Methods, systems and apparatus for implementing a tunable qubit coupler. In one aspect, a device includes: a first data qubit, a second data qubit, and a third qubit that is a tunable qubit coupler arranged to couple to the first data qubit and to couple to the second data qubit such that, during operation of the device, the tunable qubit coupler allows tunable coupling between the first data qubit and the second data qubit.
Various embodiments of the present disclosure are directed towards an integrated circuit (IC) chip comprising a memory cell with a sidewall spacer, and/or an etch stop layer, doped to reduce charge accumulation at an interface between the sidewall spacer and the etch stop layer. The memory cell comprises a bottom electrode, a data storage element overlying the bottom electrode, and a top electrode overlying the data storage element. The sidewall spacer overlies the bottom electrode on a common sidewall formed by the data storage element and the top electrode, and the etch stop layer lines the sidewall spacer. The sidewall spacer and the etch stop layer directly contact at the interface and form an electric dipole at the interface. The doping to reduce charge accumulation reduces an electric field produced by the electric dipole, thereby reducing the effect of the electric field on the memory cell.
A spin-orbit torque (SOT)-MRAM comprising a first magnetic tunneling junction (MTJ) having a first distance and having a first critical voltage. A second MTJ having a second distance and having a second critical voltage, wherein the first distance and the second distance are different, wherein the first critical voltage and the second critical voltages are different. A metal rail in direct contact with the first MTJ and the second MTJ, wherein the metal rail injects a spin current in to both the first MTJ and the second MTJ.
Provided is the compound represented by Formula 1, an organic electric element including a first electrode, a second electrode, and an organic material layer formed between the first electrode and the second electrode, and electronic device thereof, and by including the compound represented by Formula 1 and compound represented by Formula 2 in the organic material layer, the driving voltage of the organic electric element can be lowered, and the luminous efficiency and life time of the organic electric element can be improved.
Provided are a light-emitting device including a condensed cyclic compound represented by Formula 1, and an electronic apparatus including the light-emitting device. The light-emitting device includes: a first electrode; a second electrode facing the first electrode; and an interlayer between the first electrode and the second electrode and comprising an emission layer, wherein the light-emitting device further comprises a second capping layer outside the second electrode, the second capping layer having a refractive index of equal to or greater than 1.6, and the emission layer comprises at least one condensed cyclic compound represented by Formula 1.
A production method to fabricate precision micro-mask for the production of ultra-high resolution Active-Matrix Organic Light Emitting Diode (AMOLED) display is disclosed. The production process of the micro-mask includes the following processes: S1, select the substrate and cleaning. S2, fabricate the main body of micro-mask on the substrate. The main body of micro-mask includes sequentially preparation of debonding layer, the first metal layer and the second metal layer; or sequentially preparation of organic polymer layer, the first metal layer and the second metal layer. S3, welding the mask frame to the second metal layer after alignment, fabricate perforation through holes in the main body of the micro-mask based on the requirement of the display subpixel design; or fabricate perforation through holes in the micro-mask based on the requirement of the display subpixel design, then welding the mask frame to the second metal of the main body of the micro-mask. The precision micro-mask is completed after debonding from the substrate. With the precision micro-mask prepared, the high efficiency, ultra-high resolution (>1000 ppi) AMOLED display with Red-Green-Blue, or other color combinations, side-by-side architecture can be produced.
Systems, methods, and structures for improving the performance of thin-film electronic devices, in particular organic LEDs (OLEDs) used in lighting, are disclosed. Enhanced substrates, upon which OLED devices may be deposited, incorporate various structures for extracting light trapped in the device stack and substrate. The substrates provide an improved transparent electrode layer. Methods for forming planarized buried extraction structures to reduce disruption to the deposited device stack layers are disclosed, as are methods for providing smooth, planarized buried metal mesh conductors.
The present disclosure provides a pixel structure, a displaying substrate, a displaying device and a displaying method, wherein the pixel structure includes first sub-pixels, second sub-pixels and third sub-pixels that are located within a first virtual tetragon; the first sub-pixels are located individually adjacent to midpoints of four side edges of the first virtual tetragon; the second sub-pixels are located individually at four interior angles of the first virtual tetragon; and two center lines of the first virtual tetragon delimit the first virtual tetragon into four second virtual tetragons, and the third sub-pixels are located individually at first interior angles within the four second virtual tetragons.
