matching network circuit is coupled to the input node. A second matching network circuit is coupled to the output node. A ground connection network circuit coupled to the ground node. The first or second matching network circuit can include an inductive ladder network including a plurality of series inductors in a series configuration and a plurality of grounded inductors wherein each of the plurality of grounded inductors is coupled to the connection between each connected pair of series inductors. The inductive ladder network can include one or more LC tanks, wherein each of the one or more LC tanks is coupled between a connection between a series inductor and a subsequent series inductor, which is also coupled to a grounded inductor.
A frontend module includes a first filter having a passband of a first frequency band, a second filter having a passband of a second frequency band, the second frequency band being higher than the first frequency band, a third filter having a passband of a third frequency band, the third frequency band being higher than the second frequency band, and a sub-filter, connected to the second filter, configured to provide attenuation characteristics for the first frequency band, wherein the second filter comprises a plurality of parallel LC resonance circuits arranged between a ground and different nodes, from among a plurality of nodes between a first terminal and a second terminal, wherein an inductor is connected to a portion of the plurality of parallel LC resonance circuits.
A filter device is mounted on a module substrate and is shielded by a shield member. The filter device has first and second side surfaces opposed to each other. A ground terminal and signal terminals are formed on a bottom surface of the filter device. The shield member includes side wall portions facing the first and second side surfaces. The filter device includes plural LC parallel resonance circuits therein. The inductors of the LC parallel resonance circuits are arranged in parallel with the first side surface and the bottom surface. Each inductor extends upward from its end portion electrically connected to the ground terminal, extends from the first side surface toward the second side surface, and then extends toward the bottom surface. The gap between the first side surface and the corresponding side wall portion is smaller than that between the second side surface and the corresponding side wall portion.
Provided are an input matching circuit, at least one amplifying transistor that receives a signal from the input matching circuit, a first dummy transistor that receives a signal from the input matching circuit, a second dummy transistor that receives a signal from the input matching circuit, and an output matching circuit that outputs an output of the amplifying transistor, the amplifying transistor being arranged between the first dummy transistor and the second dummy transistor, the amplifying transistor, the first dummy transistor, and the second dummy transistor being provided in a row along the input matching circuit.
A matching network is a matching network of a power amplifier circuit that outputs a signal obtained by a differential amplifier amplifying power of a high-frequency signal. The matching network includes an input-side winding connected between differential outputs of the differential amplifier; an output-side winding that is coupled to the input-side winding via an electromagnetic field and whose one end is connected to a reference potential; a first LC series resonant circuit including a capacitive element and an inductive element connected in series with each other, and being connected in parallel with the input-side winding; and a second LC series resonant circuit including a capacitive element and an inductive element connected in series with each other, and being connected in parallel with the output-side winding.
Disclosed are systems and methods for processing an audio signal. In particular, there is provided a method for determining dynamic gain values to be applied on a digital input signal. The digital signal may be arranged in blocks. The dynamic gain values may be used for attenuating input signal values exceeding a clipping threshold. More particularly, the method comprising, for each signal block, passing backwards over the next signal block and the current signal block to produce a preliminary gain contour from the input signal; and passing forwards over the current signal block to produce a final gain contour for the current signal block based on the preliminary gain contour, wherein the gain contours are produced by applying an instant gain ascent and a smooth gain decay to the gain contours.
A Doherty power amplifier and a device are disclosed. In a combiner of the Doherty power amplifier, a first input port and a termination port are open coupled by at least two coupled microstrip lines and/or a second input port and an output port are open coupled by at least two coupled microstrip lines. Therefore, a balanced amplitude bandwidth may be obtained and may be much broader than that of the existing solutions, in addition, a controllable size or a potentially small size may be realized. Furthermore, the Doherty power amplifier in this disclosure may provide large 2nd harmonic suppression to meet product spectrum mask requirements.
Apparatus and methods for power amplifiers with positive envelope feedback are provided herein. In certain implementations, a power amplifier system includes a power amplification stage that amplifies a radio frequency signal, at least one envelope detector that generates one or more detection signals indicating an output signal envelope of the power amplification stage, and a wideband feedback circuit that provides positive envelope feedback to a bias of the power amplification stage based on the one or more detection signals. The power amplifier system further includes a supply modulator that controls a voltage level of a supply voltage of the power amplification stage based on the one or more detection signals such that the supply voltage is modulated with the output signal envelope through positive envelope feedback.
Provided is a method of estimating a rotor operational parameter of an electrical machine including multiple winding sets wound to have a phase-shift between winding sets, the rotor operational parameter including rotor position and/or rotor speed, the method including: deriving, for each winding set, a preliminary rotor operational parameter based on a current and a voltage of the respective winding set; calculating for at least two winding sets and for at least one predefined harmonic, a rotor operational parameter harmonic correction term based on the preliminary rotor operational parameter of at least two winding sets; calculating for at least one winding set, a corrected rotor operational parameter based on the preliminary operational parameter of this winding set and the rotor operational parameter harmonic correction term of this winding set, wherein in particular the corrected rotor operational parameter has at least one predefined harmonic removed or at least attenuated.
A motor drive apparatus includes a converter; an inverter for drive; a power storage device configured to supply DC power to a direct current link or to store DC power from the direct current link; a power consumption estimation unit configured to acquire a power consumption estimation value which is an estimation value of a total power consumption at a time point later, by a predetermined time, than a value at a present time point, the total power consumption being obtained as a sum of an output of the servomotor for drive, a winding loss in the servomotor for drive, a loss in the converter and a loss in the inverter for drive; and a power storage device control unit configured to control power supply and power storage of the power storage device in accordance with the power consumption estimation value.
This description provides a system for recovering energy released by a computing unit. The system comprises a first computing unit that generates heat energy as the first computing processes information, an energy recovery unit configured to recover the heat energy generated by the first computing unit, and a second computing unit coupled to the energy the energy recovery unit. The energy recovery unit further comprise a pump configured to transport a working fluid to absorb the heat energy generated by the first computing device and a conversion device configured to convert the absorbed heat energy into electrical energy. The electrical energy is passed to the second computing unit to supply power for the second computing unit to process information.
The driving apparatus comprises a vibrating body which includes an electro-mechanical energy conversion device, and drives a vibration-wave motor which moves the vibrating body and a driven body relatively to each other. The electro-mechanical energy conversion device has sensor electrodes that output detecting signals corresponding to vibrations of the vibrating body. Based on the detecting signals, the driving apparatus determines a direction in which the vibrating body and the driven body are to be moved relatively to each other.
A Static Electrostatic Generator (SEG) is disclosed which produces static charges at high voltage and low current. The SEG is capable of generating positive or negative charges on a metal sphere by reversing the polarity of a DC source. The conversion efficiency of the system is about 47% and its design is simple, lightweight, and easy to manufacture. The SEG is a static device and no mechanical movement is required to produce charges. Also, the design is easily scalable.
A power conversion apparatus with dual-mode control includes a bridge arm assembly, a capacitor assembly, and control unit. The bridge arm assembly includes a first bridge arm and a second bridge arm. The control unit selectively controls the first bridge arm to be operated in a voltage source switching mode or a current source switching mode according to the load type of a first load, and controls the second bridge arm to be operated in the voltage source switching mode or the current source switching mode according to the load type of a second load.
A power module is provided that is configured to supply power to a load. The power module includes a current generator configured to generate a current; a current rail configured to receive the current and output the current from the power module, wherein the current rail includes a first opening formed therethrough, and the current, while flowing along the current rail in an output direction, flows around the first opening; and a housing that houses the current generator, wherein the housing includes an outer frame from which the current rail outwardly extends, wherein the outer frame includes a recess aligned with the first opening of the current rail such that the recess and the first opening form a unitary opening.
A resonant converter and a manufacturing method of a transformer thereof are provided. The resonant converter includes a full bridge circuit, an element, a first branch circuit, a second branch circuit and a secondary winding. The full bridge circuit includes a first node and a second node. The element includes an inductor or a capacitor. The first branch circuit includes a first primary winding. The second branch circuit includes a second primary winding, and the first and second primary windings have the same turn number. The transformer is constructed by the first and second primary windings and the secondary winding. The first branch circuit, the element and the second branch circuit are sequentially coupled in series between the first and second nodes. The first branch circuit and the second branch circuit are symmetrically located with respect to the element. The first and second branch circuits have the same impedance.
This disclosure describes systems, methods, and apparatus for driving a plurality of output circuits from a DC input signal using a resonant converter, the resonant converter comprising a switch network, a resonant tank, and a rectifier network, the resonant tank comprising: a resonant capacitor bridge coupled across the switch network; a plurality of branches, each branch comprising at least one series inductor coupled at a first end to the resonant capacitor bridge and at a second end to the rectifier network; and at least one parallel inductor; the rectifier network comprising one or more groups of transformers, each group coupled to one branch of the plurality of branches, and wherein the primary windings of the transformers of each group are coupled in parallel, and wherein the secondary windings are configured for coupling to an output load.
The present invention discloses a power converter, a switch control circuit, and a short circuit detection method for current sensing resistor of the power converter. The power converter includes: a transformer, a power switch, a current sensing resistor and a switch control unit. The current sensing resistor has one end coupled to the power switch and another end coupled to ground. The switch control unit generates the operation signal to control the power switch. The switch control unit generates a first sample-and-hold voltage at a first time point and a second sample-and-hold voltage at a second time point according to a voltage across the current sensing resistor. When a voltage difference between the first sample-and-hold voltage and the second sample-and-hold voltage is smaller than a reference voltage, it is determined that a short circuit occurs in the current sensing resistor.
An insulated power supply circuit includes a power input circuit including a switching control circuit and a switching element connected to a corresponding winding of a transformer, and power output circuits of two systems each including a regulator connected to a corresponding winding. By the control circuit controlling ON/OFF of the switching element in accordance with an output condition change command signal, which is generated based on a load condition at an output destination of each regulator, a voltage corresponding to an estimated value of a preset excitation level is generated, to thereby change the excitation level of the winding. Each regulator receives an output voltage generated in a corresponding winding in response to the change in excitation level.
An apparatus for electric power conversion includes a converter having a regulating circuit and switching network. The regulating circuit has magnetic storage elements, and switches connected to the magnetic storage elements and controllable to switch between switching configurations. The regulating circuit maintains an average DC current through a magnetic storage element. The switching network includes charge storage elements connected to switches that are controllable to switch between plural switch configurations. In one configuration, the switches forms an arrangement of charge storage elements in which at least one charge storage element is charged using the magnetic storage element through the network input or output port. In another, the switches form an arrangement of charge storage elements in which an element discharges using the magnetic storage element through one of the input port and output port of the switching network.
A power controller for an LLC resonant converter controls a high-side switch and a low-side switch. An ON-time generator in the power controller determines a high-side ON time of the high-side switch and a low-side ON time of the low-side switch in response to the bigger one between a feedback voltage and a burst voltage, where the feedback voltage is generated in response to an output voltage of the LLC resonant converter. A burst-mode controller in the power controller has a triangular-wave generator providing a triangular-wave signal with an amplitude in association with the burst voltage. A comparator comparing the triangular-wave signal and the feedback voltage to determine a break time when both the high-side and low-side switches are turned OFF. The LLC resonant converter operates in a burst mode when the break time is introduced.
A valve device includes a valve, a drive device, and a transmission unit. A valve changes a flow mode of refrigerant that flows in a circulation path of a refrigeration cycle device. The transmission unit includes a driving-side rotary body, a magnetic transmission member, and a driven-side rotary body. The driving-side rotary body includes multiple magnetic magnet poles in a rotational direction. The magnetic transmission member includes multiple magnetic transmission bodies which are configured to be magnetized by the magnetic magnet poles. The driven-side rotary body includes multiple magnetic magnet poles in a rotational direction. The driven-side rotary body rotates in response to a rotary motion of the multiple magnetic magnet poles of the driving-side rotary body via the magnetic transmission body. The number of the magnetic magnet poles and the number of the magnetic transmission bodies are different from each other. The rotation is transmitted from the driving-side rotary body to the driven-side rotary body via the magnetic transmission member in a non-contact manner.
A hairpin type of stator coil forming apparatus includes a first forming machine configured to form a vertex in a material coil so that a central portion of the material coil protrudes upward, and to form inclined portions inclined to both sides of the vertex, a second forming machine configured to receive the material coil bent-formed by the first forming machine and to form a front/rear bent portion in the material coil by bending one inclined portion and a portion of the other inclined portion based on the vertex, and a third forming machine configured to receive the material coil bent-formed by the second forming machine and to roundly form the inclined portions in front and rear directions.
This stator manufacturing method includes a step in which one of a skew-forming mechanism portion and a skew-forming jig presses, with the skew-forming jig, the skew-forming mechanism portion having a shape corresponding to the shape of a skew, to form a skew having a bent shape or a curved shape.
A drive apparatus includes: a motor having a rotor and a stator core; a housing; and a first injection port to inject a refrigerant into the stator core. The stator core includes: a core body surrounding the rotor; and a fixing portion projecting radially outward from the core body and fixed to the housing. The fixing portion includes an upper fixing portion. The first injection port is lower than an end portion of the upper fixing portion. The upper fixing portion is on one circumferential side of the first injection port. The first injection port is open in a first direction facing a directly lower side or a second direction angled to the one circumferential side with respect to the first direction, and is facing a portion on the other circumferential side of a boundary with an end portion of the upper fixing portion on the other circumferential side.
A rotary electric machine includes a rotor and a stator. The stator has windings and teeth extending radially from a stator core. Each tooth is separated from an adjacent tooth by a stator slot that opens to a radial stator-rotor airgap via a slot opening. The windings are positioned within each slot. Each stator tooth has a tooth tip with a surface profile configured to guide rotor flux away from areas of the windings proximate the respective slot opening. The tip surface profile may be a concave region, e.g., a dent/chamfer, and/or a convex region, e.g., a bump/bulge, and is formed in a distal end surface of the tip proximate the opening. The stator-rotor airgap is smaller at the convex region and larger at the concave region than elsewhere along the distal end surface. An electrical system includes the machine, a battery, and a power inverter module.
A stator includes a stator core, first to third phase windings, and a busbar unit. Each of the first to third phase windings includes segment conductors inserted into slots of the stator core, and has a power point and a neutral point each protruding from an end face of the stator core. The busbar unit includes first to third power busbars coupled respectively to the power points of the first to third phase windings, and a neutral busbar coupled to the neutral points of the first to third phase windings. In circumferential directions of the stator core, the neutral point of the third phase winding is disposed between the power points of the first and second phase windings, and the power point of the third phase winding is disposed between the neutral points of the first and second phase windings.
An electrical machine comprises a stator and a housing. The housing has an internal bore. The stator comprises an annular core mounted within the bore of the housing. The core comprises at least one key projecting radially outwardly from a radially outer surface thereof. The housing comprises at least one keyway in the bore. The at least one key of the core being received within the at least one keyway of the housing.
A stator includes a yoke portion, and a tooth portion located inside the yoke portion in a radial direction. A fracture surface ratio of an inner surface of the tooth portion in the radial direction is lower than a fracture surface ratio of a side surface of the yoke portion.
A wireless power supply system may comprise a wireless power transmitting circuit configured to transmit radio-frequency (RF) signals, and a wireless power receiving circuit configured to convert power from the RF signals into a direct-current (DC) output voltage stored in an energy storage element. The wireless power transmitting circuit may be electrically or magnetically coupled to an antenna and/or electrical wiring of a building for transmitting the RF signals. The wireless power transmitting circuit may be housed in an enclosure that is affixed in a relative location with respect to the wireless power receiving circuit. The antenna may comprise two antenna wires that extend from the enclosure. The wireless power receiving circuit may be electrically or magnetically coupled to an antenna for receiving the RF signals. The wireless power receiving circuit may comprise an RF-to-DC converter circuit for converting the power from the RF signals into a DC output voltage.
According to some embodiments, a wireless power transmitter is disclosed. The wireless power transmitter can include a plurality of transmission coils arranged to cover a charging area and coupled with a ferrite; a plurality of local power controllers, each of the plurality of local power controllers coupled to drive a subset of the plurality of transmission coils, each subset of the plurality of transmission coils including a plurality of the plurality of transmission coils; and a microcontroller unit (MCU) coupled to the plurality of local power controllers, the microcontroller unit including a MCU processor executing instructions to designate states of each of the plurality of transmission coils, the states including active, de-active, and selected for receiver detection, and executing instructions to transmit instructions to each of the plurality of local power controllers in accordance with the state designations.
A portable power source includes a housing and a battery receptacle supported by the housing. The battery receptacle is configured to receive a battery. The portable power source also includes a first power tool battery pack port that is configured to receive a first power tool battery pack. The portable power source further includes a charging circuit coupled to the battery receptacle and the power tool battery pack, and an inverter. The charging circuit is configured to receive power from the battery receptacle and to provide power to the power tool battery pack port. The inverter includes a DC input coupled to the battery receptacle, inverter circuitry, and an AC output. The inverter circuitry is configured to receive power from the battery receptacle via the DC input, invert DC power received from the battery receptacle to AC power, and provide the AC power to the AC output.
Provided is an output control method of a parallel battery energy storage device including an inverter. More particularly, the present disclosure relates to an output control method, wherein when an external battery is connected in parallel to an inverter equipped with an internal battery and is used, output power is limited depending on a capacity of the external battery, thereby ensuring user safety.
In some examples, a medical device system includes a first implantable medical device. The first implantable medical device (IMD) may comprise circuitry configured to at least one of deliver a therapy to a patient or sense a physiological signal from the patient; generate stimulation deliverable to a patient; a first rechargeable power source; and a secondary coil coupled to the first rechargeable power source, the secondary coil configured to charge the first rechargeable power source via inductive coupling with a primary coil of an external charging device. The medical device system may comprise processing circuitry configured to control charging of the first rechargeable power source based on a charge state of a second rechargeable power source of a second IMD.
A charging circuit and a method with an inductor, an input to receive an input voltage, an output, and a switching means is presented. The switching means performs cycles where each cycle includes, switching the circuit such that the inductor enters into an energy charging state in which the inductor stores energy provided by the input voltage. When energy stored in the inductor reaches an energy threshold, the switching circuit operates such that the inductor enters into an energy discharging state in which the inductor provides energy to the output. The energy threshold is based on a predefined maximum energy storage current value and the time between cycles is based on a duration of the energy discharging state.