A display device includes a substrate including sub-pixel circuit areas that are arranged in m rows and n columns, where m and n are positive integers, first gate lines extending in a row direction, data lines extending in a column direction, initialization power lines extending in the row direction, including first power lines disposed in sub-pixel circuit areas of odd rows and receiving a first initialization voltage and second power lines disposed in sub-pixel circuit areas of even rows and receiving a second initialization voltage, and transmission lines extending in the column direction, including first transmission lines disposed in sub-pixel circuit areas of odd columns and receiving the first initialization voltage from the first power lines and second transmission lines disposed in sub-pixel circuit areas of even columns and receiving the second initialization voltage from the second power lines.
A display device having a plurality of pixel structures, each of the plurality of the pixel structures including: a substrate; a first active pattern on the substrate; a first gate line on the first active pattern and extending in a first direction; a first connecting pattern on the first gate line and configured to transmit an initialization voltage; a second connecting pattern on the first connecting pattern and electrically connected to the first active pattern and the first connecting pattern; and a first electrode on the second connecting pattern and configured to be initialized in response to the initialization voltage.
A display substrate includes: a base substrate, a plurality of pixel units and a plurality of initialization voltage signal lines. The pixel units are arranged in an array to form a plurality of rows of pixel units and a plurality of columns of pixel units, at least one pixel unit includes sub-pixels, and at least one sub-pixel includes a light-emitting element and a pixel driving circuit. The initialization voltage signal lines are configured to provide initialization voltage signals to the plurality of rows of pixel units respectively, and are arranged at intervals along a second direction. At least one initialization voltage signal line extends along a first direction. The plurality of rows of pixel units include a (2n−1)th row and a 2nth row and pixel driving circuits of the (2n−1)th row and pixel driving circuits of the 2nth rows share a common initialization voltage signal line.
Provided is a display apparatus capable of reducing generation of defects during manufacturing of the display apparatus or while in use after being manufactured. The display apparatus includes a substrate including a bending area between a first area and a second area, the substrate being bent in the bending area about a bending axis; an inorganic insulating layer over the substrate and including a first feature that is either a first opening or a first groove, the first feature positioned to correspond to the bending area; and an organic material layer at least partially filling the first feature, and including a second feature that is a second opening or a second groove, the second feature extending along an edge of the substrate.
Provided are a display substrate, a preparation method thereof, and a display apparatus. The display substrate includes a display region, a first transition region located in the display region, a second transition region located in the first transition region, and a vacant region located in the second transition region, wherein the first transition region includes a substrate, a buffer layer disposed on the substrate, an insulating layer disposed on the buffer layer, and a plurality of dam spacers disposed on the insulating layer; and the second transition region includes a substrate, a buffer layer disposed on the substrate, and a plurality of post spacers disposed on the buffer layer, and the plurality of dam spacers and the plurality of post spacers are all disposed around the vacant region.
The display apparatus includes a substrate, a first active layer disposed on the substrate, a first gate layer disposed on a layer covering the first active layer, the first gate layer including a first gate electrode, a second gate layer disposed on a layer covering the first gate layer, the second gate layer including an initialization line including a first part of a second electrode; a second active layer disposed on a layer covering the second gate layer, the second active layer including a second active region overlapping the first part of the second electrode; a third gate layer disposed on a layer covering the second active layer, the third gate layer including a second part of the second electrode overlapping the second active region; and a first source/drain layer disposed on a layer covering the third gate layer, the first source/drain layer including a first connection line.
Provided is a display panel, including: a base substrate, a light emitting device layer provided on the base substrate and including light emitting devices, and a light adjustment structure layer provided at a side of the light emitting device layer facing away from the base substrate and including light adjustment units and a dielectric layer covering the light adjustment units. Each light adjustment unit has a smaller refractive index than the dielectric layer and includes a light adjustment sub-section and a through hole penetrating the light adjustment unit in a direction perpendicular to the base substrate. The through hole overlaps one light emitting device, and the light adjustment sub-section surrounds the through hole. For one light adjustment unit, a thickness of the light adjustment sub-section gradually increases in a direction from the through hole to the light adjustment sub-section.
A semiconductor structure includes an alternating stack of insulating layers and composite layers. Each of the composite layers includes a plurality of electrically conductive word line strips laterally extending along a first horizontal direction and a plurality of dielectric isolation strips laterally extending along the first horizontal direction and interlaced with the plurality of electrically conductive word line strips. Rows of memory openings are arranged along the first horizontal direction. Each row of memory openings vertically extends through each insulating layer within the alternating stack and one electrically conductive strip for each of the composite layers. Rows of memory opening fill structures are located within the rows of memory openings. Each of the memory opening fill structures includes a respective vertical stack of memory elements and a respective vertical semiconductor channel.
According to one embodiment, a semiconductor storage device includes a first stacked body, plate-shaped portions, and a wall portion. The first stacked body, in which electrically conductive layers and first insulating layers are stacked alternately one by one, includes pillar bodies that penetrate the electrically conductive layers in a stacking direction of the electrically conductive layers. The plate-shaped portions extend in a first direction intersecting the stacking direction and divide the first stacked body into blocks. The wall portion includes first and second portions. The first and second portions respectively extend in a second direction intersecting the first direction and the stacking direction and are arranged in the stacking direction. The second portion includes an outer edge connected to a side surface of the first portion and inclined with respect to the staking direction at an angle larger than an angle defined by the side surface and the stacking direction.
A microelectronic device comprising a stack structure comprising a non-staircase region, a staircase region, and an array region. Each of the non-staircase region, the staircase region, and the array region comprises tiers of alternating conductive materials and dielectric materials. One or more pillars are in the non-staircase region and in the array region, and one or more supports are in the staircase region. A conductive material is in each of the non-staircase region, the staircase region, and the array region and extends vertically into a source adjacent to the tiers. The source comprises corrosion containment features in each of the non-staircase region, the staircase region, and the array region, adjacent to the conductive material in the source. Additional microelectronic devices, electronic systems, and methods are also disclosed.
An integrated circuit device includes a plurality of semiconductor layers stacked on a substrate to overlap each other in a vertical direction and longitudinally extending along a first horizontal direction. The plurality of semiconductor layers may have different thicknesses in the vertical direction.
P+ layers 32b and 32e that cover the entire top portions of Si pillars 6b and 6e and surround the Si pillars 6b and 6e with an equal width in plan view are formed in a self-aligned manner with the Si pillars 6b and 6e. W layers 33b and 33e are formed on the P+ layers 32b and 32e. A band-shaped contact hole C3 that is partly in contact with regions of the W layers 33b and 33e and that extends in the Y direction is formed. A power supply wiring metal layer Vdd is formed such that the band-shaped contact hole C3 is filled with the power supply wiring metal layer Vdd. In plan view, regions of the W layers 33b and 33e partly protrude outward from the band-shaped contact hole C3.
Systems and methods for a datacenter cooling system are disclosed. In at least one embodiment, reconfigurable terminations are provided for fluid loops in a datacenter cooling system with individual ones of such reconfigurable terminations are to be configured in a first state to enable non-cooling fluid runs through individual ones of such fluid loops, taken individually and in combination, during commissioning of a datacenter cooling system, and are to be configured in a second state to enable cooling fluid runs to cool at least one cold plate after commissioning of a datacenter cooling system.
A single-phase immersion cooling system includes a cabinet, circulation pipeline, driving mechanism and cooling mechanism. The cabinet has therein a partition board for partitioning a space into an immersion tank and cooling space. The circulation pipeline includes an input segment, output segment and cooling segment. The input and output segments penetrate the partition board. The cooling segment is disposed in the cooling space and is in communication with the input and output segments. The driving mechanism is disposed at the cooling segment. The cooling mechanism is disposed on one side of the cabinet and positioned proximate to the cooling space. A ventilation opening in communication with the cooling space is formed on at least one lateral side of the cabinet. The single-phase immersion cooling system operates independently without connecting to any external cooling tower or chiller, so it is easier to install and move this system.