Electrical power supply system having a DC distribution bus; a rechargeable battery module which delivers DC power to the DC distribution bus in a discharge mode, and absorbs DC power from the DC distribution bus in a recharge mode; a DC/DC converter comprising an inductor and plural switches, the DC/DC converter being connected between the DC distribution bus and the rechargeable battery module; and a heat transfer arrangement configured to transfer heat between the DC/DC converter and the rechargeable battery module. The module has an idling mode of operation in which it neither delivers nor absorbs DC power to/from DC distribution bus, wherein the converter is repeatedly switchable between (i) a ramping-up configuration in which a current is withdrawn from a source, and (ii) a freewheeling configuration in which the current from the ramping-up configuration is isolated from the source to flow in a continuous loop within the converter.
The clamp on power cord USB charger is an electric energy distribution device. The clamp on power cord USB charger draws ac electric energy from the national electric grid by tapping into the cable of an electric device. The converts the drawn ac electric energy into dc electric energy. The clamp on power cord USB charger distributes the dc electric energy in a manner suitable for use by USB devices. The clamp on power cord USB charger comprises a pan, a lid, a fastening structure, and a rectifying circuit. The pan, the lid, and the fastening structure enclose the rectifying circuit. The rectifying circuit: a) taps into the cable to draw ac electric energy from national electric grid; and, b) converts the drawn ac electric energy into dc electric energy.
In some examples, a system includes a primary side with a charger and a first battery and a secondary side with a second battery. The charger on the primary side can charge both the first battery and the second battery. A hinge resistance is between the primary side and the secondary side. The primary side includes a feedback controlled active device in a current path of the first battery that compensates for the hinge resistance, for connector resistances, or for battery impedances in a current path of the second battery.
A battery system includes a system controller connected to a controller area network (CAN) bus, and stations respectively connected to nodes of the CAN bus, wherein, a first station of the stations is configured to detect that a first battery pack has been coupled thereto, and is configured to transmit a first detection signal to the system controller, wherein the system controller is configured to provide a first wake-up signal for waking up the first battery pack to the first station in response to the first detection signal, wherein the first station is configured to wake up a first battery controller of the first battery pack in response to the first wake-up signal, and wherein the system controller is configured to be woken up and to transmit a command for allocating a first identifier (ID) corresponding to the first station to the first battery controller having a default ID via the CAN bus.
A modular integrated ultracapacitor-based energy storage and power delivery apparatus (UCAP module) is described. In some embodiments, the UCAP module comprises: at least one ultracapacitor cell coupled together in a series, parallel, or combination of both series and parallel configuration; an integrated charging unit; conductive hardware electrically coupling the ultracapacitors cells together; at least one UCAP terminal rod extending throughout the UCAP module and used to route power within the UCAP module and in some embodiments to other UCAP modules; and a protective casing. In some embodiments the UCAP terminal rod couples the UCAP module to at least one additional UCAP module in a series, parallel, or a combination of both series and parallel configurations. In other embodiments, the UCAP module further comprises connector rods that electrically and mechanically couple the UCAP module to at least one additional UCAP module.
A photovoltaic system with an inverter, at least one solar panel for providing electrical power, and electrical wiring for coupling electrical power from the at least one solar panel to the inverter. Also included is a transmitter for transmitting a messaging protocol along the electrical wiring, where the protocol includes a multibit wireline signal. Also included is circuitry for selectively connecting the electrical power from the at least one solar panel along the electrical wiring to the inverter in response to the messaging protocol.
A power conditioner includes a PV converter that generates an output voltage, which is obtained by boosting a direct-current voltage input from a solar panel, an inverter that converts the output voltage of the PV converter into an alternating-current voltage, and a first relay connected between the inverter and a commercial power system. A controller includes a control circuit that controls the entire power conditioner, a control circuit that controls the PV converter, and a control circuit that controls the inverter. In a start process, the control circuit controls activation and deactivation of a DC-DC converter and causes the impedance of a DC-DC converter to change. The control circuit detects an input voltage and an input current of the PV converter and determines whether or not the first relay is to be in a close state according to those values.
The present invention discloses an electrostatic discharge protection circuit having time-extended discharging mechanism. A RC circuit is coupled between an ESD input terminal that receives an ESD input and a ground terminal and includes an input control terminal. An inverter includes a P-type transistor coupled between the ESD input terminal and an output control terminal and an N-type transistor circuit including N-type transistors coupled in series and between the output control terminal and a ground terminal, wherein two of the N-type transistors has an internal connection terminal. Gates of the P-type transistor and N-type transistors are controlled by the input control terminal. A switch transistor is coupled between the ESD input terminal and the internal connection terminal. A discharging transistor is coupled between the ESD input terminal and the ground terminal. The gates of the switch transistor and the discharging transistor are controlled by the output control terminal.
A semiconductor device includes, for example, an external terminal, an output element, a detecting element configured to detect occurrence of a negative voltage at the external terminal, and an off-circuit configured to forcibly turn off the output element when the detecting element detects occurrence of the negative voltage.
Provided is a method for monitoring DC electrical power. The method including determining a rate of change of the DC electrical power, determining whether the rate of change of the DC electrical power is greater than a predetermined threshold, when the rate of change of the DC electrical power is greater than the predetermined threshold, determining whether the rate of change of the DC electrical power is greater than the predetermined threshold for a predetermined period of time, and when the rate of change of the DC electrical power is greater than the predetermined threshold for the predetermined period of time, sending a signal indicating an interruption in the DC electrical power.
A cable routing apparatus, for supporting an electric charging cable, includes a mounting plate and a pulley-bracket assembly, which is pivotally attachable to the mounting plate. The pulley-bracket assembly includes a pulley support member having a pulley support plate and at least one pulley support arm extending downwardly from the support plate. The pulley-bracket assembly further includes a pulley wheel for supporting part of the cable thereon, and a pulley axle extending through a central hub of the pulley wheel. A housing may be provided for covering the pulley-bracket member, and parts of the pulley support member may, optionally, be integrated into the housing. A kit including two of the described cable routing apparatus along with an intermediate pulley bracket and other components, as well as a method of installing the kit in a garage to provide a cable routing system are also described.
A cable leadthrough device for leading a cable through an opening in a wall, having a housing that can be fastened in the area of the opening, wherein the cable can be led through the housing along a leadthrough channel parallel to a leadthrough axis, and also having a strain relief device—with at least one clamping element for clamping a cable led through the leadthrough channel, wherein the clamping element is mounted so as to be movable on the housing, by a guide device, along a guide axis inclined in relation to the leadthrough axis, between a clamping position, in which it radially narrows the leadthrough channel, and a release position, in which it releases the leadthrough channel, and a force application system being provided for generating a driving force with a force component that acts along the guide axis and pushes the clamping element towards its clamping position.
An ice bridge system for a cellular transmissions site assembled with a ladder frame section to support cabling laid on top of the and a ladder support with a preformed base for resting on a ground surface, a preformed set of mounting points for securing one or more sections of the ladder frame, such that the ladder frames mate end to end with each other and a structural support section between the base and mounting points to support the weight of the ladder frame and supported cables.
A system for managing temperature, that can be adapted to an electrical enclosure, the electrical enclosure delimiting a first volume, the system comprising: a first chamber delimiting a closed second volume and a tank housed in the first chamber and delimiting a closed third volume inside the first chamber, first air transfer means arranged between a first air inlet/outlet connected to the second volume and a second air inlet/outlet intended to be connected to the first volume, second air transfer means arranged between a third air inlet/outlet connected to the third volume and a fourth air inlet/outlet intended to be connected to the first volume, and a control and processing unit intended to apply a mode of operation of the system.
A semiconductor laser is provided that includes a semiconductor layer sequence and electrical contact surfaces. The semiconductor layer sequence includes a waveguide with an active zone. Furthermore, the semiconductor layer sequence includes a first and a second cladding layer, between which the waveguide is located. At least one oblique facet is formed on the semiconductor layer sequence, which has an angle of 45° to a resonator axis with a tolerance of at most 10°. This facet forms a reflection surface towards the first cladding layer for laser radiation generated during operation. A maximum thickness of the first cladding layer is between 0.5 M/n and 10 M/n at least in a radiation passage region, wherein n is the average refractive index of the first cladding layer and M is the vacuum wavelength of maximum intensity of the laser radiation.
An optical amplifier assembly and a detection method capable of dynamically performing optical time-domain reflection detection. The detection method comprises obtaining signal light intensity detection signals from a first and second photodetectors and sending a control signal to an L-band Raman pump when the signal light intensity in the second photodetector is lower than a first preset threshold, so that the L-band Raman pump enters into an optical time-domain reflection detection mode; sending a control signal to the L-band Raman pump when the signal light intensity in the second photodetector is greater than or equal the first preset threshold, so that the L-band Raman pump enters into an L-Band Raman optical fiber amplifier operation mode.
An optical filter includes a first ring resonator a second ring resonator having different perimeters, and a waveguide optically coupled to the first ring resonator and transmit light to the first ring resonator. Light incident on the waveguide is transmitted to the second ring resonator through the first ring resonator. A free spectral range of a transmission spectrum of the first ring resonator and a free spectral range of a transmission spectrum of the second ring resonator are staggered to each other, and are set so that a transmission spectrum of a double ring corresponding to a synthetic spectrum of the transmission spectrum of the first ring resonator and the transmission spectrum of the second ring resonator has a highest first peak at an arbitrary wavelength.
A steering roll connector configured to operatively engage a steering column. The steering roll connector may comprise a roll stator and a roll rotor telescoped in and rotatable with the roll stator. The roll rotor may have a wall and a surface, and the wall may define an opening for receiving the steering column. A slide may be supported by and movable on the surface from an unengaged position to an engaged position where the slide is positioned to engage and prevent the relative rotation between the roll rotor and roll stator. A spring may operatively engage the slide to causes it to be in the engaged position. When the steering column is received in the opening, a lever arm may operatively engage and pull the slide to the unengaged position.
A battery pack adapter system includes a device that allows different sized and shaped battery packs to be converted for use with multiple power tools from different brands. In one embodiment, a drill battery and drill are joined together through means of the battery pack adapter device. This allows the drill battery to power the drill even though the battery and drill have different configurations. The battery pack adapter device includes metal electrical connectors that extend from a top end of the device towards a bottom end of the device. The metal electrical connectors transfer the electrical energy from the battery to the power tool through by means of the adapter.
A power adapter has a solenoid actuated retaining latch controlled by an electronic circuit that detects the presence or absence of AC mains voltage. When the assembled AC-DC adapter and plug assembly are removed from the wall, the latch detects removal and unlocks the plug assembly for easy removal without undue force required by the user. The circuit is designed for minimal power consumption, and the solenoid only consumes power when it is engaging or disengaging the latch.
One variation of a portable radio system includes: a portable radio configured to transmit and receive audio communication, including a connector receptacle arranged on a rear face of the portable radio and a channel extending from the connector receptacle; a cable, configured to couple the portable radio to a secondary device, including a straight section configured to seat within the channel and defining a length greater than a length of the channel; a connector, coupled to the straight section of the cable, configured to seat within the connector receptacle to couple the cable to the portable radio in an upward and downward orientation; and a clip including a base section configured to transiently couple to the body over the connector and a clamp section configured to pivot relative the base section and to attach the portable radio to a user.
An arc prevention system including a jack having a receptacle, a modular connector sized to be positioned in the receptacle of the jack, the modular connector including a plurality of contacts, with at least two of the contacts creating an energized electrical path with an external power source in electrical communication with the external power source, a latch extending from a top surface of the modular connector, a switching unit positioned on the latch, a plug unit positioned between the latch and the jack that prevents the modular connector from moving out of the receptacle, a control circuit in electrical communication with switch and the at least two energized contacts, where the electrical path between the control circuit and the switching unit is energized when the plug engages the switching unit on the latch, and the control circuit adjusts the energized electrical path to a predetermined electrical level.
A connector apparatus of the present invention includes a receptacle into which a plug is inserted, a moving member configured to move in conjunction with insertion of the plug, and a sensor provided below the receptacle and configured to detect presence or absence of the plug in the receptacle, in which the moving member includes a first portion extending downward, a second portion, one end of which is connected to the first portion and another end of which is located above the one end, and a third portion, one end of which is connected to the second portion and configured to move in conjunction with the insertion of the plug to thereby switch between a first state in which the plug is disposed in a predetermined region and a second state in which the plug is not disposed in the predetermined region.
An electrical connector assembly includes a connector housing and a busbar having a rectangular cross section defining two opposed major surfaces and two opposed minor surfaces disposed within the connector housing. A planar surface is defined by one of the two opposed major surfaces of the busbar. The electrical connector assembly further includes a cooling plate that is sized, shaped, and arranged to be in conductive thermal contact with the planar surface of the busbar. The cooling plate is configured to reduce a temperature of the busbar.
A sensor module includes: a metal member having a recessed portion; a resin portion embedded within the recessed portion; a radiator provided within the resin portion and configured to emit radio waves; a wireless communication portion provided within the resin portion and connected to the radiator; and a sensor connected to the wireless communication portion, wherein the metal member is insulated from the radiator by the resin portion and functions as a parasitic element.
A nozzle cap assembly includes a body with a first curved side wall, the body defining a top end and a bottom end positioned opposite from the top end; a nut, the top end of the body positioned between the nut and the bottom end of the body; a spacer comprising a hollow body, the hollow body defining a curved outer surface, the spacer positioned between the nut and the bottom end of the body; and an antenna assembly coupled to the curved outer surface.
A metamaterial switch. The metamaterial switch includes a first conductive plate, a first loaded conductive plate, and a magneto-dielectric material. The first loaded conductive plate includes a second conductive plate and a first tunable impedance surface set. Each tunable impedance surface in the first tunable impedance surface set includes a respective tunable conductivity. An effective permittivity of the metamaterial switch is configured to be adjusted to a first predetermined value. The effective permittivity of the metamaterial switch is adjusted responsive to tuning a respective tunable conductivity of each respective tunable impedance surface in the first tunable impedance surface set.
A separator is provided which includes: a separator base including a porous polymer substrate having a plurality of pores, and a porous coating layer positioned on at least one surface of the porous polymer substrate and containing a plurality of inorganic particles and a binder polymer positioned on the whole or a part of the surface of the inorganic particles to connect the inorganic particles with one another and fix them; and a porous adhesive layer positioned on at least one surface of the separator base and including polyvinylidene fluoride-co-hexafluoropropylene containing vinylidene fluoride-derived repeating units and hexafluoropropylene-derived repeating units, wherein the ratio of the number of the hexafluoropropylene (HFP)-derived repeating units (HFP substitution ratio) based on the total number of the vinylidene fluoride-derived repeating units and the hexafluoropropylene-derived repeating units is 4.5% to 9%. An electrochemical device including the separator is also provided.
The present disclosure relates to a casing for a battery pack and a battery pack. The casing has a receiving space and an opening in communication with the receiving space, the receiving space is formed by a wall portion of the casing, and the wall portion is formed from two or more stacked base plates, between which a plurality of cavities are formed. By forming a plurality of cavities in the wall portion, the casing for a battery pack provided by the present disclosure not only can improve the bearing capacity and the impact resistance of the casing, but also can achieve a thermal management of the battery assembly by filling the plurality of cavities with a phase change material or cooling liquid, which can further improve the mechanical property of the casing with a relatively light weight and relatively high reliability.
A photovoltaic (PV) cell health monitoring apparatus includes a Radio Frequency Identification (RFID) tag mounted to the PV cell and having identifying information of the PV cell, and a sensor in communication with the RFID tag for measuring health information of the PV cell. The RFID tag stores the measured health information together with time and locality information of the PV cell and responds to an interrogation signal by transmitting the stored information together with the identifying information. A dust sensor in the form of a comb-like electrode array measures electrical capacitance as an indication of an amount of dust on an exposed surface of the PV cell. An RFID tag antenna arranged as a meander-line patch antenna covered with polyethylene has a dual function as a temperature sensor.
A battery mounted on a vehicle, the battery including a battery case having an electrically conductive material and configured to be attached to a body of the vehicle so as to electrically connect to the body of the vehicle. The battery case includes a plus terminal to which an electrical conductor is connected to supply electric power to electrical equipment on-board the vehicle, a minus terminal, a ground member that is attached to the minus terminal so as to electrically connect the minus terminal and the battery case, and a plus terminal cover that covers the plus terminal. In a state where the ground member is attached to the minus terminal, the ground member abuts the plus terminal cover so as to restrict a movement of the plus terminal cover from exposing the plus terminal.
The invention relates to a casing for protecting at least one electric battery module (M), comprising at least one element (9) for thermal regulation of said at least one module (M) in which a heat-transfer fluid flows.
According to the invention, the protective housing comprises at least one duct (10), for conveying heat-transfer fluid, that extends in at least one wall of the protective casing (B, 1, 2, 3, 4) and is in fluid connection with said at least one thermal regulation element (9).
A battery pack includes: a plurality of secondary battery cells connected to each other in series and/or in parallel; and a housing case that includes a plurality of battery housing spaces for housing the plurality of secondary battery cells. A number of the plurality of battery housing spaces is larger than a number of the plurality of secondary battery cells. A heat absorber is disposed in the battery housing space where the secondary battery cell is not housed.
An internal battery heating system includes an electrical conversion device electrically coupled to an electrochemical sub-cell or battery modules to form a heating circuit. The electrical conversion device alternately raises and lowers a voltage of the heating circuit to drive current between the heating circuit and the electrochemical sub-cell or battery modules. A controller commands the electrical conversion device to cyclically charge and discharge the electrochemical sub-cell or battery modules for internally heating the battery modules. Alternatively, a battery module may be electrically coupled to electrochemical sub-cells via pairs of switches to form a heating circuit. The pairs of switches are adapted for switching the heating circuit alternately between a parallel arrangement and a series arrangement to alternate charging and discharging of the battery module which results in internal heating of the battery module.
Methods and systems are provided for optimizing usage of a large number of battery cells, some, most or all of which are fast charging cells, and possibly arranged in battery modules—e.g., for operating an electric vehicle power train. Methods comprise deriving an operation profile for the battery cells/modules for a specified operation scenario and specified optimization parameters, operating the battery cells/modules according to the derived operation profile, and monitoring the operation of the battery cells/modules and adjusting the operation profile correspondingly. Systems may be configured to balance cell/module parameters among modules, to have parallel supplemental modules and/or serial supplementary cells in the modules, and/or have supplemental modules and circuits configured to store excessive charging energy for cells groups and/or modules—to increase the cycling lifetime and possibly the efficiency of the systems. Disclosed redundancy management improves battery performance and lifetime.
A system and method for a liquid electrolyte used in secondary electrochemical cells having at least one electrode including a TMCCC material, the liquid electrolyte enabling an increased lifetime while allowing for fast discharge to extremely high depth of discharge. The addition of dinitriles to liquid electrolytes in electrochemical cells in which energy storage is achieved by ion intercalation in transition metal cyanide coordination compounds (TMCCC) has the advantage of increasing device lifetime by inhibiting common chemical and electrochemical degradation mechanisms.