An electronic device is provided. The electronic device includes a device body, a rotary plate, a slide plate, and a flexible display screen. The rotary plate is hinged to the device body through a rotary shaft. The rotary plate is provided with a first guide portion. The slide plate is slidably connected to the rotary plate. The slide plate is provided with a second guide portion. The second guide portion is slidably matched with the first guide portion. The flexible display screen is connected to the device body and the slide plate respectively. The slide plate slides relative to the rotary plate during switching between an unfolded state and a folded state of the flexible display screen.
An object is to provide a technique capable of increasing waterproofness of an electronic unit. An electronic unit includes: a case including an opening; a circuit board housed in the case through the opening; and a cover attached to the opening, wherein a protruding portion is provided on at least one side wall of the case, and the protruding portion includes a step that causes an opening side portion of the side wall to protrude further outward relative to a rear side portion of the side wall, and is provided so as to extend along the periphery of the opening.
The present disclosure provides a wearable device capable of evacuating fluids. The wearable device includes a component with an aperture, a bae port, and a bypass port. The base port extends outward from the aperture of the component to define a first opening on the wearable device. The bypass port extends outward from the base port to define a second opening on the wearable device. The present disclosure also provides methods for manufacturing a wearable device capable of evacuating fluids.
This electrical equipment device includes a housing storing an electronic component in an internal space thereof, and includes a vent hole through which an outside and an inside of the housing communicate with each other. The vent hole is formed inside a wall of the housing. One end side of the vent hole has a first opening communicating with the outside of the housing on a gravity-direction lower side. Another end side of the vent hole has a second opening communicating with the inside of the housing on a gravity-direction upper side. At the second opening, a waterproof vent film is provided to close the second opening.
A method and assembly for board to board connection of active devices are described herein. The assembly comprises first and second superposed active devices, a first interfacing member electrically coupled to the first active device, and a flexible printed wiring board having a first end and a second end, the first end electrically coupled to the first interfacing member.
In a component adsorption nozzle, the nozzle can be attached to both of the in-line shaft and the rotary shaft by utilizing the outside (outer wall) of the nozzle body for attaching to the in-line shaft and utilizing the inside (inner wall) of the nozzle body for attaching to the rotary shaft. Therefore, for a user who owns each of the in-line type and rotary type component mounters, it is not necessary to prepare a nozzle dedicated to each type component mounter and it is possible to reduce the burden required for preparing the nozzle.
Embodiments of this application are applied to the field of terminal technologies, and provide a PCB assembly and an electronic device, where the PCB assembly includes a PCB, a first conductor, a first battery, and a second battery. The PCB includes a groove area. The first battery and the second battery are disposed on different sides of the groove area. The first conductor is disposed in the groove area, and the first conductor is configured to connect the first battery and the second battery. That is, in the embodiments of this application, the first battery and the second battery are connected by using the first conductor in the groove area, which prevents a power cable connecting the first battery and the second battery from occupying an area on the PCB, thereby increasing an area in which other components can be installed on the PCB.
The present disclosure relates to a display apparatus and an electronic device, relating to the technical field of display. The display apparatus may comprise a display panel, a main circuit board, a bridging circuit board, and a first shielding adhesive tape. The main circuit board may be provided on the back surface of the display panel; the bridging circuit board may be provided at the side of the main circuit board distant from the display panel, and may be connected to the main circuit board in a binding mode; and the first shielding adhesive tape may be provided at the side of the main circuit board distant from the display panel, and expose the bridging circuit board.
Electronic equipment includes an option equipment attachment portion at a bottom portion of the electronic equipment. The electronic equipment includes an optional printed circuit board and a lower shield member covering the optional printed circuit board with a part of the optional printed circuit board exposed from the lower shield member. The lower shield member includes a recess including walls as inner walls. A region of the optional printed circuit board exposed from the lower shield member 34 is located at a bottom portion of the recess and is surrounded by the walls of the lower shield member.