To provide a graphene compound having an insulating property and an affinity for lithium ions. To increase the molecular weight of a substituent included in a graphene compound. To provide a graphene compound including a chain group containing an ether bond or an ester bond. To provide a graphene compound including a substituent containing one or more branches. To provide a graphene compound including a substituent including at least one of an ester bond and an amide bond.
A fuel cell stack includes an insulating collar member provided in an end plate and screwed with a positioning pin, and a rotation restriction mechanism that restricts rotation of the collar member relative to the end plate in a screw tightening direction of the positioning pin. A method of assembling the fuel cell stack includes a screwing step and a stacking step. In the screwing step, rotation of the collar member relative to the end plate in the screw tightening direction of the positioning pin is restricted by the rotation restriction mechanism.
A method and systems are provided for utilizing black powder to form an electrolyte for a flow battery. In an exemplary method the black powder is heated under an inert atmosphere to form Fe3O4. The Fe3O4 is dissolved in an acid solution to form an electrolyte solution. A ratio of iron (II) to iron (III) is adjusted by a redox process.
A fuel cell system includes an inlet pipe configured to guide a fuel gas injected from an injector to a fuel cell stack, and a gas liquid separator configured to perform gas liquid separation of a fuel exhaust gas discharged from the fuel cell stack. The gas liquid separator is directly coupled to a lower portion of the inlet pipe. A connection channel configured to connect the inside of the gas liquid separator and a channel in the inlet pipe together is formed in a part coupling the gas liquid separator and the inlet pipe together.
According to an embodiment of the present disclosure, a power management system (e.g., a power management for a fuel cell or a fuel cell system) includes a fuel cell to generate an electrical power output; a metastable hydrogen carrier to supply hydrogen to the fuel cell; a heater coupled with the metastable hydrogen carrier; and a controller coupled to the heater to control a rate of hydrogen release from the metastable hydrogen carrier. A method of operating a fuel cell system includes controlling an electrical power input to a heater utilizing a controller; heating a metastable hydrogen carrier to a temperature by the heater and to generate hydrogen to feed a fuel cell. The heater is coupled to the controller, and the controller controls the electrical power input to the heater according to a relationship between a rate of hydrogen release and the temperature and a composition of the metastable hydrogen carrier.
Various designs and configurations of and methods of operating fuel cell units, fuel cell systems and combined heat and power systems are provided that permit efficient thermal management of such units and systems to improve their operation.
An air electrode catalyst for an air secondary battery includes a pyrochlore-type composite oxide having two or more crystal structures having a different amount of oxygen. A battery, according to some embodiments, includes an electrode group including an air electrode and a negative electrode stacked with a separator therebetween, and a container accommodating the electrode group along with an alkali electrolyte solution, wherein the air electrode includes the air electrode catalyst. The air electrode catalyst may have a pyrochlore-type composite oxide having a crystal structure represented by Bi2Ru2O6.92 and a crystal structure represented by Bi2Ru2O7.33.
A positive active material for a rechargeable lithium battery includes a lithium nickel-based composite oxide including a secondary particle in which a plurality of plate-shaped primary particles are agglomerated; and a lithium manganese composite oxide having at least two crystal lattice structures, wherein the secondary particle has a regular array structure in which (003) planes of the primary particles are oriented in a vertical direction with respect to the surface of the secondary particle.
A negative electrode for a secondary battery, and a method for producing the same, and more particularly, to a negative electrode for a secondary battery used for a negative electrode of a secondary battery, and a method for producing the same. A negative electrode for a secondary battery may include a carbon-based active material; a conductive material; and a silicon-based active material-polymer binder combination including a silicon-based active material, and a polymer binder for suppressing the expansion of the silicon-based active material bonded to a particle surface of the silicon-based active material.
A method of making an anode for use in an energy storage device is provided. The method includes providing a current collector having an electrically conductive substrate and a surface layer overlaying a first side of the electrically conductive substrate. A second side of the electrically conductive substrate includes a filament growth catalyst, wherein the second side is opposite the first. The method further includes depositing a lithium storage layer onto the surface layer using a first CVD process forming a plurality of lithium storage filamentary structures on the second side of the electrically conductive substrate using second CVD process.
Disclosed herein are a white organic light-emitting device. The white organic light-emitting device enables an overall improvement in characteristics such as color temperature, efficiency, luminance, and service life, by changing the configuration of different types of emission layers in contact with each other, and a display device using the same.
The present disclosure provides an organic compound and an electronic device containing the organic compound, which relates to the technical field of organic materials. The structure of the organic compound is as shown in the following Chemical formula (1), where Y has a structure as shown in the following formula (2) or (3). The organic compound is used in, for example, an electronic device of an organic electroluminescent device, and can improve the lifetime property and deficiency property, electrochemical stability and thermal stability, and reduce the driving voltage of the organic electroluminescent device.
A magnetoresistance effect element according to an embodiment includes: a spin orbit torque wiring extending in a first direction; a laminated body laminated on the spin orbit torque wiring and having a first ferromagnetic layer, a second ferromagnetic layer, and a non-magnetic layer between the first ferromagnetic layer and the second ferromagnetic layer; a conductive layer in contact with a side of the laminated body opposite to the spin orbit torque wiring; and a heat dissipation layer separated from the laminated body in the first direction and connected to the spin orbit torque wiring and the conductive layer.
Various methods and systems are provided for a multi-frequency transducer array. In one example, the transducer array may be fabricated via a wafer scale approach, where a first comb structure, with a first type of element, is formed by dicing a first acoustic stack and a second comb structure, with a second type of element, is formed by dicing a second acoustic stack. Combining the first and second comb structures may form a multi-frequency transducer array.
The present invention relates to a device containing an organometal-complex luminescent material. The device comprises a luminescent layer. The luminescent layer contains an organometal complex which has a structural formula (I), wherein A, B and C refer to substituted or unsubstituted C, N, O and S atoms independently; a dashed ring for linkage between A and B atoms refers to a substituted or unsubstituted conjugated ring structure; L1, L2, L3 and L4 are single bonds or double bonds independently, wherein L3 and L4 are part of the conjugated ring structure for linkage between A and B atoms; X, X1, Y and Y1 are C, N, O and S atoms independently; Ar1 and Ar2 are substituted or unsubstituted conjugated ring structures independently; M refers to Pt, W and Au atoms. An organometal complex in the luminescent material is high in fluorescence quantum efficiency and heat stability and low in quenching constant and can be used for manufacturing high-efficiency and low-efficiency roll-off red-light OLEDs.
A patterned epitaxial substrate includes a substrate and a plurality of patterns. The substrate has a first zone and a second zone surrounding the first zone. The first zone is disposed around a center of the substrate. The patterns and the substrate are integrally formed, and the patterns are disposed on the substrate. The patterns include a plurality of first patterns and a plurality of second patterns. The first patterns are disposed in the first zone. The second patterns are disposed in the second zone. Sizes of the first patterns are different from sizes of the second patterns.
Provided is an AlGaN unipolar carrier solar-blind ultraviolet detector that is based on the AlGaN polarization effect and that uses the double heterojunction of the p-AlzGa1-zN/i-AlyGa1-yN/n-AlxGa1-xN (0.45=
There is provided a multi junction photovoltaic device comprising a first sub-cell comprising a photoactive region comprising a layer of perovskite material, a second sub-cell comprising a photoactive silicon absorber. and an intermediate region disposed between and connecting the first sub-cell and the second sub-cell. The intermediate region comprises an interconnect layer, the interconnect layer comprising a two-phase material comprising elongate (i.e. filament like) silicon nanocrystals embedded in a silicon oxide matrix.
The light conversion efficiency of a solar cell is enhanced by using an optical downshifting layer in cooperation with a photovoltaic material. The optical downshifting layer converts photons having wavelengths in a supplemental light absorption spectrum into photons having a wavelength in the primary light absorption spectrum of the photovoltaic materiaL The cost effectiveness and efficiency of solar cells platforms can be increased by relaxing the range of the primary light absorption spectrum of the photovoltaic materiaL The optical downshifting layer can be applied as a low cost solution processed film composed of highly absorbing and emissive quantum dot heterostructure nanomaterial embedded in an inert matrix to improve the short wavelength response to the photovoltaic materiaL The enhanced efficiency provided by the optical downshifting layer permits advantageous modifications to the solar cell platform that enhances its efficiency as well.
A semiconductor device with enhanced semiconductor characteristics that is useful for power devices. A semiconductor device, including: an n-type semiconductor layer; an electrode; two or more p-type semiconductors provided between the n-type semiconductor layer and the electrode, the n-type semiconductor layer containing a corundum-structured crystallin oxide semiconductor as a major component, a number of the two or more p-type semiconductor that is equal to or more than three, and the two or more p-type semiconductors that are embedded in the n-type semiconductor layer.
The present disclosure provides a semiconductor device structure in accordance with some embodiments. In some embodiments, the semiconductor device structure includes a semiconductor substrate of a first semiconductor material and having first recesses. The semiconductor device structure further includes a first gate stack formed on the semiconductor substrate and being adjacent the first recesses. In some examples, a passivation material layer of a second semiconductor material is formed in the first recesses. In some embodiments, first source and drain (S/D) features of a third semiconductor material are formed in the first recesses and are separated from the semiconductor substrate by the passivation material layer. In some cases, the passivation material layer is free of chlorine.
A semiconductor device includes a first active fin structure and a second active fin structure extending along a first lateral direction. The semiconductor device includes a dummy fin structure, also extending along the first lateral direction, that is disposed between the first active fin structure and the second fin structure. The dummy fin structure includes a material that is configured to induce mechanical deformation of a first source/drain structure coupled to an end of the first active fin structure and a second source/drain structure coupled to an end of the second active fin structure.
Integrated circuit structures including increased transistor source/drain (S/D) contact area using a sacrificial S/D layer are provided herein. The sacrificial layer, which includes different material from the S/D material, is deposited into the S/D trenches prior to the epitaxial growth of that S/D material, such that the sacrificial layer acts as a space-holder below the S/D material. During S/D contact processing, the sacrificial layer can be selectively etched relative to the S/D material to at least partially remove it, leaving space below the S/D material for the contact metal to fill. In some cases, the contact metal is also between portions of the S/D material. In some cases, the contact metal wraps around the epi S/D, such as when dielectric wall structures on either side of the S/D region are employed. By increasing the S/D contact area, the contact resistance is reduced, thereby improving the performance of the transistor device.
A semiconductor device includes a semiconductor substrate, a capacitor structure, a first contact plug, and a spacer. The capacitor structure is over the semiconductor substrate. The capacitor structure includes a bottom electrode, a capacitor dielectric, and a top electrode. The bottom electrode is over the semiconductor substrate. The capacitor dielectric is over a first portion of the bottom electrode. The top electrode is over the capacitor dielectric. The first contact plug is over and electrically connected to a second portion of the bottom electrode. The spacer is adjacent at least a sidewall of the second portion of the bottom electrode.
A light emitting device comprising a plurality of pixels arranged on a substrate to form a plurality of columns parallel to a first direction and a plurality of rows parallel to a second direction orthogonal to the first direction is provided. Each of the plurality of pixels includes a light emitting element, and a driving circuit configured to drive the light emitting element, the substrate includes a transistor region in which a plurality of transistors that form the driving circuit are arranged, the plurality of pixels include a first pixel and a second pixel, which are adjacent to each other in the first direction, and a virtual line parallel to the second direction, which passes through the transistor region of the first pixel, passes through the transistor region of the second pixel.
An organic light emitting diode display device includes a substrate, a driving transistor, a switching transistor, a first light absorbing layer, an organic insulating layer, and a sub-pixel structure. The substrate includes a first region and a second region. The driving transistor is disposed in the first region on the substrate. The switching transistor is disposed in the second region on the substrate, and includes a metal-oxide-based semiconductor. The first light absorbing layer is disposed on the driving and switching transistors. The organic insulating layer is disposed directly on the first light absorbing layer. The sub-pixel structure is disposed on the organic insulating layer.
Disclosed herein is a display substrate of a display panel, comprising: a support; a second layer on the support; a window extending through the second layer and optically coupled with an image sensor; and a sidewall at least partially surrounding the window; wherein the sidewall is configured to attenuate transmission of light through the sidewall.
A light emitting display device comprises a substrate, a first pixel electrode disposed on the substrate, a pixel defining film disposed on the first pixel electrode and having a first opening at least partially exposing the first pixel electrode, a first organic light emitting layer disposed on the pixel defining film and overlapping with the first opening of the pixel defining film, and a black matrix disposed on the first organic light emitting layer and having a first opening overlapping with the first organic light emitting layer. Light having passed through the first opening of the black matrix is one of red light, green light, and blue light. The first opening of the black matrix may have a shape with a curved portion.
A display panel including a lower display substrate including a light emitting element configured to generate source light, and an upper display substrate including first, second, and third pixel areas and a peripheral area adjacent thereto, in which the upper display substrate includes a base substrate, a first partition pattern disposed on a bottom surface of the base substrate, overlaps with the peripheral area, and has first, second, and third openings corresponding to the first, second, and third pixel areas, respectively, first, second, and third color filters disposed on the bottom surface of the base substrate and overlapping with the first, second, and third pixel areas, respectively, first, second, and third color control layers disposed on the first, second, and third color filters, respectively, and an encapsulation inorganic layer covering the second color control layer and exposing at least one of the first and third color control layers.
An organic photoelectronic device includes a first electrode and a second electrode facing each other and a light-absorption layer between the first electrode and the second electrode and including a photoelectric conversion region including a p-type light-absorbing material and an n-type light-absorbing material and a doped region including an exciton quencher and at least one of the p-type light-absorbing material and the n-type light-absorbing material, wherein at least one of the p-type light-absorbing material and the n-type light-absorbing material selectively absorbs a part of visible light, and an image sensor includes the same.
According to one embodiment, a nonvolatile memory device includes a plurality of wiring line pairs each including a pair of first and second wiring lines extending in a first direction, a plurality of third wiring lines each extending in a second direction intersecting the first direction, and a plurality of memory cells provided between the wiring line pairs and the third wiring lines. Each of the memory cells includes a resistance change memory element connected to the third wiring line, and a switching element structure including a first switching element portion provided between the resistance change memory element and the first wiring line, and a second switching element portion provided between the resistance change memory element and the second wiring line.
A CMOS image sensor includes a substrate and at least one device isolation region in the substrate and defining first and second pixel regions and first and second active portions in each of the first and second pixel regions. A reset and select transistor gates are disposed in the first pixel region, while a source follower transistor gate is disposed in the second pixel region, such that pixels in the first and second pixel regions share the reset, select and source follower transistors. A length of the source follower transistor gate may be greater than lengths of the reset and selection transistor gates.
A system includes a pixel including a diffusion layer in contact with an absorption layer. The diffusion layer and absorption layer are in contact with one another along an interface that is inside of a mesa. A trench is defined in the absorption layer surrounding the mesa. An overflow contact is seated in the trench.
The present disclosure relates to a CMOS image sensor having a multiple deep trench isolation (MDTI) structure, and an associated method of formation. In some embodiments, the image sensor comprises a plurality of pixel regions disposed within a substrate and respectively comprising a photodiode configured to receive radiation that enters the substrate from a back-side. A boundary deep trench isolation (BDTI) structure is disposed at boundary regions of the pixel regions surrounding the photodiode. The BDTI structure extends from the back-side of the substrate to a first depth within the substrate. A multiple deep trench isolation (MDTI) structure is disposed at inner regions of the pixel regions overlying the photodiode. The MDTI structure extends from the back-side of the substrate to a second depth within the substrate smaller than the first depth. The MDTI structure is a continuous integral unit having a ring shape.
The present technology relates to a solid-state imaging element and electronic equipment that allow an increase in the signal charge amount Qs that each pixel can accumulate. A solid-state imaging element according to the first aspect of the present technology includes: a photoelectric conversion section formed in each pixel; and an inter-pixel separation section separating the photoelectric conversion section of each pixel, in which the inter-pixel separation section includes a protruding section having a shape protruding toward the photoelectric conversion section. The present technology can be applied to a back-illuminated CMOS image sensor, for example.
The present disclosure provides a display substrate and a manufacturing method thereof, and a display device. In the display substrate of the present disclosure, a first transistor comprises a first gate electrode, a first electrode, a second electrode, and a first active layer; and a second transistor comprises a second gate electrode, a third electrode, a fourth electrode, and a second active layers, wherein the first active layer comprises a silicon material, the second active layer comprises an oxide semiconductor material, and wherein the third electrode and the first gate electrode are disposed in the same layer, and the fourth electrode and the first electrode, the second electrodes are disposed in the same layer.
According to one or more embodiments, a non-volatile semiconductor memory device includes a semiconductor region, a gate electrode, a charge storage layer, a first insulating layer, a second insulating layers, and a conductive layer. The conductive layer contains titanium (Ti), aluminum (Al) and nitrogen (N) and has a structure in which a plurality of first layers and a plurality of second layers are alternately provided in a thickness direction. Each first layer contains titanium and nitrogen. Each second layer contains aluminum and nitrogen. In the conductive layer, the ratio of aluminum atomic composition to the sum of the titanium atomic composition and the aluminum atomic composition is equal to or less than 50%.
A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. The second tiers comprise doped silicon dioxide and the first tiers comprise a material other than doped silicon dioxide. The stack comprises laterally-spaced memory-block regions. Channel-material-string constructions extend through the first tiers and the second tiers in the memory-block regions. The doped silicon dioxide that is in the second tiers is etched selectively relative to said other material that is in the first tiers and selectively relative to and to expose an undoped silicon dioxide-comprising string of a charge-blocking material that is part of individual of the channel-material-string constructions. Structure independent of method is disclosed.
Semiconductor device having less defects in a gate insulating film and improved reliability and methods of forming the semiconductor devices are provided. The semiconductor devices may include a gate insulating film on a substrate and a gate electrode structure on the gate insulating film. The gate electrode structure may include a lower conductive film, a silicon oxide film, and an upper conductive film sequentially stacked on the gate insulating film. The lower conductive film may include a barrier metal layer.
An IC includes: a plurality of first cells placed in a series of first rows extending in a first horizontal direction and each having a first height; and a plurality of second cells placed in a series of second rows extending in the first horizontal direction and each having a second height different from the first height, wherein a total height of the series of first rows corresponds to a multiple of a height of a first multi-height cell with a maximum height among the plurality of first cells, and a total height of the series of second rows corresponds to a multiple of a height of a second multi-height cell with a maximum height among the plurality of second cells.
An optical module includes an optical semiconductor chip including a first electrode pad, a second electrode pad, and a third electrode pad arranged between the first electrode pad and the second electrode pad, a wiring substrate on which the optical semiconductor chip is flip-chip mounted, including a fourth electrode pad, a fifth electrode pad, and a sixth electrode pad arranged between the fourth electrode pad and the fifth electrode pad, a first conductive material connecting the first electrode pad with the fourth electrode pad, a second conductive material connecting the second electrode pad with the fifth electrode pad, a third conductive material arranged between the first conductive material and the second conductive material, connecting the third electrode pad with the sixth electrode pad, and a resin provided in an area on the second conductive material side of the third conductive material between the optical semiconductor chip and the wiring substrate.
A light emitting device includes a substrate including first, second, third and fourth wiring portions on a top surface of a base member and arrayed in a first direction, and a connection wiring portion connecting the second and third wiring portions. The connection wiring portion includes first and second connection ends respectively connected with the second and third wiring portions, and a connection central portion connecting the first and second connection ends and having a maximum width in a second direction different from each of a maximum width of the first connection end and a maximum width of the second connection end. In the second direction, at least a part of the connection wiring portion has a width narrower than each of a maximum width of the second wiring portion and a maximum width of the third wiring portion.
Capacitive couplings in a direct-bonded interface for microelectronic devices are provided. In an implementation, a microelectronic device includes a first die and a second die direct-bonded together at a bonding interface, a conductive interconnect between the first die and the second die formed at the bonding interface by a metal-to-metal direct bond, and a capacitive interconnect between the first die and the second die formed at the bonding interface. A direct bonding process creates a direct bond between dielectric surfaces of two dies, a direct bond between respective conductive interconnects of the two dies, and a capacitive coupling between the two dies at the bonding interface. In an implementation, a capacitive coupling of each signal line at the bonding interface comprises a dielectric material forming a capacitor at the bonding interface for each signal line. The capacitive couplings result from the same direct bonding process that creates the conductive interconnects direct-bonded together at the same bonding interface.
A multi-pin wafer level chip scale package is achieved. One or more solder pillars and one or more solder blocks are formed on a silicon wafer wherein the one or more solder pillars and the one or more solder blocks all have a top surface in a same horizontal plane. A pillar metal layer underlies the one or more solder pillars and electrically contacts the one or more solder pillars with the silicon wafer through an opening in a polymer layer over a passivation layer. A block metal layer underlies the one or more solder blocks and electrically contacts the one or more solder pillars with the silicon wafer through a plurality of via openings through the polymer layer over the passivation layer wherein the block metal layer is thicker than the pillar metal layer.
A component includes a plurality of electrical connections on a process side opposed to a back side of the component. Each electrical connection includes an electrically conductive multi-layer connection post protruding from the process side. A printed structure includes a destination substrate and one or more components. The destination substrate has two or more electrical contacts and each connection post is in contact with, extends into, or extends through an electrical contact of the destination substrate to electrically connect the electrical contacts to the connection posts. The connection posts or electrical contacts are deformed. Two or more connection posts can be electrically connected to a common electrical contact.
One of integrated circuits includes a substrate, a through via, a conductive pad and at least one via. The through via is disposed in the substrate. The conductive pad is disposed over and electrically connected to the through via, and the conductive pad includes at least one dielectric pattern therein. The via is disposed between and electrically connected to the through via and the conductive pad.
Embodiments include an electronic package that includes a dielectric layer and a capacitor on the dielectric layer. In an embodiment, the capacitor comprises a first electrode disposed over the dielectric layer and a capacitor dielectric layer over the first electrode. In an embodiment, the capacitor dielectric layer is an amorphous dielectric layer. In an embodiment, the electronic package may also comprise a second electrode over the capacitor dielectric layer.
The method includes forming a first dielectric layer on a substrate, forming a via in the first dielectric layer, sequentially forming a first metal pattern, a first metal oxide pattern, a second metal pattern, and an antireflective pattern on the first dielectric layer, and performing an annealing process to react the first metal oxide pattern and the second metal pattern with each other to form a second metal oxide pattern. The forming the second metal oxide pattern includes forming the second metal oxide pattern by a reaction between a metal element of the second metal pattern and an oxygen element of the first metal oxide pattern.
A microelectronic device comprises a stack structure, a stadium structure within the stack structure, and conductive contact structures. The stack structure comprises a vertically alternating sequence of conductive structures and insulative structures arranged in tiers. Each of the tiers comprises one of the conductive structures and one of the insulative structures. The stadium structure comprises a forward staircase structure having steps comprising edges of the tiers, and a reverse staircase structure opposing the forward staircase structure and having additional steps comprising additional edges of the tiers. The conductive contact structures vertically extend to upper vertical boundaries of at least some of the conductive structures of the stack structure at the steps of the forward staircase structure and the additional steps of the reverse staircase structure, and are each integral and continuous with one of the conductive structures. Memory devices, electronic systems, and methods of forming microelectronic devices are also described.
A device includes an interposer, a plurality of conductive through vias (TVs), a conductive element, and a redistribution line (RDL). The conductive TVs extend from a bottom surface of the interposer to a top surface of the interposer. The conductive element is over the bottom surface of the interposer. The RDL is over the top surface of the interposer. The RDL, the conductive TVs, and the conductive element are connected to form an inductor.
The present disclosure provides a power module and a method for manufacturing the power module. The power module includes a chip, a passive element and connection pins. The connection pins are provided on a pin-out surface of the power module, and are electrically connected to at least one of a chip terminal of the chip and the passive element; a projection of the chip on the pin-out surface of the power module does not overlap with a projection of the passive element on the pin-out surface of the power module, and an angle between the terminal-out surface of the chip and the pin-out surface of the power module is greater than 45° and less than 135°.
An electronic device includes a heat-generating electronic component, a heat spreader and a heat sink. The heat spreader has an area at least about 4 times greater than the heat-generating component. A first surface of the heat spreader is in thermal contact with the first surface of the heat-generating component along a first, non-dielectric interface. The heat sink has greater mass than the heat spreader and comprises one or more layers of thermally conductive material. A first surface of the heat sink is in thermal contact with the second surface of the heat spreader along a second interface having greater area than the first interface. Dielectric thermal interface material is provided at the second interface in direct contact with the heat spreader and the heat sink, such that the second interface is dielectric.
A semiconductor package includes a first integrated circuit structure, a first encapsulation material laterally encapsulating the first integrated circuit structure, a first redistribution structure, a solder layer, a second integrated circuit structure, a second encapsulation material second laterally encapsulating the second integrated circuit structure and a second redistribution structure. The first integrated circuit structure includes a first metallization layer. The first redistribution structure is disposed over the first integrated circuit structure and first encapsulation material. The first metallization layer faces away from the first redistribution structure and thermally coupled to the first redistribution structure. The solder layer is dispose over the first redistribution structure. The second integrated circuit structure is disposed on the first redistribution structure and includes a second metallization layer in contact with the solder layer. The second redistribution structure is disposed over the second integrated circuit structure and the second encapsulation material.
A method of forming an integrated circuit, including forming a n-type doped well (N-well) and a p-type doped well (P-well) disposed side by side on a semiconductor substrate, forming a first fin active region extruded from the N-well and a second fin active region extruded from the P-well, forming a first isolation feature inserted between and vertically extending through the N-well and the P-well, and forming a second isolation feature over the N-well and the P-well and laterally contacting the first and the second fin active regions.
The disclosure provides a manufacturing method for a fin field-effect transistor. The method to make the fin field-effect transistor comprises: forming a fin structure and a gate structure spanning on the fin structure on a substrate; and forming a source-drain region on the fin structure, which comprises: forming an epitaxial layer; and forming a sacrificial layer on the surface of the epitaxial layer to prevent the epitaxial layer from being lost in the subsequent removal steps.
Provided is a method for manufacturing a semiconductor device, including: forming a conductive layer on the first dielectric layer; forming a recess in the conductive layer; performing a first etching process to round a top corner of the recess; performing a second etching process to remove the conductive layer exposed from a bottom surface of the recess and thereby forming an opening having a rounding top corner in the conductive layer; and forming a second dielectric layer in the opening.
A substrate processing system installed on a floor face is provided. The substrate processing system includes a substrate transfer module, a supporting table including a top plate disposed separately from the floor face, a plurality of substrate processing modules disposed on the top plate and coupled to the substrate transfer module along a lateral side of the substrate transfer module, and a plurality of power units disposed below the top plate. Further, the plurality of power units correspond to the plurality of substrate processing modules, respectively, and each of the power units is configured to supply electric power to the corresponding processing module.
Disclosed is a substrate treating apparatus that performs a heat treatment to a substrate. The apparatus includes the following elements: a heat treating plate; a casing that produces a heat treatment atmosphere by the heat treating plate; a movable top board that is movable between a ceiling surface of the casing and the heat treating plate; and a controller that causes the movable top board to be moved to a raised position when the substrate is loaded/unloaded, and causes the movable top board to be moved to a lowered position when the substrate is placed on the heat treating plate for performing the heat treatment, thereby controlling the lowered position for every substrate.
Various methods of cleaning a substrate are provided. In one aspect, method of cleaning a substrate, comprising: holding and rotating a substrate by a substrate holder; and supplying a chemical liquid to a chemical liquid nozzle and supplying two fluids to a two-fluid nozzle while moving the chemical-liquid nozzle and the two-fluid nozzle radially outwardly from the center to the periphery of the substrate, wherein the distance of the chemical-liquid nozzle from a rotating axis of the substrate holder is longer than the distance of the two-fluid nozzle from the rotating axis of the substrate holder while the chemical-liquid nozzle and the two-fluid nozzle are moved radially outwardly from the rotating axis of the substrate holder.
An etching method includes: preparing a compound in a processing space in which an etching target is accommodated; and etching the etching target with a mask film formed thereon, under an environment where the compound exists. The etching of the etching target includes etching the etching target under an environment where hydrogen (H) and fluorine (F) exist when the etching target contains silicon nitride (SiN), and etching the etching target under an environment where nitrogen (N), hydrogen (H), and fluorine (F) exist when the etching target contains silicon (Si). The compound includes at least one halogen element selected from a group consisting of carbon (C), chlorine (Cl), bromine (Br), and iodine (I).
A processing method of a wafer includes a resist film coating step of coating either one surface of a front surface and a back surface with a resist film containing an ultraviolet absorber, a laser beam irradiation step of irradiating the side of the one surface with a laser beam absorbed by the wafer and removing part of the wafer and the resist film along planned dividing lines, a plasma etching step of supplying a gas in a plasma state to the side of the one surface and removing an exposed region of the wafer exposed along the planned dividing lines through plasma etching, and a check step of irradiating plural positions on the side of the one surface of the wafer with ultraviolet rays and detecting light emission of the resist film to measure the thickness of the resist film and check a coating state of the resist film.
An ionizer 1 including an ionization chamber 10, a sample gas introduction port 14 provided in the ionization chamber 10 for introducing sample gas, an electron beam emitting section 11 which emits an electron beam toward the ionization chamber 10, electron beam passage openings 10a and 10b which are formed on a path of the electron beam emitted from the electron beam emitting section 11 on a wall of the ionization chamber 10 and has a length in a direction of the path longer than a width of a cross section orthogonal to the direction, and an ion outlet 10c provided in the ionization chamber 10 for emitting an ion of the sample gas generated by irradiation with the electron beam, and a mass spectrometer 60 including the ionizer 1.
In a processing chamber, a processing target substrate is placed and a substrate processing is performed. A holder is configured to store therein an ionic liquid as some or all of components to be consumed or degraded by the substrate processing within the processing chamber.
Embodiments of the present disclosure generally relate to apparatuses for reducing particle contamination on substrates in a plasma processing chamber. In one or more embodiments, an edge ring is provided and includes a top surface, a bottom surface opposite the top surface and extending radially outward, an outer vertical wall extending between and connected to the top surface and the bottom surface, an inner vertical wall opposite the outer vertical wall, an inner lip extending radially inward from the inner vertical wall, and an inner step disposed between and connected to the inner wall and the bottom surface. During processing, the edge ring shifts the high plasma density zone away from the edge area of the substrate to avoid depositing particles on the substrate when the plasma is de-energized.
Systems and methods are provided herein for etch features on a substrate, while maintaining a near-unity critical dimension (CD) shrink ratio. The features etched may include, but are not limited to contacts, vias, etc. More specifically, the techniques described herein use a pulsed plasma to control the polymer build-up ratio between the major CD and minor CD of the feature, and thus, control the CD shrink ratio when etching features having substantially different major and minor dimensions. The CD shrink ratio is controlled by selecting or adjusting one or more operational parameters (e.g., duty cycle, RF power, etch chemistry, etc.) of the plasma etch process(es) to control the amount of polymer build-up at the major and minor dimensions of the feature.
An ion beam processing system including a plasma chamber, a plasma plate, disposed alongside the plasma chamber, the plasma plate defining a first extraction aperture, a beam blocker, disposed within the plasma chamber and facing the extraction aperture, a blocker electrode, disposed on a surface of the beam blocker outside of the plasma chamber, and an extraction electrode disposed on a surface of the plasma plate outside of the plasma chamber.
The resin molded article is molded by using an electrode sheet as an insert in a state where one surface of the electrode sheet is closely attached to an inner surface which serves as the inner side of the operation surface. The electrode sheet is formed by using, as a base material, a thermoplastic synthetic resin sheet which outputs an electrical signal according to the amount of change of electrostatic capacitance generated by a contact operation with respect to the operation surface. At least a whole or a part of the inner surface is formed in a three-dimensionally curved surface, and a passage is formed in the electrode sheet so as to allow a molten resin following in through a gate formed in a die which comes into contact with the other surface of the electrode sheet during molding to pass toward one surface side of the electrode sheet.
A capacitor array that includes a plurality of solid electrolytic capacitor elements, a sheet-shaped first sealing layer, and a sheet-shaped second sealing layer. The plurality of solid electrolytic capacitor elements include an anode plate, a porous layer, a dielectric layer, and a cathode layer. Each of the solid electrolytic capacitor elements are partitioned from each other by a slit-shaped removal part and have a first main surface and a second main surface.
A multilayer ceramic capacitor includes a multilayer body and external electrodes. The multilayer body includes an inner layer portion including dielectric layers and internal electrode layers alternately stacked, and first and second outer layer portions on opposite sides of the inner layer portion in a stacking direction, side gap portions on opposite sides in a width direction, main surfaces on opposite sides in the stacking direction, side surfaces on opposite sides in the width direction, and end surfaces on opposite sides in a length direction. Each external electrode is provided at one end surfaces of the multilayer body, and extends from the end surface to a portion of the main surface. A difference in location between ends at the side surface of two adjacent internal electrode layers is about 0.5 μm or less. The second outer layer portion is thicker than the first outer layer portion.
A capacitor component includes a lamination portion in which first and second internal electrodes are disposed to face each other in a first direction and separated from each other by a dielectric layer, and a body comprising the lamination portion and first and second connection portions disposed on both sides of the lamination portion in a second direction, perpendicular to the first direction, and connected to the first and second internal electrodes. The first and second connection portions each include a metal layer including nickel and disposed on the lamination portion and a ceramic layer disposed on the metal layer, and an average thickness of each of the first and second internal electrodes is 0.4 μm or less.
An inductor includes a body including a support member including a through-hole, an internal coil disposed on the support member, and an encapsulant encapsulating the support member and the internal coil; and an external electrode disposed on an external surface of the body and connected to the internal coil. The external electrode includes a conductive resin layer and a double conductive layer of a first conductive layer and a second conductive layer, disposed between the conductive resin layer and the internal coil.
A common mode filter for reducing differential mode signal converting to common mode signal comprising: a core-cylinder, a first coil, and a second coil; wherein two ends of the core-cylinder respectively extend and set with a first flange and a second flange; wherein m1, m2, and m3 turns and n1, n2, and n3 turns are respectively and sequentially wound and set on the first winding portion, the second winding portion, and the third winding portion of the first winding area, the second winding area, and the third winding area of the first coil and the second coil. Therefore, the present invention can effectively reduce the mode conversion characteristic (Scd), and can also improve the noise reduction performance of the product; thereby greatly upgrading the practicality of the present invention; and the present invention has a simple process, therefore the product yield can be further upgraded to achieve the effect.
Described is a high Q-factor inductor. The inductor is formed as a unit cell coil, which is copied twice for a dual-coil inductor and copied four times for a quad-coil inductor. For each copy of the unit cell coil, the coil is rotated a subsequent substantially 90 degrees or substantially −90 degrees. The rotation enables the terminals of the inductor to be routed equal-distant to a circuit that is placed in the line of symmetry between the two coils.
Ferromagnetic materials are disclosed that comprise at least one Dirac half metal material. In addition, Dirac half metal materials are disclosed, wherein the material comprises a plurality of massless Dirac electrons. In addition, ferromagnetic materials are disclosed that includes at least one Dirac half metal material, wherein the material comprises a plurality of massless Dirac electrons, wherein the material exhibits 100% spin polarization, and wherein the plurality of electrons exhibit ultrahigh mobility. Spintronic devices and heterostructures are also disclosed that include a Dirac half metal material.
A co-continuous mouldable polymeric composite with PTC effect has a matrix that comprises at least two immiscible polymers (HDPE, POM), and an electrically conductive filler (CB) in the matrix. At least one of said immiscible polymers is high-density polyethylene (HDPE), and at least one other of said immiscible polymers is polyoxymethylene (POM).
In various embodiments, superconducting wires incorporate diffusion barriers composed of Nb alloys or Nb—Ta alloys that resist internal diffusion and provide superior mechanical strength to the wires.
An electrical conductor has a first layer, wherein the first layer is electrically conducting, and has micro protrusions, macro protrusions, wherein the micro protrusions are arranged on the macro protrusions, a first set of depressions, wherein the first set of depressions comprises at least two longitudinal depressions; the macro protrusions and the at least two longitudinal depressions are arranged in an alternating pattern, at least one coating layer, wherein the at least one coating layer comprises an electrically conducting polymer, touches the first layer, at least partially covers the first layer; wherein at least 50% of the macro protrusions have a width, measured along a first direction in the range of 2.0 mm to 40.0 mm and at least 50% of the micro protrusions have a width, measured along the first direction, in the range of 0.001 mm to 1.000 mm.
An x-ray scanning system includes an x-ray source that produces a collimated fan beam of incident x-ray radiation. The system also includes a chopper wheel that can be irradiated by the collimated fan beam. The chopper wheel is oriented with a wheel plane containing the chopper wheel substantially non-perpendicular relative to a beam plane containing the collimated fan beam. In various embodiments, a disk chopper wheel's effective thickness is increased, allowing x-ray scanning with end point energies of hundreds of keV using relatively thinner, lighter, and less costly chopper wheel disks. Backscatter detectors can be mounted to an exterior surface of a vehicle housing the x-ray source, and slits in the disk chopper wheel can be tapered for more uniform target irradiation.