Embodiments of systems, devices, and methods relating to a charge exchange system having one or more guard apparatuses are described. The guard apparatuses can include one or more guard electrodes, optionally with one or more screen electrodes. Also described are embodiments of beam systems incorporating one or more charge exchange systems.
An induction heating type cooktop includes a case, a cover plate that is connected to an upper end of the case and that has an upper surface configured to support an object to be heated, a working coil disposed inside the case, a thin layer disposed at the cover plate and configured to be heated by the working coil through induction, and a working coil cooling fan configured to blow air toward the working coil.
Embodiments of the present disclosure relate to system and method for identifying at least one sensor on at least one user equipment [200] connected to a wireless network, comprising the a mobile management entity (MME) [101] transmitting an initial context setup request for at least one user equipment [200] to a network entity [300] of the wireless network. Next, the network entity [300] transmits a capability enquiry to the at least one user equipment [200] based on the initial context setup request received from the MME [101]. The network entity [300] receives a capability information from the at least one user equipment [200] in response to the capability enquiry, wherein the capability information comprises of sensor capability information of the at least one user equipment [200]. Thereafter, the network entity [300] transmits the capability information of the at least one user equipment [200] to the MME [101].
The disclosure relates to a communication technique for convergence between an IoT technology and a 5th generation (5G) or pre-5G communication system for supporting a higher data transmission rate than a 4G system such as long term evolution (LTE), and a system thereof. The disclosure may be applied to intelligence services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, healthcare, digital education, retail businesses, security and safety related services, etc.) based on a 5G communication technology and an IoT-related technology. According to various embodiments of the disclosure, a method and an apparatus for supporting a sidelink relay discovery in a wireless communication system may be provided.
A method for wireless communication includes: entering, by a terminal device, a second state from a first state; when the terminal device stores first measurement configuration information used by the terminal device in the first state, releasing, reserving or updating, by the terminal device, the first measurement configuration information; and/or when the terminal device does not store the first measurement configuration information, obtaining, by the terminal device, second measurement configuration information used by the terminal device in the second state, wherein the first state is an idle state or an inactive state, the second state is any one of an idle state, an inactive state or a connected state, and the measurement configuration information is used by the terminal device to obtain a measurement result.
In an example embodiment, a method of optimizing service delivery performed by a UE operating in EN-DC mode is disclosed. The method comprises detecting that a network service is ongoing at the UE using a first radio access technology (RAT), based on an application request sent by the UE to a network, wherein the first RAT is one of long-term evolution (LTE) and NR. The method further comprises detecting, during the ongoing network service being availed using the first RAT, a frequency of one or more NR network procedures being performed by the UE to be greater than a first threshold frequency. The method further comprises modifying a measurement interval associated with an NR cell measurement procedure, in response to detecting the frequency of the NR network procedures to be greater than the first threshold frequency. Furthermore, the method comprises continuing the Network Service using the first RAT.
A method for interaction between an intelligent device and a vehicle-mounted system comprises: judging whether an interaction type corresponding to an interaction request is within a processing range; if the interaction type is within the processing range, judging whether the interaction mode is a forwarding mode; if the interaction type is the forwarding mode, taking an interactive data stream as a target data stream; otherwise, converting the interactive data stream compiled based on an operating system of the target device into an interactive data stream corresponding to an operating system of the vehicle-mounted system as the target data stream; adding the target data stream and a queuing value determined according to a priority of the target device and a parameter carried by the interaction request as associated data to an interactive queuing library; and sending the interactive data stream in the interactive queuing library to the vehicle-mounted system.
According to an aspect of the present disclosure, a method for transmitting, by a road side unit (RSU), a signal in a wireless communication system comprises: receiving, from another RSU, an infrastructure-to-infrastructure (I2I) signal for pairing; on the basis of the I2I signal for pairing, performing pairing with the other RSU; and on the basis of the pairing having failed, transmitting an infrastructure-to-vehicle (I2V) signal every preset period, wherein the I2I signal for pairing comprises information regarding a period change value associated with the preset period, and, on the basis of the pairing having succeeded, the I2V signal is transmitted every period into which the preset period has been changed on the basis of the period change value.
An adjusting method for a terminal includes obtaining at least one channel parameter of a wireless fidelity (WIFI) channel within a first preset time period; and shortening a scan time period of the WIFI channel from a preset scan time period to a value smaller than a second preset time period in response to the at least one channel parameter of the WIFI channel representing that a channel environment type of the WIFI channel is simple. A terminal and a non-transitory computer-storage are also provided.
A method for determining Listen Before Talk (LBT) type and Channel Access Priority Class (CAPC) for signaling message transmission over signaling radio bearers (SRBs) in 5G New Radio-Unlicensed (NR-U) is proposed. A user equipment (UE) generates an SRB message to be transmitted to a serving base station over a control channel. Before the uplink (UL) transmission of an UL PDU containing the SRB message, the UE performs an LBT procedure using a set of LBT parameters associated with a CAPC value. In one embodiment, the CAPC is provided by the base station via an UL grant contained in a downlink control information (DCI). In another embodiment, the CAPC is determined by the UE based on an SRB type of the SRB message.
The present disclosure is directed to systems and methods for controlling a number of allowed downlink/uplink (DL/UL) switching points. For example, the method may include acquiring a shared channel occupancy time (COT) that includes one or more DL bursts and/or UL bursts. The method may also include utilizing one or more of the DL bursts or the UL bursts as a reference burst. The method may also include deriving a metric for controlling the number of DL/UL switching points in the shared COT based on the reference burst. The method may also include comparing the metric to a threshold value. The method may also include setting the number of DL/UL switching points in the shared COT based on the comparison of the metric to the threshold value.
Provided are methods and apparatuses for triggering bandwidth part (BWP) handover, information configuring methods and apparatuses, user equipment (UE), base stations, and computer-readable storage media. The method of triggering a BWP handover includes that a UE detects that a channel on an activated BWP for the UE is busy and the UE automatically hands over to a BWP for the UE other than the activated BWP to receive data.
A communication control device that transmits a packet to be transmitted to a terminal to a base station that performs wireless communication with the terminal, includes: a terminal classification unit that classifies, on the basis of a magnitude of radio wave interference from a base station different from a neighboring base station, a plurality of the terminals into a first terminal set and a second terminal set that is relatively larger in the magnitude of radio wave interference than the first terminal set; and a transmission unit that transmits, in a case where packets destinations of which are terminals belonging to the first terminal set are to be transmitted to respective neighboring base stations of the terminals, the packets at the same timing and transmits, in a case where packets destinations of which are terminals belonging to the second terminal set are to be transmitted to respective neighboring base stations of the terminals, the packets at timings different from each other.
Embodiments of the present disclosure relate to methods, devices and apparatus of resource mapping for data transmission and of data receiving. In an embodiment of the present disclosure, a carrier frequency band for the data transmission is divided into a plurality of sub-bandwidths, and the method may include mapping resource elements for the data transmission in an order of sub-bandwidths and mapping, in each of the plurality sub-bandwidths, the resource elements first in an order of frequency domain and then in an order of time domain. With embodiments of the present disclosure, new radio access system with wider bandwidth could co-exist well with other communication on unlicensed band like WiFi.
The present disclosure provides a resource allocation mode configuration method, a terminal and a network device, and relates to the field of communication technology. The resource allocation mode configuration method is applied to a terminal and includes: receiving a resource allocation mode for a sidelink interface configured by a network device; the resource allocation mode is configured by the network device for each target, the target includes at least one of the following information: a radio bearer of the sidelink interface SLRB; QoS parameters of the sidelink interface; a frequency band identifier; a RAT used by the sidelink interface, the frequency band identifier includes: a carrier, a frequency, or a BWP.
A method includes receiving a higher-layer signal from a base station, wherein the higher-layer signal enables the use of 2-stage DCI based cross-carrier scheduling and provides mapping between a scheduling serving cell and one or more scheduled serving cells; receiving a first-stage DCI carried in a PDCCH in a designated time interval in the scheduling serving cell, wherein the first-stage DCI provides the information related to the corresponding second-stage DCI; receiving a second-stage DCI corresponding to the first-stage DCI in a specific set of resource elements in the same designated time interval in the same scheduling cell as the first-stage DCI-based on the information provided in the first-stage DCI, wherein the second-stage DCI provides scheduling information for the scheduled serving cells; and performing data reception or transmission over the scheduled serving cells based on the received 2-stage DCI.