A system of monitoring depression in a user, uses a computer system. The system initially calibrates, to determine baseline information about the user for each of a plurality of different categories of action of the user and continues learning about the user to make minor adjustments to prescribed behaviors and therapies. The categories can include sleep, diet, screen time, exercise, social interaction, medication compliance, and academic performance. The computer system uses the baseline information to determine user behavior, for each of the different categories that is correlated with likely behavior associated with depression. After initially calibrating, the computer system operates to monitor each of said different categories of action of the user and compares the monitored categories with the baseline information to determine whether the user is complying by acting within specified parameters within each category. The system can provide positive reinforcement and alerts.
The present disclosure provides systems, methods, and kits for collecting health measurement data and processing the health measurement data to generate alerts and modify patient treatment plans. An example system can be configured to (i) receive data defining a plurality of health sensors; and (ii) generate, based on the data, application logic configured to cause, in response to one user input, a user device to: (a) couple to the plurality of health sensors, thereby establishing communication between the user device and each of the plurality of health sensors, and (b) provide instructions to a user of the user device through an interface of the user device. The instructions can comprise instructions for taking health measurements using the plurality of health sensors.
A device, system, and method determines a reading environment by synthesizing downstream needs. The method at a workflow server includes receiving a request from a physician device utilized by a referring physician, the request directed to performing an imaging procedure. The method includes determining at least one normalized need from the request, the normalized need corresponding to the referring physician. The method includes generating information to be included in a reading environment based on the at least one normalized need, the information assisting an image interpreter in interpreting the imaging procedure.
A wearable device assembly has a housing supporting a controller, display and indicator system thereon. The controller has at least one sensor wherein activity of a user wearing the device is detected. The controller selectively illuminates the indicator system to indicate a level of activity of the user.
A method and system is provided for recording a health care event, optimizing medical procedures and calculating reimbursement. The method includes: acquiring metadata comprising a patient identifier, a practitioner identifier, a health care site identifier, an entry time and a medical reason for the health care event; receiving a reimbursement request; generating a procedures list based on the medical reason; selecting a procedure; generating a list of required data types and a list of required quality data for the procedure; acquiring raw data comprising the procedure, a medical device identifier, an entry time and one or more quality data from the medical device for the procedure; and calculating a reimbursement for the health care event based on the procedure, the medical device identifier, the required quality data and the quality data from the medical device. The method implements iterative learning using the collected data to determine optimal health care procedures.
Disclosed herein are systems and methods for multiplex primer design and selection. In one example, a system includes non-transitory memory configured to store executable instructions; and a hardware processor programmed by the executable instructions to receive a plurality of target gene sequences and determine a set of primers for each target gene sequence based on a penalty score associated with the set of primers, wherein the penalty score is based on a non-linear combination of a primer-level penalty score and a set-level penalty score.
A semiconductor device is provided, which contains a memory bank including M primary word lines and R replacement word lines, a row/column decoder, and an array of redundancy fuse elements. A sorted primary failed bit count list is generated in a descending order for the bit fail counts per word line. A sorted replacement failed bit count list is generated in an ascending order of the M primary word lines in an ascending order. The primary word lines are replaced with the replacement word lines from top to bottom on the lists until a primary failed bit count equals a replacement failed bit count or until all of the replacement word lines are used up. Optionally, the sorted primary failed bit count list may be re-sorted in an ascending or descending order of the word line address prior to the replacement process.
A memory circuit and a memory programming method adapted to program flash memory are provided. The memory circuit includes a charge pumping circuit, a voltage regulator, a voltage sensor, and a plurality of switch circuits. The charge pumping circuit generates a pumping voltage and a pumping current. The voltage regulator is coupled to the charge pumping circuit and generates a programming voltage and a programming current to program the flash memory according to the pumping voltage and the pumping current. The voltage sensor is coupled to the voltage regulator to monitor a voltage value of the programming voltage. Each of the plurality of switch circuits includes a first terminal coupled to the voltage sensor and a second terminal coupled to the flash memory. A quantity of the plurality of switch circuits that are turned on is determined by the voltage value of the programming voltage.
An electronic device comprises a multi-chip package including multiple memory dice that include a memory array, charging circuitry, polling circuitry and a control unit. The charging circuitry is configured to perform one or more memory events in a high current mode using a high current level or in a low current mode using a lower current level. The polling circuitry is configured to poll a power status node common to the multiple memory dice to determine availability of the high current mode. The control unit is configured to operate the charging circuitry in the high current mode to perform the one or more memory events when the polling circuitry indicates that the high current mode is available, and operate the charging circuitry in the low current mode to perform the one or more memory events when the polling circuitry indicates that the high current mode is unavailable.
In one example a semiconductor device has a data latch that includes first and second transmission gates and first and second inverters. The first inverter is connected between a first terminal of the first transmission gate and a first terminal of the second transmission gate. The second inverter is connected between a second terminal of the first transmission gate and a second terminal of the second transmission gate. The data latch is configured to store a datum received at the connection between the first transmission gate and the second inverter, and to store a datum received at the connection between the second transmission gate and the first inverter.
A three dimension memory device and a ternary content addressable memory cell are provided. The ternary content addressable memory cell includes a first memory cell, a second memory cell, a first search switch, and a second search switch. The first memory cell is disposed in a first AND type flash memory line. The second memory cell is disposed in a second AND type flash memory line. The first search switch is coupled between a first bit line corresponding to the first AND type flash memory line and a match line, and is controlled by a first search signal to be turned on or cut off. The second search switch is coupled between a second bit line corresponding to the second AND type flash memory line and the match line, and is controlled by a second search signal to be turned on or cut off.
A variable resistance memory device includes: a memory cell including a first and second sub memory cell; and a first, second and third conductor. The first sub memory cell is above the first conductor, and includes a first variable resistance element and a first bidirectional switching element. The second sub memory cell is above the second conductor, and includes a second variable resistance element and a second bidirectional switching element. The second conductor is above the first sub memory cell. The third conductor is above the second sub memory cell. The variable resistance memory device is configured to receive first data and to write the first data to the memory cell when the first data does not match second data read from the memory cell.
A power supply circuit supplies a first voltage to a third terminal using a voltage of a first terminal, generates a second voltage using the first voltage, supplies the second voltage to a non-volatile memory, generates a third voltage using the first voltage, charges energy in a capacitor, upon the voltage of the first terminal being lower than a first threshold voltage and a voltage of the second terminal being higher than a second threshold voltage, supplies a fourth voltage using charged energy to the third terminal, and upon the voltage of the second terminal being lower than the second threshold voltage, stops charging and supplies a fifth voltage using the charged energy to the third terminal.
A semiconductor device includes a read write control circuit configured to generate first and second write command pulses from an external control signal for performing a write operation; a flag generation circuit configured to generate a write flag, a write shifting flag, an internal write flag and an internal write shifting flag based on the second write command pulse, a bank mode signal and a bank group mode signal; and a bank group selection signal generation circuit configured to store a bank address based on an write input control pulse generated from the second write command pulse in a bank mode, and output the stored bank address as a bank group selection signal based on a write output control pulse generated from the write flag.
Drivers for sense amplifiers are disclosed. A driver may include two or more drain areas extending in a first direction and two or more source areas extending in the first direction. The driver may also include a drain interconnection including two or more first drain-interconnection portions which extend in the first direction above the two of more drain areas and one or more second drain-interconnection portions extending in a second direction between the two or more first drain-interconnection portions. The driver may also include a source interconnection including two or more first source-interconnection portions extending in the first direction above the two or more source areas and one or more second source-interconnection portions extending in the second direction between the two or more first source-interconnection portions. Associated systems are also disclosed.
An electronic device includes a shifting circuit and a dock repeater. The shifting circuit is configured to generate a write shifting flag that is inactivated when a write signal for a write operation is activated. The clock repeater is configured to block generation of a read repeating dock that is used in a read operation when the write shifting flag is inactivated.
A write circuit for writing to a plurality of memory cells of a non-volatile data memory, including a buffer memory forming a single memory element which is configured to buffer a first data value before storing said value in the plurality of non-volatile memory cells of the non-volatile data memory. The write circuit also includes a first write line, by means of which the buffer memory is connected to a first memory cell of the plurality of memory cells, and a second write line, which is different from the first write line and by means of which the buffer memory is connected to a second memory cell of the plurality of memory cells. The write circuit further includes a control circuit configured to concurrently write the first data value in the first memory cell and a second data value which depends on the first data value into the second memory cell, wherein the second data value is complementary to the first data value or is identical to the first data value depending on a selected one of a first option or a second option by the control circuit, respectively.
A receiver that receives a multi-level signal includes a compensation circuit, a sampling circuit, an output circuit and a mode selector. The compensation circuit generates a plurality of data signals and a plurality of reference voltages by compensating intersymbol interference on an input data signal. The sampling circuit generates a plurality of sample signals based on the plurality of data signals and the plurality of reference voltages. The output circuit generates output data based on the plurality of sample signals, and selects a current value of the output data based on a previous value of the output data. The mode selector generates a mode selection signal used to select one of first and second operation modes based on an operating environment. The compensation circuit and the sampling circuit are entirely enabled in the first operation mode, and the compensation circuit and the sampling circuit are partially enabled in the second operation mode.
A retention assembly includes a first retention member with a first set of ribs and a second set of ribs. The first set of ribs are positioned to form slots, which are shaped to receive data storage devices. The first set of ribs are arranged to separate adjacent data storage devices and have a first length. The second set of ribs extend into respective slots to form air channels within the slots, and the second set of ribs have a second length that is shorter than the first length.
According to one embodiment, a magnetic disk device includes a disk including two first servo sectors and at least a second servo sector, a head, and a controller, wherein the first servo sector includes burst data and a first data pattern written before the circumferential direction of the burst data, the second servo sector includes the burst data, the first data pattern, and a second data pattern written after the circumferential direction of the burst data, a first frequency of the first data pattern is different from a second frequency of the second data pattern, and a first length of the first data pattern is different from a second length of the second data pattern.
A method for making a magnetic recording tape, in accordance with one approach, includes coupling an underlayer to a substrate, the substrate comprising a poly ether ether ketone (PEEK). A method for making a magnetic recording tape in accordance with another approach includes coupling an underlayer to a substrate via radiation-induced grafting, the substrate comprising a poly ether ether ketone (PEEK). A recording layer may be coupled to the underlayer.
The present disclosure generally relates to a head assembly of a data storage device. The data storage device may include magnetic media embedded in the device or magnetic media from an insertable cassette or cartridge (e.g., in an LTO drive), where the magnetic head assembly reads from and writes to the magnetic media. During drive operation, the magnetic media moves across the magnetic head assembly. The magnetic head assembly is spaced a distance from the magnetic media such that non-contact recording occurs between the magnetic head assembly and the magnetic media. The magnetic media is supported by either a back plate or an air film generated by one or more fillet edges of the back plate and the velocity of the magnetic media as the magnetic media moves across the magnetic head assembly.
Two or more different recording currents are applied to a write coil of a recording head. A first of the two or more currents is a positive current and a second of the two or more currents is a negative current. In response to the application of the two or more different recording currents, a data stream is recorded to regions of a moving continuous magnetic recording medium such that each region has three or more magnetic states. The three or more magnetic states can be read from the continuous magnetic recording medium via a magnetic read transducer to recover the data stream.
A device-management system performs processing, such as audio processing, in an instance of a virtual machine corresponding to a functionally limited (local) device. To register the local device, the device-management system receives a registration request that includes device information, encryption data, and an indication of an associated user account. The device-management system then sends this registration data to a service-provider system, which returns a shared encryption key. The device-management system and the local device may use this shared encryption key to securely communicate. The device-management system may de-allocate the instance upon detecting a period of inactivity of the local device and may re-allocate the instance when new activity is detected. The device-management system may further determine when and if audio data to be sent to the local device is encoded using a codec not implemented by the local device. Upon this determination, the device-management system may transcode the audio data such that is encoded using a known codec.
A machine may be configured to generate one or more audio fingerprints of one or more segments of audio data. The machine may access audio data to be fingerprinted and divide the audio data into segments. For any given segment, the machine may generate a spectral representation from the segment; generate a vector from the spectral representation; generate an ordered set of permutations of the vector; generate an ordered set of numbers from the permutations of the vector; and generate a fingerprint of the segment of the audio data, which may be considered a sub-fingerprint of the audio data. In addition, the machine or a separate device may be configured to determine a likelihood that candidate audio data matches reference audio data.
An apparatus for processing an input audio signal relies on a cascade of filterbanks, the cascade having a synthesis filterbank for synthesizing an audio intermediate signal from the input audio signal, the input audio signal being represented by a plurality of first subband signals generated by an analysis filterbank, wherein a number of filterbank channels of the synthesis filterbank is smaller than a number of channels of the analysis filterbank. The apparatus furthermore has a further analysis filterbank for generating a plurality of second subband signals from the audio intermediate signal, wherein the further analysis filterbank has a number of channels being different from the number of channels of the synthesis filterbank, so that a sampling rate of a subband signal of the plurality of second subband signals is different from a sampling rate of a first subband signal of the plurality of first subband signals.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for an automated calling system are disclosed. In one aspect, a method includes the actions of receiving audio data of an utterance spoken by a user who is having a telephone conversation with a bot. The actions further include determining a context of the telephone conversation. The actions further include determining a user intent of a first previous portion of the telephone conversation spoken by the user and a bot intent of a second previous portion of the telephone conversation outputted by a speech synthesizer of the bot. The actions further include, based on the audio data of the utterance, the context of the telephone conversation, the user intent, and the bot intent, generating synthesized speech of a reply by the bot to the utterance. The actions further include, providing, for output, the synthesized speech.
In a sound absorption panel formed by stacking a plate perforated with a hole having a hole size smaller than a fiber length such as expanded metal, a honeycomb material, and felt-like fiber between the perforated plate and the honeycomb material, and joining the perforated plate, the felt-like fiber, and the honeycomb material to each other with an adhesive, the adhesive applied to the perforated plate is permeated into a surface of the felt-like fiber exposed from the hole to fix the fiber on the surface.
A method of converting a frame of a voice sample to a singing frame includes obtaining a pitch value of the frame; obtaining formant information of the frame using the pitch value; obtaining aperiodicity information of the frame using the pitch value; obtaining a tonic pitch and chord pitches; using the formant information, the aperiodicity information, the tonic pitch, and the chord pitches to obtain the singing frame; and outputting or saving the singing frame.
The Thumb Bar Controller is a bar that runs the width of the electronic musical keyboard playing area, (plus whatever is needed for the lever attachment), connected by two armsrests just below the top, and approximately one inch away from the keys. It gives the performer control over two (or more) functions with the thumb of the playing hand, that would otherwise require the other hand or foot pedals, allowing a person with the disability of one arm/hand, to be as proficient as a person with two. It can be used for controlling pitch bend, modulation, MIDI specification controllers, various electronic controls, and product specific controls.
The bar can be attached in numerous ways, could use a variety of spring type mechanisms to control it. It can be mounted externally or made as an integral part of the keyboard, with openings for the bar connections and movement required.
A guitar armrest designed to relieve the arm stress that a guitarist experiences in the Palmaris Longus muscle caused by the arm resting against the acoustic guitar's lower bout and soundboard side edge. It is made of a one piece injection-molded flexible rubber solid body, with a durometer so as to hold the weight of a guitarist's arm off of the front soundboard so as to prevent scratching and deadening of the sound projected therefrom. Replaceable suction cups extend through the body of the armrest such that their attachment buttons protrude from the armrest's top face and their suction disks protrude from the bottom face. The armrest is temporarily affixed to the lower bout of the guitar by suction means.
A display apparatus comprising: first light source(s) per eye, scanning mirror(s) per eye, pattern converting element per eye, and processor(s) configured to control first light source(s) to emit a light beam, whilst controlling scanning mirror(s) to draw subframe(s) of first image frame over pattern converting element, wherein subframe(s), when drawn, comprises plurality of light spots arranged in first pattern, wherein pattern converting element is employed to direct light beam incident thereon towards target surface, whilst converting first pattern of plurality of light spots into second pattern, thereby producing on target surface output image having spatially-variable resolution.
A method and a display device are provided. The method includes: generating a plurality of timing control signals for controlling a plurality of LED driving circuits, wherein the plurality of timing control signals include a first timing control signal and a second timing control signal; allowing the first LED driving circuit to drive an Nth scan line of a first display region at a first driving timing through the first timing control signal; and allowing the second LED driving circuit to drive an Nth scan line of the second display region at a second driving timing that is different from the first driving timing through the second timing control signal.
A display module includes a display panel including an inorganic light emitting element and a pixel circuit configured to provide a driving current to the inorganic light emitting element; and a driver configured to drive the pixel circuit. The pixel circuit includes a pulse amplitude modulation (PAM) circuit configured to control an amplitude of the driving current based on an applied PAM data voltage, and a pulse width modulation (PWM) circuit configured to control a pulse width of the driving current based on an applied PWM data voltage. The driver includes a power supply circuit configured to provide, to the PAM circuit, a first power supply voltage for driving the PAM circuit, and provide, to the PWM circuit, a second power supply voltage for driving the PWM circuit.
A display panel including an LED device and a method including: forming a plurality of light emitting diodes (LEDs); and forming a plurality of partition walls that divide light-emitting regions by each of the plurality of LEDs, wherein the forming the plurality of LEDs includes: etching a growth substrate to form a plurality of LEDs and forming a plurality of protrusions and a plurality of depressions on the growth substrate; and forming a reflector layer on a surface of the plurality of protrusions and a surface of the plurality of depressions, and wherein the forming the plurality of partition walls includes removing a part of the growth substrate so that the plurality of partition walls are formed based on the plurality of protrusions, and a space between the plurality of partition walls is formed based on the plurality of depressions.
A display apparatus, in which a black image is provided between real images and one frame period for displaying the black image is set to be shorter than one frame period where each of the real images is displayed, is provided. The display apparatus includes a display panel displaying a black image and a real image, a gate driver supplying gate signals to a plurality of gate lines provided in a display area of the display panel, and a controller controlling a function of the gate driver. A one-frame period for displaying the black image is shorter than a one-frame period where the real image is displayed.
A training system to teach use of an ultrasound probe, the training system having a chamber defining an orifice, a shaft insertable into the orifice of the chamber, a marker positioned on the shaft at a distal end, a camera positioned to view the marker when inserted inside the chamber, and a processor operatively connected to the camera for processing a position and an orientation of the shaft based on the marker. The system provides a method for visualizing movement of the shaft from inside the chamber.
Systems and methods for learning management systems with shared weld training results are described. In some examples, weld training results may be shared with a learning management system and/or associated with a particular learning activity of the learning management system. In some examples, the weld training results (and/or a networked location where the weld training results are accessible) may be encoded in a machine readable graphic (e.g., a one dimensional, two dimensional, and/or matrix barcode). In some examples, the machine readable graphic may be read and/or decoded by a user device to obtain the weld training results. In some examples, a particular learning activity may also be encoded in the machine readable graphic.
The present invention relates to systems and methods that allocate, arrange, and distribute certain types of functions and intelligence, for connected automated vehicle highway (CAVH) systems, to facilitate vehicle operations and controls, to improve the general safety of the whole transportation system, and to ensure the efficiency, intelligence, reliability, and resilience of CAVH systems. The present invention also provides methods to define CAVH system intelligence and its levels, which are based on two dimensions: the vehicle intelligence and infrastructure intelligence.
A system comprises a computer including a processor, and a memory. The memory stores instructions such that the processor is programmed to determine two or more clusters of vehicle operating parameter values from each of a plurality of vehicles at a location within a time. Determining the two or more clusters includes clustering data from the plurality of vehicles based on proximity to two or more respective means. The processor is further programmed to determine a reportable condition when a mean for a cluster representing a greatest number of vehicles varies from a baseline by more than a threshold.
An embodiment of a minder device includes a selector and a transceiver. The selector is configurable in one of multiple configurations each corresponding to a respective one of multiple responses. And the transceiver is configured to receive, from a host server via a cellular network, a message from a monitor device associated with the minder device, and to send, to the monitor device via a cellular network and the host server, the one of the responses corresponding to the one of the configurations in which the selector is configured. For example, such a device can be a less-expensive alternative to, and can allow more monitor control, than a smart phone. Furthermore, such a device can be suitable for tracking and locating children too young to have a smart phone, for tracking and locating pets, and for tracking and locating objects.
Techniques for automatically securing receptacles of a retailer via an electronic lock include receiving a user request to reserve a receptacle, selecting a suitable receptacle based on one or more conditions, some of which may be specified by the user, and transmitting an electronic locking signal to secure, and thereby reserve, the selected receptacle. An association between the reserved receptacle and the user is stored, and the user is electronically notified. Subsequently, an electronic signal indicative of the identification of the user (or of the user's agent) is locally received. Upon determination that the user is expected and associated with the reserved receptacle, the techniques include causing an electronic unlocking signal to be transmitted to the electronic lock, thereby unlocking the receptacle. Further subsequently, upon receiving an electronic locking instruction, the receptacle may automatically be secured via its corresponding electronic lock, and a retailer agent may be electronically notified.
Provided is a monitoring apparatus including a communication unit which receives streaming data and metadata of a video from each of a plurality of cameras installed indoors when the cameras obtain videos by capturing specific areas, respectively; a metadata analysis unit which analyzes the received metadata and extracts information about an event that occurred; a video selection unit which selects a video containing an area in which the event occurred from the videos based on the extracted information about the event; and a screen unit which receives the selected video from the video selection unit and immediately displays the received video when the monitoring apparatus is operated.
A versatile video surveillance and alarm signaling assembly may include a vertical post, and a first surveillance camera may be coupled to the vertical post, the first surveillance camera having a first camera lens. A second surveillance camera may also be coupled to the vertical post, the second surveillance camera having a second camera lens, in which the first camera lens and second camera lens may be angled between 75 and 200 degrees relative to each other. Preferably, the assembly may include one or more of a mailbox, postal address number, and/or a signage that may be coupled directly or indirectly to the vertical post.
A worker monitoring system. The system comprises a processor, a display, a data store, a non-transitory memory, and an application stored in the non-transitory memory. The application stores definitions of associations of electronic monitors to workers in the data store, receives information from the electronic monitors via a wireless communication link, based on accessing the data store, analyzes information from a plurality of electronic monitors associated with one of the workers, corroborates information from a first electronic monitor associated with the one or the workers using information from a second electronic monitor associated with the one of the workers, and based on the corroboration of the information from the first electronic monitor, and presents an alarm indication on the display.
The present disclosure provides for radio frequency identification in self-checkout via a first product pathway; a single Radio Frequency Identifier (RFID) antenna, having a first scanning zone aligned with the first product pathway; wherein the first product pathway is configured to: position a first set of objects within the first scanning zone at a first position relative to the single RFID antenna at a first time; and position the first set of object within the first scanning zone at a second position relative to the single RFID, different than the first position, at a second time; and wherein the single RFID antenna is configured to: receive, at the first time, a first set of identifier signals associated with at least some of the first set of objects; and receive, at the second time, a second set of identifier signals associated with at least some of the first set of objects.
A gaming system and method for a skill-based reel game that includes a sequence of letters and a game grid size are described. During a game session, a randomly selected plurality of letters are associated with a plurality of letter display elements. A game processor determines whether any of the plurality of letter display elements form a winning sequence of letter display elements that spell a word stored in a word database. The player then identifies the winning sequence with player input, such as selecting the sequence of letter display elements on a touchscreen. When the player input is received by the game processor within a preset time period, the player is awarded a game session prize.
Examples are disclosed that relate to detecting cheating at a game platform level using machine learning techniques. One example provides a computing system comprising a logic subsystem and a data-holding subsystem. The data-holding subsystem comprises instructions executable by the logic subsystem to receive notifications related to user progress in a game provided by the game to the online game platform, apply a classifying function to classify the user progress in the game as normal or outlying based upon the notifications, if the progress is classified as outlying then taking an action in response to the outlying classification, and if the progress is not classified as outlying then not taking the action.
A method and apparatus to automatically calibrate one or more attributes of a gaming system. For instance, the gaming system detects, via electronic analysis of an image by a neural network model, one or more objects (e.g., one or more coded, fiducial markers) that are planar with a surface of a gaming table. The gaming system further determines, via an isomorphic transformation associated with the one or more objects, a difference (e.g., in position and orientation) between the one or more objects and one or more physical features of the gaming table visible in the image. The gaming system automatically calibrates the gaming system based on the difference.
An entertainment machine is provided. The machine provides a unique display and input/output system, and structure. The entertainment machine provides optional and unique features including betting structures. The entertainment machine may include networked embodiments to allow for multi-player engagement. Further, computerized players may be programmed to mimic real players including to present biases and other predictabilities to mimic actual human tendencies.
The invention relates to a coin storage unit comprising a housing and multiple coin tubes arranged interchangeably in the housing, wherein locking means are provided for the coin tubes, which are actuatable between a locking position locking the coin tubes against removal from the housing and an unlocking position releasing the coin tubes for removal from the housing, wherein the locking means are arranged between each two adjacent coin tubes in the housing and lock the adjacent coin tubes against removal from the housing in the locking position, and wherein the locking means can only assume the locking position in the state of the adjacent coin tubes inserted completely into the housing.
A face recognition unlocking device includes a collection device configured to obtain information of a user, a controller configured to determine whether face recognition of the user succeeds, based on the information of the user, and calculate a location of the user for success in the face recognition, and an output device configured to guide the user to move.
A computer-implemented method, a system that performs the computer-implemented method, and a computer program product that stores instructions to perform the computer-implemented method are disclosed. The computer-implemented includes receiving a device ID and a door ID; retrieving a dynamic set of access rules for the door ID; determining whether the device ID is authorized based on the dynamic set of access rules; outputting an indication indicating that the device ID is authorized to effectuate unlocking or opening of a door associated with the door ID; outputting an indication indicating that the device ID is not authorized to prevent unlocking or opening of the door.
An event data recorder as a recording device for vehicles capable of recording clear sound data that may contribute to investigation of a cause of an accident in event recording data, regardless of a sound volume of an audio sound played back in the own vehicle, includes a video data acquisition unit configured to acquire video data including sound data and imaging an area around the own vehicle, a sound volume detection unit configured to detect a sound volume of an audio sound played back in the vehicle, and a recording control unit configured to record video data including data by which a sound volume of an audio sound can be determined and sound data on which an effect of an audio sound is small, when a sound volume of an audio sound detected by the sound volume detection unit is greater than a sound volume.
Methods, systems, and programming for user identification are presented. In one example, a system for acquiring biometric information is disclosed. The system comprises a housing including a surface for a person to place a finger thereon. The system also comprises a sensor, a first image acquisition portion, and a second image acquisition portion. The sensor is configured for sensing presence of the finger when the person places the finger on the surface. The first image acquisition portion is configured for acquiring a fingerprint image of the finger placed on the surface. The second image acquisition portion is configured for acquiring a finger vein image of the finger placed on the surface. The first and second image acquisition portions acquire their respective images at different times.
The invention provides a voltage sensing fingerprint recognition device and a fingerprint recognition method thereof. The voltage sensing fingerprint recognition device includes: a sensor arranged on a substrate, and the sensor including a plurality of sensing pads, the sensing pads respectively arranged in a plurality of rows, and each row having at least two sensing pads, each sensing pad receiving a trigger voltage; and a voltage receiver, electrically connected to each sensing pad; when the voltage receiver captures one sensed voltage value of the sensing pads in any row, the sensing pads in the row stop receiving the trigger voltage. The present invention does not require an additional frame, so it is applied to the display surface of electronic products.
An artificial intelligence (AI) processor includes at least one memory; a plurality of neural network operators comprising circuitry configured to process an image; and a controller configured to control the at least one memory and the plurality of neural network operators. The controller controls input image data of an image to be stored in the at least one memory and controls at least one of the plurality of neural network operators to perform a neural network operation on image data split based on a size of the image and data processing capabilities of the plurality of neural network operators, and output upscaled image data.
Image analysis using visual geometry as an anchor for optical character recognition can be configured to receive an image acquired by a camera. The image is analyzed to detect a location within the image having a specified geometry. The specified geometry can be a predefined, visual geometry. The image is divided to create an image segment, where the image segment is based on the location of the specified geometry within the image. The image segment is analyzed to detect one or more characters within the image segment. The one or more characters in the image segment are decoded. A character string is generated based on decoding the one or more characters in the image segment.
An estimation device includes a recognition unit configured to recognize a surrounding environment of a moving object in recognition regions, and an estimation unit configured to estimate a risk for the moving object on the basis of a recognition result from the recognition unit, in which the recognition unit sets a priority region on which a recognition process is preferentially performed among the recognition regions, according to a state of the surrounding environment of the moving object, and sets, as the priority region, a region overlapping a region including at least a part of at least one crosswalk that is present in a vicinity of an intersection region in which a first road on which the moving object is located intersects a second road present in an advancing direction of the moving object.
Upon detection of boarding of a person in a vehicle compartment of a vehicle by a vehicle information detector, a controller controls an aircraft such that the aircraft takes off from the vehicle, a photographing unit photographs a periphery of the vehicle, and a video captured by the photographing unit is transmitted to a communication unit.
A computer system obtains, using a camera, a first plurality of images of a canopy an agricultural plot. For each respective fruit of a plurality of fruit growing in the agricultural plot, the computer system identifies a first respective image in the first plurality of images that comprises the respective fruit. The first respective image has a corresponding first camera location. The computer system also identifies a second respective image in the first plurality of images that comprises the respective fruit. The second respective image has a corresponding second camera location. The computer system uses at least i) the first and second respective images and ii) a distance between the first and second camera locations to determine a corresponding size of the respective fruit.
An object detection device and an object detection method based on a neural network are provided. The object detection method includes: receiving an input image and identifying an object in the input image according to an improved YOLO-V2 neural network. The improved YOLO-V2 neural network includes a residual block, a third convolution layer, and a fourth convolution layer. A first input of the residual block is connected to a first convolution layer of the improved YOLO-V2 neural network, and an output of the residual block is connected to a second convolution layer of the improved YOLO-V2 neural network. Here, the residual block is configured to transmit, to the second convolution layer, a summation result corresponding to the first convolution layer. The third convolution layer and the fourth convolution layer are generated by decomposing a convolution layer of an original YOLO-V2 neural network.
A vehicle component display device including: a memory; and a processor coupled to the memory, the processor being configured to: acquire a predetermined reference shape from a captured image of a vehicle that is captured by an imaging section; read three-dimensional data of component images corresponding to the reference shape, and display the component images at a display in a state in which the component images are superimposed on the vehicle, the display being visible to a user; display a component configuration diagram at the display together with the component images; and in a case in which a component is selected in the component configuration diagram, emphasize display of the component in the component images displayed at the display.
System integrating content in real-time into dynamic 3D scene includes external server including CMS, a device including content integrating engine to process in real-time 3D scenes, and display device to display combined 3D scene output. CMS searches for social media posts on social media servers. Social media posts includes message and URL to media content. Content integrating engine includes content retriever, content queue, 3D scene component processors to process each 3D scene's visual components, scene manager and combiner. Content retriever establishes direct connection to external server, and retrieves URLs from server storage and stores URLs in content queue. Scene manager, at time of low intensity during 3D scene, signals to content retriever to retrieve media content corresponding to URLs in content queue, one scene component processor to process display setting change, or another scene component processor to process media content. Combiner to generate combined 3D scene output. Other embodiments are described.
Methods, devices, and systems related to a computing device for capturing an augmented reality (AR) image displaying an AR are described. An example method can include projecting a structured array of light, from a mobile device, onto an object. The method further includes measuring multi-directional sections of the object with the projected light. The method further includes reconstructing a three-dimensional (3D) figure of the object based on the measured multi-directional sections. The method further includes displaying an augmented reality (AR) image associated with the 3D figure on a user interface of the mobile device.
An electronic mobile device having a physical display, at least one processor, a volatile memory, and non-volatile memory. Stored in the volatile memory are first instructions for generating a 2D user interface and second instructions for generating a 3D VR environment, and system instructions. In a first operation, the first instructions are executed to generate the 2D user interface and provide the 2D user interface to the physical display. In a second operation, the first instructions are executed to generate the 2D user interface and provide the 2D user interface to a virtual display in the volatile memory. Also, in the second operation, the second instructions are executed to generate the 3D VR environment so as to obtain the 2D user interface from the virtual display and render a 3D image using at least part of the 2D user interface, and provide the 3D image to the physical display.
A system and method for modeling an enclosed space involves measuring ranges and angles between a static vantage point and points on surfaces enclosing the space using a single point time of flight distance measuring device. A computer coupled to the distance measuring device generate virtual surfaces and calculates where the virtual surfaces intersect to generate a geometry for a 3D model representing the surfaces enclosing the space.
A system for generating a nearest neighboring vertices index. The system includes a memory and one or more processors. The one or more processors receive a base figure asset and an item asset, determine nearest neighbor vertices between the base figure asset and the item asset using at least one of a k-dimensional tree algorithm and a geodesic algorithm, and generate the nearest neighboring vertices index based on the determined nearest neighbor vertices between the base figure asset and the item asset.
A system for modeling a three-dimensional structure utilizing two-dimensional segments comprising a memory and a processor in communication with the memory. The processor extracts a plurality of two-dimensional segments corresponding to the three-dimensional structure from a plurality of images indicative of different views of the three-dimensional structure. The processor determines a plurality of three-dimensional candidate segments based on the extracted plurality of two-dimensional segments and adds the plurality of three-dimensional candidate segments to a three-dimensional segment cloud. The processor transforms the three-dimensional segment cloud into a wireframe indicative of the three-dimensional structure by performing a wireframe extraction process on the three-dimensional segment cloud.
A material generation apparatus includes an acquisition unit configured to acquire a plurality of camera images, and a material data generation unit configured to generate, based on a camera image selected from among the camera images, at least one of a foreground image and a background image as material data to be used for generation of an image corresponding to a designated viewpoint.
A display assembly generates environmentally matched virtual content for an electronic display. The display assembly includes a display controller and a display. The display controller is configured to estimate environmental matching information for a target area within a local area based in part on light information received from a light sensor. The target area is a region for placement of a virtual object. The light information describes light values. The display controller generates display instructions for the target area based in part on a human vision model, the estimated environmental matching information, and rendering information associated with the virtual object. The display is configured to present the virtual object as part of artificial reality content in accordance with the display instructions. The color and brightness of the virtual object is environmentally matched to the portion of the local area surrounding the target area.
A computer-implemented method for reconstruction of medical image data includes receiving medical measuring data, and minimizing a cost value via gradient descent. Minimizing the cost value includes: reconstructing the medical image data by applying a reconstruction function to the received medical measuring data in accordance with reconstruction parameters; determining a cost value by applying a cost function to the reconstructed medical image data; determining a gradient of the cost function with respect to the reconstruction parameters; adjusting the reconstruction parameters based on the gradient of the cost function with respect to the reconstruction parameters and the previous reconstruction parameters; and providing the adjusted reconstruction parameters. The acts of the minimizing are repeated until a termination condition is met. The reconstructed medical image data is provided.
Data can be efficiently integrated into augmented and virtual reality environments. A location index consisting of a hierarchical arrangement of location tags can be defined for a planet. Each location tag can represent a cell in a hierarchical arrangement of grids where each cell encompasses a location on the planet. Location tags can be associated with data to allow the data relevant to a location in the augmented or virtual reality environment to be quickly and efficiently retrieved using the location tags. Other indexes can be used to define hierarchical arrangements of other tags to further facilitate retrieving relevant data for integration in the augmented or virtual reality environment.
A data compression device and a compression method are provided. The data compression device includes a quantization table processing unit and a quantization unit. The quantization table processing unit determines a target quantization table in which a quantization coefficient satisfies a data distortion rate and a compression ratio of a preset condition according to a target compression ratio. By constructing different quantization tables for different data, a distortion rate is greatly reduced based on satisfying a compression ratio, and issues that the distortion rate and the compression ratio cannot be simultaneously satisfied in the prior art are alleviated.
A method includes generating a delicate area map by performing a morphological function on a portion of a received first image and identifying a plurality of edges in the first image, the plurality of edges comprising a plurality of pixels. The method also includes verifying a first contrast metric for a first subset of pixels that are in the plurality of pixels but not in the delicate area map, verifying a second contrast metric for a second subset of pixels that are in the plurality of pixels and in the delicate area map, and generating a validation result based on the verifying of the first contrast metric and the verifying of the second contrast metric.
A data acquisition system of a vehicle includes an image capture device, a communication interface, and a controller communicatively coupled to the image capture device and communicatively coupled to the communication interface. Processors of the controller are configured to calibrate an image-distance relationship value of an identified component of a first image captured by the image capture device corresponding to a known feature based on established metrics of the known feature. The processors are also configured to provide control of the vehicle or activation of an alert system of the vehicle via the communication interface based on the image-distance relationship value.
Methods, systems, an apparatus, including computer programs encoded on a storage device, for tracking human movement in video images. A method includes obtaining a first image of a scene captured by a camera; identifying a bounding box around a human detected in the first image; determining a scale amount that corresponds to a size of the bounding box; obtaining a second image of the scene captured by the camera after the first image was captured; and detecting the human in the second image based on both the first image scaled by the scale amount and the second image scaled by the scale amount. Detecting the human in the second image can include identifying a second scaled bounding box around the human detected in the second image scaled by the scale amount.
Item recognition of a given item is trained on a single item from different views. The item recognition is then trained on images of the given item partially occluded by a second item having same, similar, or different shapes and features to that of the given item. General features of the item are noted and used to detect the given item when the given item is presented with multiple different items having multiple different occluded views.
A system for generating whole body poses includes: a body regression module configured to generate a first pose of a body of an animal in an input image by regressing from a stored body anchor pose; a face regression module configured to generate a second pose of a face of the animal in the input image by regressing from a stored face anchor pose; an extremity regression module configured to generate a third pose of an extremity of the animal in the input image by regressing from a stored extremity anchor pose; and a pose module configured to generate a whole body pose of the animal in the input image based on the first pose, the second pose, and the third pose.
A system for determining a distance to a region of interest. The system may be used to adjust focus of a motion picture camera. The system may include a first camera configured to have a first field of view, and a second camera configured to have a second field of view that overlaps at least a portion of the first field of view. The system may include a processor configured to calculate a distance of the selected region of interest relative to a location by comparing a position of the selected region of interest in the first field of view with a position of the selected region of interest in the second field of view.
A method for performing hybrid depth detection with aid of an adaptive projector and associated apparatus are provided. The method includes: utilizing an image processing circuit to obtain distance information; utilizing the image processing circuit to determine a distance range according to the distance information; utilizing the image processing circuit to perform projection type selection to determine at least one selected projection type corresponding to the distance range among multiple predetermined projection types; utilizing the adaptive projector to perform projection of the at least one selected projection type to capture at least one corresponding image with a camera, and utilizing the image processing circuit to perform depth detection according to corresponding image to generate depth map; and utilizing the image processing circuit to selectively output the depth map as resultant depth map or perform depth data combination to generate combined depth map as resultant depth map.
Methods and systems for aligning images of a specimen are provided. One method includes reducing noise in a test image generated for a specimen by an imaging subsystem thereby generating a denoised test image. The method also includes detecting one or more patterned features in the denoised test image extending in at least a horizontal or vertical direction. In addition, the method includes designating an area of the denoised test image in which the detected one or more patterned features are located as a region of interest in the denoised test image. The method further includes aligning the denoised test image to a reference image for the specimen using only the region of interest in the denoised test image and a corresponding area in the reference image.
A computer-implemented system and method for predicting male sex human offspring to result from a human embryo by processing video image data of the embryo. The method includes receiving image data derived from video of a target embryo taken at substantially real-time frame speed during an embryo observation period of time. The video contains recorded morphokinetic movement of the target embryo occurring during the embryo observation period of time. The movement is represented in the received image data and the received image data is processed using a model generated utilizing machine learning and correlated embryo outcome data.
An object detection device for detecting a target object from an image, includes: a first detection unit configured to detect a plurality of candidate regions in which the target object exists from the image; a region integration unit configured to determine one or more integrated regions based on the plurality of candidate regions detected by the first detection unit; a selection unit configured to select at least a part of the integrated regions; and a second detection unit configured to detect the target object from the selected integrated region using a detection algorithm different from a detection algorithm used by the first detection unit.
A system and method for operating a household cleaning appliance, including: providing a household cleaning appliance including, a powered and electronically controlled cleaning implement, and at least one physical sensor taken from a group consisting of: an orientation sensor, an acceleration sensor, an inertial sensor, a global positioning sensor, a pressure sensor, a load sensor, audio sensor, humidity sensor, and a temperature sensor; providing a camera associated with the household cleaning appliance; deriving an augmented classification using one or more classifiers classifying the physical sensor data and the image data; and modifying operation of the cleaning implement based upon the augmented classification.
There is a need for more effective and efficient predictive data analysis solutions and/or more effective and efficient solutions for generating image representations of categorical/scalar data. Various embodiments of the present invention address one or more of the noted technical challenges. In one example, a method comprises receiving the one or more categorical input features; generating an image representation of the one or more categorical input features, wherein the image representation comprises image region values each associated with a categorical input feature, and further wherein each image region value of the one or more image region values is determined based at least in part on the corresponding categorical input feature associated with the image region value; and processing the image representation using an image-based machine learning model to generate the image-based predictions.
A lens matching apparatus and a lens matching method are provided. In the method, respective modulation transfer function (MTF) values corresponding to multiple focus lengths of each lens are obtained, a maximum MTF value among the focus lengths of each lens is determined, and lenses are classified according to the maximum MTF value. Each MTF value is determined based on at least one first pixel having maximum light intensity and at least one second pixel having minimum light intensity. Accordingly, the lenses with the same clearness may be classified into the same group, so as to improve image-stitching and speed up the image-stitching.
An inspection system is provided for detecting defects on surfaces. The system uses a pattern with varying color or darkness which faces the surface. A light illuminates the pattern on the surface so that the pattern and any defects on the surface are reflected and captured for image analysis. The processor then separates the pattern from the image in order to identify the locations of any defects on the surface.
An electronic device comprises a first camera capable of photographing a designated direction, a second camera capable of photographing a direction different from the designated direction, a memory, and a processor, wherein the processor can be configured to acquire first images by using the first camera and second images by using the second camera, confirm at least one reflective object having a reflective attribute related to the light reflection in the first images, and synthesize, on the basis of the reflective attribute, at least a part of the second images with at least a part of an area corresponding to the at least one reflective object.
An image processing apparatus and method are provided which quantifies sharpness of one or more areas in an image. The sharpness processing includes acquiring an image from an image capturing apparatus, obtaining an object information characterizing a position of an object within the captured image, and controlling, based on a sharpness of each of a plurality of regions identified within the captured image according to the object information, an unit such that a sharpness information representing a numeric value regarding a sharpness of the captured image is displayed with the captured image.
An image capture system comprises a camera configured to capture an image of a whiteboard, or similar, viewed from an acute angle. A linear polarizer has a surface substantially perpendicular to a plane of the board and an axis of polarization substantially perpendicular to the plane of the board or within 30° of the perpendicular to the plane of the board. The camera is configured to capture the image of the board through the polarizer. A normal to the polarizer is directed in a different direction to a direction defined by an optic axis of the camera.
According to example embodiments, an Image View Aggregator identifies a frontal view of an item within an image. The Image View Aggregator identifies at least one reflection view of the item within the image. Each reflection view of the item having been captured off a corresponding reflective physical surface. The Image View Aggregator extracts the frontal view of the item and each reflection view of the item from the image. The Image View Aggregator generates a representation of the item based at least on the extracted frontal view of the item and each extracted reflection view of the item.
The present application provides a method for storing an image frame in a memory, including: receiving the image frame; dividing the image frame into M rows of data block rows along a first direction; dividing each of the M rows of data block rows into N data blocks along a second direction perpendicular to the first direction; performing a compression operation upon each of the M*N data blocks individually to generate M*N compressed data blocks; and storing N compressed data blocks corresponding to the 1st data block row of the M data block rows and N compressed data blocks corresponding to the (P+1)th data block row of the M data block rows in a continuous storage space in the memory, wherein M, N, and P are integers, and M>1, N>0 and P
To achieve a balance between convenience in managing/handling real estate properties and privacy protection of tenants while reducing the facility cost and operating cost. A real estate management system is equipped with: a camera robot 61 for capturing an interior image of a real estate property 3; a tenant side device 41 for controlling communications with the camera robot 61; an operation regulation unit 402c for regulating operation of the tenant side device 41 on the basis of an operation performed by a tenant of the real estate property 3; a communication service provider side device 7 connected to the camera robot 61 over a communication network and controlling a communication service using the camera robot 61; and a real estate manager side device 8 connected to the camera robot 61 over the communication network and executing a real estate management service using the camera robot 61. The communication service provider side device 7 and the real estate manager side device 8 are permitted to connect to the camera robot 61 on the basis of an authentication result of a device side authentication unit 402b and an approval operation performed by the tenant.
A method for providing economic information based on geographic parameters that includes providing a map for display on a device, receiving a user-defined area on the map, and providing data relating to the user-defined area. Obtaining the relevant information or data about a particular geographic region frequently involves consulting a plurality of sources. The current method is much more efficient and cost effective to retrieve from fewer sources and provide the information in a quick and easy to comprehend format.
In general, intelligent fuel dispensers are provided. In at least some implementations, an intelligent fuel dispenser can determine customer identities and/or other characteristics and provide customized fueling sessions based on the determined customer identities and/or other characteristics. In at least some implementations, the fuel dispenser includes a touchless interface allowing customers to complete fueling sessions with minimal physical contact with the fuel dispenser.
Artificial intelligence techniques for scalably detecting anomalies within payroll data for a plurality of payees are disclosed. The payroll data may comprise a plurality of payroll records that are associated with a plurality of payees, and the inventive computer system can detect anomalies via steps such as (1) processing a history of the payroll records for a payee to generate a payee-specific pay distribution model, (2) comparing the payroll record for a pay period for the payee with the payee-specific pay distribution model, (3) determining whether a payroll anomaly for the payee exists within the payroll record for the pay period for the payee based on the comparing step, (4) in response to a determination that a payroll anomaly for the payee exists, flagging the payroll anomaly for further review or analysis, and (5) performing the processing, comparing, determining, and flagging steps for a plurality of payees.
A computer system is provided that allows participants to submit agent data structures for processing. The computer system performs a dual sided evaluation process to determine when contra-sided agents match with one another.
A method of displaying a symbol representative of changes in price during a time period in which a highest price occurred at a first time within the time period, a lowest price occurred at a second time within the time period, and a last price occurred at a third time within the time period, the method includes receiving a bid price and an ask price corresponding to a fourth time within the time period, wherein there is no new last price corresponding to the fourth time, determining whether the last price is lower than the bid price or higher than the ask price, in response to the determining that the last price is not lower than the bid price and not higher than the ask price, updating the last price to correspond to the fourth time, and generating, by a charting engine, the symbol by drawing, at a first luminosity level, a spatiotemporal relationship between the highest price, the lowest price, and the last price in accordance with a selected symbol rendering method, in response to the determining that the last price is lower than the bid price or higher than the ask price, generating an estimated last price from the bid price and the ask price, the estimated last price corresponding to the fourth time, and generating, by a charting engine, the symbol by drawing, at a second luminosity level, a spatiotemporal relationship between the highest price, the lowest price, and the estimated last price in accordance with a selected symbol rendering method, and displaying, by the charting engine, the generated symbol at a particular position.
Described is a multiple-camera system and process for determining an item involved in an event. For example, when a user picks an item or places an item at an inventory location, image information for the item may be obtained and processed to identify the item involved in the event and associate that item with the user.
A system and application for purchasing one or more items via quick online transactions from a vendor system is provided. An electronic shopping page listing products for sale and corresponding buy selectors is provided on a user device that includes the quick transaction system. Upon user selection of a buy selector, the user's log on status and payment information are determined, and, if necessary, the user is prompted to log on to the quick transaction application and/or complete any missing user payment information if necessary. A single click or tap on the buy selector generates a completed purchase transaction without the need for a shopping cart or user checkout process. Methods and machine-readable medium for quick online transactions are also provided.
This disclosure describes systems and methods that facilitate purchase of objects from merchants. For example, a user may browse a website available from an object management service and identify objects that they desire to purchase. Rather than having to locate the seller of those objects to make a purchase, the implementations described herein facilitate a connection between the user and the merchant so that the merchant's sales are increased and the user is provided an efficient and safe shopping experience.
A computer-implemented method is provided for aggregating state information associated with a composite business object representing at least one collaboration between business entities. The method includes retrieving the state information for the composite business object from a computer-readable medium and determining a state for the composite business object based on an assigned priority level for a state in a hierarchy of states associated with the composite business object, each state in the hierarchy of states having a corresponding assigned priority level.
A computer program product, method and mobile device, the computer program product comprising a non-transitory computer readable storage medium retaining program instructions configured to cause a processor to perform actions, wherein the processor is a processor of a mobile device of a user, wherein the mobile device is in communication with a server associated with an entity other than the user, wherein the server is in communication with a plurality of mobile devices, each of which retaining the computer program product, wherein the program instructions implement: subject to an occurrence of an event associated with the user of the mobile device, obtaining data to be transmitted to the server, wherein the event is of interest to the entity, wherein the data to be transmitted comprises demographic information of the user and a property of the event, wherein the data excludes identifying information; and transmitting the data to the server.
A system and method is provided for generating new product offerings for display in which products are decoupled into components and the components are weighted based on user-specific preferences and market trends. The weighted components are then recompiled into new product offerings based on a probabilistic selection. Each component may be associated with related or otherwise applicable components and these associated components may also be incorporated into a new product offering for display during the probabilistic selection process. The selection and display process may also be tailored to specific users by adjusting weights based on preferences of those specific users.
In general, embodiments of the present invention provide systems, methods and computer readable media for recommending contextually relevant promotions to consumers in order to facilitate their discovery of promotions that they are likely to purchase from a promotion and marketing service.
Described are systems and methods for determining a diversity function in connection with potential advertisements in determining one or more advertisements to present to a user. This can facilitate presenting diverse advertisements to users. The diversity function can yield a diversity penalty for each potential advertisement to be able to determine a rank order of the potential advertisements. The diversity function can include a repetition score and a multiplier for each potential advertisement.
A facility for estimating the cost of a remodeling project is described. The facility accesses a project cost model that predicts project costs determined from a photograph based upon project characteristics. The facility applies the access project cost model to characteristics of a distinguished project to obtain an estimated cost. The facility causes the obtained estimated cost to be displayed.
As a client device accesses and interacts with a web server of an online retailer, an engagement evaluation server gathers data from both the client device and the web server. Over time, as the client device is used to access the web server and other web servers within the evaluation server network, a profile is built and maintained that describes some aspects of the client device interaction with the web server, including recency of visits, frequency of visits, frequency of views of products, frequency of shopping cart creation and modification, and other factors indicative of the user being engaged with the online retailer. The evaluation server performs statistical analysis and data modeling on profiles in order to generate an engagement score, and then provides the contact information for profiles meeting certain criteria.
A third party item listing management system usable for verification of third party items to be included on a retailer website includes an application programming interface and an item verification pipeline. The application programming interface is accessible by a plurality of third parties and is configured to receive item data associated with one or more items. The item verification pipeline is configured to receive the item data and call an item validation pipeline, the item validation pipeline includes a plurality of item validation stages including a field verification. At the field verification stage, data is extracted from at least one of an item image or text associated with the item. The data extracted is compared to item data obtained from an independent verification source to confirm the accuracy of the item data provided by the third party.
Auditing shelf space of an outlet of a retailer using a device comprising: a computer, a camera, a global positioning system receiver and a repository. The device is authenticated using the time and date of the audit, and a location of the audit at the outlet of the retailer. Once the device is authenticated, images of displays within the outlet and audit information relating to the display and the outlet of the retailer are captured and audit information is embedded into the captured image. The captured image is encrypted and sent to a remote computer of a checker company for a compliance check.
The invention relates to a method and system that combines payment data and cyber fraud indicators to identify potential fraud in payment requests from a client. The system comprises: a memory that stores and maintains a list of known fraud characteristics and cyber fraud indicators; and a computer processor, coupled to the memory, programmed to: receive, via an electronic input, a payment instruction from the client; identify one or more cyber fraud indicators associated with the payment instruction; apply payment decisioning to merge the one or more cyber fraud indicators to the payment instruction; generate a risk score based on the payment decisioning to determine whether the payment instruction should be executed; and automatically apply the payment decisioning to the payment instruction.
Methods and systems including: receiving a request to take an action in a cryptoasset custodial system for an account holder; authenticating a policy map associated with the action, wherein the policy map defines access control rules governing which actions are allowed under conditions including a threshold number of endorsements needed; and validating endorsement messages for the action by checking digital signatures of the received endorsement messages, wherein at least one of the validated endorsement messages has been generated by digital signing with a first private key of a person, who is associated with the account holder, and at least one of the validated endorsement messages has been generated by digital signing with a second private key of a program, which is associated with the account holder, responsive to the program confirming one or more circumstances specified by the account holder are met at a time when the program is run.
A system includes one or more memory devices storing instructions, and one or more processors configured to provide low-latency access to cardholder location information by receiving periodically updated location information from a mobile device associated with the account holder and updated associated systems with the information prior to the user initiating a transaction. At the time of a transaction, necessary systems can quickly access the stored information and authenticate transactions appropriately.
The technology described includes a physical, connected device/button, that when pressed or clicked, causes money to be transferred according to a set of rules (i.e., a “one-click” transfer of funds). In some embodiments, each click can cause a small, pre-set increment of money to be transferred from a user's checking account to the user's savings account. In other embodiments, the user can hold the button down for a longer period of time, indicating a request for a larger amount of money to be transferred.
Methods and apparatus for generating feedback, reviewing feedback, and conducting interviews by use of VMocks are provided. A VMock, or Virtual Mock, is a virtual profile of a candidate that includes resume, text, video and a document. VMock profiles may be created that have one or more VMocks. Contacts associated with the VMock profile may be managed. Feedback may be requested from the contacts concerning the one or more VMocks, who may then generate the requested feedback. The feedback may then be reviewed. This feedback process may be performed in the context of interviews for employment opportunities and in other similar situations.
A system including one or more processors and one or more non-transitory computer-readable media storing computing instructions configured to run on the one or more processors and perform receiving orders from physical stores for fulfillment from a distribution center, each of the orders comprising a set of items and a requested delivery date; generating a stack building plan for each of the orders using simulated annealing; obtaining routes for delivering the orders in trailers from the distribution center to the physical stores based at least in part on the stack building plan; and generating a load design for each of the routes to deliver in a trailer of the trailers a load for one or more of the orders, such that floor spot assignments for stacks for each of the one or more of the orders in the load carried by the trailer satisfy sequence-of-delivery constraints and center-of-gravity constraints. Other embodiments are disclosed.
A food inventory device having a bar code scanner and camera to add and remove inventory items to and from the inventory. The scanner may be mounted on an inventory storage container to facilitate inventory control from one or more storage devices, including refrigerators, freezers, and pantries. The inventory system may display a table listing the inventory items along with variable details. Based on the food inventory list, the inventory system may suggest recipes, display the ingredients in stock for suggested recipes, and create a shopping list of the ingredients not in stock for a desired recipe. The device may have an ordering system allowing users to order items in the storage device that have been exhausted or otherwise need to be replenished through audio or touch input. The ordering system may be connected to third-party external sites and may be based on one or more user profile settings.
A system for selecting a health care provider and then monitoring and reporting the selected provider's performance. A processor is programmed to retrieve from the internet and store in a database historical performance data on providers and healthcare data relating to the providers' historical performance. The processor determines which provider should be selected to perform a task, by assessing the providers' historical performances against each other; selecting a provider to perform a task, monitoring post-selection healthcare data relating to the provider's performance of the task, and generating a reporting metric comprising a display of a trend in the selected provider's historical performance and/or the provider's current performance of the task.
An embodiment of the present invention is directed to a feedback-based system and methodology for dynamically selecting communication messages, social media data, support data, etc. (denoted data) in evaluating dynamic lightweight personalized analytics (DLPA). Disclosed embodiments include a process for optimizing the key performance indicators (KPIs) used in measuring success by dynamically selecting the type, size, etc. of data leveraged by DLPA. This facilitates a small memory footprint and optimal computation when making smart, customized suggestions to users.
A system and method may determine the carbon emissions risk to an institution through its lending and investment activities to a plurality of counterparties by, for example, determining carbon emissions data for a number of counterparties and, for each counterparty, determining the carbon emissions risk to the institution. A system and method may determine the proportion of total capital of a counterparty that is being financed by a bank, and multiply this by a carbon emissions measure for the counterparty. Embodiments may be applied to determine optimal investment strategies for managing an institution's exposures to carbon risk over time.
This disclosure describes a transportation matching system that manages the allocation of transportation providers by training and utilizing multiple machine-learning models to identify, allocate, and serve specific transportation providers with customized opportunities to relocate the transportation providers between geocoded areas in a geocoded region. For instance, the transportation matching system trains and utilizes an incremental provider model, a provider allocation model, and personalized provider behavioral models as well as a customized provider interface generator to satisfy anticipated transportation requests and improve transportation matching within a geocoded region.
A resource reservation system for processing a resource reservation includes an information processing terminal associated with a resource and be capable of receiving a use start operation of starting using the resource, and the information processing apparatus configured to include reservation information including a use start time of day, transmit the reservation information to the information processing terminal in response to a periodic request from the information processing terminal, and receive a use start notification from the information processing terminal in a case where the information processing terminal receives the use start operation, wherein the information processing apparatus does not perform the cancel of the reservation information if the periodic request from the information processing terminal is not received within the constant time and even if the use start notification is not received within the predetermined time from the use start time of day.
A non-transitory computer-readable recording medium stores therein a learning program that causes a computer to execute a process including: generating a shadow image including a shadow according to a state of ultrasound reflection in an ultrasound image; generating a combined image by combining the ultrasound image and the shadow image; inputting, into a first decoder and a second decoder, an output acquired from an encoder in response to inputting the combined image into the encoder; and executing training of the encoder, the first decoder, and the second decoder, based on: reconfigured error between an output image of a coupling function and the combined image, the coupling function being configured to combine a first image output from the first decoder with a second image output from the second decoder, and an error function between an area in the first image and the shadow in the shadow image.
The present disclosure describes transaction-enabling systems and methods. A system may include a smart contract wrapper configured to access a distributed ledger including a plurality of intellectual property (IP) licensing terms corresponding to a plurality of IP assets, wherein the plurality of IP assets include an aggregate stack of IP, interpret an IP description value and an IP addition request, and, in response to the IP addition request and the IP description value, to add an IP asset to the aggregate stack of IP.
Machine learning model re-training based on distributed feedback received from a plurality of edge computing devices is provided. A trained instance of a machine learning model is transmitted, via one or more communications networks, to the plurality of edge computing devices. Feedback data is collected, via the one or more communications networks, from the plurality of edge computing devices. The feedback data includes labeled observations generated by the execution of the trained instance of the machine learning model at the plurality of edge computing devices on unlabeled observations captured by the plurality of edge computing devices. A re-trained instance of the machine learning model is generated from the trained instance using the collected feedback data. The re-trained instance of the machine learning model is transmitted, via the one or more communications networks, to the plurality of edge computing devices.
Systems and methods are provided for training a model using machine learning. An exemplary method may include providing, by the model in a training session, an action to an environment to receive feedback from the environment. The method may also include generating, by a behavior simulator, a plurality of predicted outcomes from the environment resulting from the action. The method may further include training the model, using at least a subset of the predicted outcomes, to generate a set of candidate models. The method may include receiving actual feedback from the environment and determining whether the actual feedback matches one of the predicted outcomes in the subset. Responsive to the determination that the actual feedback matches one of the predicted outcomes in the subset, the method may include using, in a new training session, the candidate model in the set corresponding to the matched predicted outcome.
Methods, systems and computer program products generating diverse and representative set of samples from a large amount of transaction data are disclosed. A data sampling system receives transaction records. Each transaction record has multiple text segments. The system selects a subset of transaction records that contain least frequently appeared text segments. The system determines a respective vector representation for each selected transaction record. The system can measure similarity between transaction records based on the vector representations. The system assigns the selected transaction records to multiple clusters based on the vector representations and designated dimensions of importance. The system identifies one or more anchors that include transaction records on boundaries between clusters. The system filters the subset of transaction records by removing transaction records that are close to the anchors. The system then provides the filtered subset as a representative set of samples to a sample consumer.
Josephson junctions (JJ) may replace primary inductance of transformers to realize galvanic coupling between qubits, advantageously reducing size. A long-range symmetric coupler may include a compound JJ (CJJ) positioned at least approximately at a half-way point along the coupler to advantageously provide a higher energy of a first excited state than that of an asymmetric long-range coupler. Quantum processors may include qubits and couplers with a non-stoquastic Hamiltonian to enhance multi-qubit tunneling during annealing. Qubits may include additional shunt capacitances, e.g., to increase overall quality of a total capacitance and improve quantum coherence. A sign and/or magnitude of an effective tunneling amplitude Δeff of a qubit characterized by a double-well potential energy may advantageously be tuned. Sign-tunable electrostatic coupling of qubits may be implemented, e.g., via resonators, and LC-circuits. YY couplings may be incorporated into a quantum anneaier (e.g., quantum processor).
A compiler for a gate-based superconducting quantum computer compiles hybrid classical/quantum algorithms for quantum processing cells with different configurations. The compiler inputs the algorithm and outputs code in a target language executable by a quantum processing cell of a quantum processing system that can execute the algorithm. The compiler includes various functionality, such as: parsing, analyzing control flows, addressing, compressing, and translating. The compiler optimizes algorithms in various manners using the functionality. Some optimizations include addressing efficiently, compressing based on simulations, and translating for efficient execution of parametric functions. The compiler may function in the environment of a cloud quantum computing system. The cloud quantum computing system may receive algorithms from remote access nodes for execution on local classical and quantum computing systems.
An example operation may include one or more of connecting to a blockchain containing chains of reasoning data and related premise data, receiving an inference query, retrieving from the blockchain chain of reasoning data and related premise data corresponding to the inference query, executing inference steps using the retrieved chain of reasoning data and the related premise data to generate conclusion data, tracking the execution of the inference steps, and sending to the blockchain the tracked inference steps and the conclusion data to be entered into the blockchain as transactions.
A driving action evaluating device that specifies a driving scene by using at least one of an image captured by an onboard camera and position information of an own vehicle; and derives an evaluation of driving actions by executing an evaluation logic, which corresponds to only a driving scene specified by the specifying section, among a plurality of evaluation logics that correspond to a plurality of driving scenes, respectively.
The techniques herein include using an input context to determine a suggested action and/or cluster. Explanations may also be determined and returned along with the suggested action. The explanations may include (i) one or more most similar cases to the suggested case (e.g., the case associated with the suggested action) and, optionally, a conviction score for each nearby cases; (ii) action probabilities, (iii) excluding cases and distances, (iv) archetype and/or counterfactual cases for the suggested action; (v) feature residuals; (vi) regional model complexity; (vii) fractional dimensionality; (viii) prediction conviction; (ix) feature prediction contribution; and/or other measures such as the ones discussed herein, including certainty. The explanation data may be used to determine whether to perform a suggested action.
A system and method for a high-performance, scalable, multi-tenant, dynamically specifiable, knowledge graph information storage and utilization. The system uses an in-memory associative array for high-performance graph storage and access, with a non-volatile distributed database for scalable backup storage, a scalable, distributed graph service for graph creation, an indexing search engine to increase searching performance, and a graph crawler for graph traversal. One or more of these components may be in the form of a cloud-based service, and in some embodiments the cloud-based services may be containerized to allow for multi-tenant co-existence with no possibility of data leakage or cross-over.
Implementations include receiving two or more time-series data sequences representative of a target process executed within a physical environment, executing automated time-series process segmentation to provide a plurality of subsequence segments for each of the two or more time-series data sequences, each subsequence segment corresponding to a phase of the target process, processing the two or more subsequence segments using at least one time-series transformation to provide a feature data set for each subsequence segment, applying each feature data set to provide time-series models for anomaly detection and forecasting, respectively, each time-series model being provided as one of a recurrent neural network (RNN), a convolution neural network (CNN), and a generative adversarial network (GAN), determining anomaly scores based on the time-series models, and selectively providing an alert to one or more users, each alert indicating at least one anomaly and a respective probability.
A pre-trained source encoder generates a source encoder representation for each image of a labeled set of source images from a source domain. A target encoder generates a target encoder representation for each image of an unlabeled set of target images from a target domain. A generative adversarial network outputs a first prediction indicating whether each of the source encoder representations and each of the target encoder representations originate from the source domain or the target domain. The generative adversarial network outputs a second prediction of the latent code for each of the source encoder representations and each of the target encoder representations. The target encoder and the generative adversarial network are trained by repeatedly updating parameters of the target encoder and the generative adversarial network until one or more predetermined stopping conditions occur.
This application relates to an abstract description generating method, an abstract description generation model training method, a computer device, and a storage medium. The abstract description generating method includes: inputting a labeled training sample into an abstract description generation model; performing first-phase training on an encoding network and a decoding network of the abstract description generation model based on supervision of a first loss function; obtaining a backward-derived hidden state of a previous moment through backward derivation according to a hidden state of each moment outputted by the decoding network; obtaining a value of a second loss function according to the backward-derived hidden state of the previous moment and an actual hidden state of the previous moment outputted by the decoding network; and obtaining final model parameters of the abstract description generation model determined based on supervision of the second loss function to reach a preset threshold value.
A computer-implemented method for training a random matrix network is presented. The method includes initializing a random matrix, inputting a plurality of first vectors into the random matrix, and outputting a plurality of second vectors from the random matrix to be fed back into the random matrix for training. The random matrix can include a plurality of two-terminal devices or a plurality of three-terminal devices or a film-based device.
A convolutional neural network processor includes an information decode unit and a convolutional neural network inference unit. The information decode unit is configured to receive a program input and weight parameter inputs and includes a decoding module and a parallel processing module. The decoding module receives the program input and produces an operational command according to the program input. The parallel processing module is electrically connected to the decoding module, receives the weight parameter inputs and includes a plurality of parallel processing sub-modules for producing a plurality of weight parameter outputs. The convolutional neural network inference unit is electrically connected to the information decode unit and includes a computing module. The computing module is electrically connected to the parallel processing module and produces an output data according to an input data and the weight parameter outputs.
A system and method of teaching a neural network through reinforcement learning methodology. The system includes a machine-readable medium having one or more processors that perform a motion task to produce a first result corresponding to navigating a device during a first episode and performing an interaction task during that same episode. After completion of the first episode a processor calculates a Q value change based on the first task result and the second task result. The processor then modifies parameters based on the Q value change such that during subsequent episode iterations the motion task and interactive task are improved and a smooth and continuous transition occurs between these two tasks.
A learning support device stores, as execution information, a set of an input value, an execution output value as an execution result and an expected output value, for a machine learning program. An arithmetic device generates an output value different from the expected output value as a teacher output value in accordance with a predetermined rule when the execution output value and the expected output value for a predetermined input value match each other, generates a loss function based on a difference between the teacher output value and the execution output value, generates a change value indicating a change in the loss function for each parameter in the neural network, calculates an influence degree of predetermined learning by calculating influence of an update value of the parameter obtained by the learning on the change value, and determines whether or not the update value is adopted based on the influence degree.
Implementations are directed to generating simulated training examples for training of a machine learning model, training the machine learning model based at least in part on the simulated training examples, and/or using the trained machine learning model in control of at least one real-world physical robot. Implementations are additionally or alternatively directed to performing one or more iterations of quantifying a “reality gap” for a robotic simulator and adapting parameter(s) for the robotic simulator based on the determined reality gap. The robotic simulator with the adapted parameter(s) can further be utilized to generate simulated training examples when the reality gap of one or more iterations satisfies one or more criteria.
The neuromorphic arithmetic device comprises an input monitoring circuit that outputs a monitoring result by monitoring that first bits of at least one first digit of a plurality of feature data and a plurality of weight data are all zeros, a partial sum data generator that skips an arithmetic operation that generates a first partial sum data corresponding to the first bits of a plurality of partial sum data in response to the monitoring result while performing the arithmetic operation of generating the plurality of partial sum data, based on the plurality of feature data and the plurality of weight data, and a shift adder that generates the first partial sum data with a zero value and result data, based on second partial sum data except for the first partial sum data among the plurality of partial sum data and the first partial sum data generated with the zero value.
A device includes first wires, second wires, resistors, and a processor. Input signals are transmitted from the first wires through the resistors to the second wires. The processor receives a sum value of the input signals from one of the second wires, and shifts the sum value by a nonlinear activation function to generate a shifted sum value. The processor calculates a backpropagation value based on the shifted sum value and a target value, and generates a pulse number based on a corresponding input signal of the input signal and the backpropagation value. Each of a value of the corresponding input signal and the backpropagation value is higher than or equal to a threshold value. The processor applies a voltage pulse to one of the resistors related to the corresponding input signal based on the pulse number.
Methods and systems are provided for generating a multi-label classification system. The multi-label classification system can use a multi-label classification neural network system to identify one or more labels for an image. The multi-label classification system can explicitly take into account the relationship between classes in identifying labels. A relevance sub-network of the multi-label classification neural network system can capture relevance information between the classes. Such a relevance sub-network can decouple independence between classes to focus learning on relevance between the classes.
Fusion of trained artificial intelligence (AI) neural networks to produce more accurate classifications is disclosed. Concatenation from each network being merged may be performed. The new set of features, which includes the concatenated layers, is then fed through a new classifier to form a single final classifier that uses the best parts of each input classifier.
A metadata-based scientific data characterization method, system, and computer program product include requesting a user input for a task to specify a rule for the task to determine a quality and a relationship of a data file in a data file database based on metadata associated with the data file, processing a user feedback of results using the rule run on the data file database and tracking the user feedback on the results in order to learn from the user feedback, and based on the learning, creating a modified rule to determine a quality and a relationship of a second data file.
To identify a target engagement sequence with a highest likelihood of realizing an opportunity, a target engagement sequence generator uses models (artificial recurrent neural network (RNN) and a hidden Markov model (HMM)) trained with historical time series data for a particular combination of values for opportunity characteristics. The trained RNN identifies a sequence of personas for realizing the opportunity described by the opportunity characteristics values. Data from regression analysis indicates key individuals for realizing an opportunity within each organizational classification that occurred within the historical data. The HMM identifies the importance of each persona in the sequence of personas with communicates to the key individuals. The resulting sequence of individuals indicates an optimal sequence of individuals and order for contacting those individuals in order to realize an opportunity. The importance values associated with the key individuals informs how to efficiently allocate resources to each individual interaction.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for a neural network that is configured to receive a network input and to generate a network output for the network input. The neural network comprises a plurality of layers arranged in a sequence, including a plurality of capsule layers. Each particular capsule in a particular capsule layer is configured to receive respective inputs including: (i) outputs generated by capsules of a previous capsule layer that is before the particular capsule layer in the sequence, and (ii) final routing factors between capsules of the previous capsule layer and the particular capsule, wherein the final routing factors are generated by a routing subsystem. Each particular capsule in the particular capsule layer is configured to determine a particular capsule output based on the received inputs, wherein the particular capsule output is of dimension greater than one.
Aspects of the disclosure generally relate to computing devices and/or systems, and may be generally directed to devices, systems, methods, and/or applications for learning an avatar's or an application's operation in various circumstances, storing this knowledge in a knowledgebase (i.e. neural network, graph, sequences, etc.), and/or enabling autonomous operation of the avatar or the application.
Identification labels and their incorporation in rubber-based articles are described. The labels include RFID components and can be incorporated in tires. The labels can withstand the relatively harsh conditions associated with vulcanization.
A wearable article, system, and method includes a structure configured to enclose a body part, a first antenna, in a first position on or within the structure, tuned to communicate according to a wireless communication modality through air, a second antenna, in a second position on or within the structure, tuned to communicate according to the wireless communication modality through the body part, the first antenna being tuned differently than the second antenna, and a transceiver, operatively coupled to at least one of the first antenna and the second antenna, configured to communicate with an external antenna via the at least one of the first and second antennas according to the wireless communication modality.
Systems and methods for converting video information into electronic output files are disclosed. Exemplary implementations may: obtain video information defining one or more videos; select a subset of the visual content included in the video content of the particular video; perform object detection to detect objects in the selected subset; perform motion detection to detect a movement for one or more of the detected objects in the selected subset, responsive to the object detection detecting one or more detected objects; and generate and store an electronic output file, responsive to the detection of the movement.
The present disclosure describes a method, apparatus, and storage medium for annotating image. The method includes extracting, by a device, a visual feature of an image through a generative adversarial network model, and sequentially inputting M pieces of random noise into the generative adversarial network model. In response to each of the M pieces of random noise being inputted into the generative adversarial network model, the method includes performing a determinantal point process (DPP) on the visual feature of the image and the each random noise through the generative adversarial network model to obtain N tag subsets, and selecting a distinct tag subset from the N tag subsets through the generative adversarial network model. The method also includes outputting M distinct tag subsets through the generative adversarial network model after the M pieces of random noise are inputted into the generative adversarial network model.
An apparatus comprising memory configured to store data to be machine-recognized (710), and at least one processing core configured to run an adaptive boosting machine learning algorithm with the data, wherein a plurality of learning algorithms are applied, wherein a feature space is partitioned into bins, wherein a distortion function is applied to features of the feature space (720), and wherein a first derivative of the distortion function is not constant (730).