A method and apparatus are disclosed for time resources for NRU configured UL. In one embodiment, a network node is configured to configure a wireless device (WD) with at least one configured grant, CG, uplink transmission configuration; and receive signaling based at least in part on the at least one CG uplink transmission configuration. In one embodiment, a wireless device (WD) is configured to obtain at least one configured grant, CG, uplink transmission configuration; and transmit signaling based at least in part on the obtained at least one CG uplink transmission configuration.
Provided are a user equipment, base station and wireless communication methods related to multiplexing of UCI in PUSCH in NR. A user equipment comprises: circuitry operative to process UCI bits to be transmitted according to the comparison of the number M of UCI bits generated based on DL assignment(s) before an UL grant from a base station and the number N of UCI bits generated based on DL assignment(s) after the UL grant with the number P of UCI bits indicated in the UL grant and/or the maximum number Q of bits determined based on at least a configured coding rate, wherein each of M, N, P, Q is an integer equal to or larger than 0; and a transmitter operative to transmit the processed UCI bits in PUSCH at a TTI indicated in the UL grant to the base station.
In a terminal, a control unit decides a sequence used for an uplink control channel, in accordance with uplink control information, and a transmission unit transmits the uplink control information using the sequence. Here, the sequence is calculated using cell identification information that identifies the cell to which the terminal belongs, and subcell-specific information relating to at least one subcell included in the cell.
Methods, systems, and devices for wireless communication at a user equipment (UE) are described. A first user equipment (UE) may transmit, to a set of UEs, an indication of a first semi-static traffic pattern between the first UE and a second UE. In some examples, the first semi-static traffic pattern may indicate a pattern for transmission or reception between the first UE and the second UE using a beam pair during a time period. The first UE may receive a response, from one or more UEs, indicating one or more semi-static traffic patterns for the time period. The first UE may then transmit, to a third UE of the one or more UEs, an indication of selection of a second semi-static traffic pattern for communication between the first UE and the third UE during the time period.
Example aspects include a method, apparatus, and computer-readable medium for wireless communication at a user equipment (UE) of a wireless communication network, comprising receiving, from a base station, configuration information indicating that physical downlink control channel (PDCCH) joint channel estimation (JCE) is enabled for a plurality of PDCCH monitoring occasions. The aspects further include receiving, from the base station, a plurality of PDCCH transmissions. At least one PDCCH transmission comprises a hybrid automatic repeat request (HARD) acknowledgement (ACK) request without a corresponding physical downlink shared channel (PDSCH) grant. Additionally, the aspects further include identifying a base offset according to the at least one PDCCH transmission. Additionally, the aspects further include selecting an additional offset according to a processing time capability of the UE. Additionally, the aspects further include transmitting, at a timing offset in relation to the plurality of PDCCH transmissions, a HARQ-ACK.
Provided are a resource allocation method and device, a storage medium and an electronic device. The method includes the following operations. A first communication node determines resources needing to be allocated to a second communication node, where the resources include K clusters, each cluster includes one or more continuous resources, a maximum value of K is Kmax, Kmax is a predefined value or a value agreed in advance between the first communication node and the second communication node, and Kmax is a positive integer greater than 1. The first communication node notifies the second communication node of the resources, wherein the resources are resources needing to be avoided when the second communication node receives and/or sends a channel or a signal, or resources from which the second communication node, when needing to send data, selects one or more clusters of resources to send the data.
The present disclosure relates to a wireless communication system and, more particularly, to a method and an apparatus therefor, the method comprising the steps of: detecting an SSB in an unlicensed band, the SSB including an index related to a CORESET configuration; determining, on the basis of the index, an RB offset used for identifying the position of a CORESET frequency associated with the SSB; and monitoring the CORESET in the unlicensed band on the basis of the RB offset.
The present disclosure provides a method and device in a node for wireless communications. A first node receives a first signaling; and operates a first signal group. The first signaling is used for determining a first reference-signal-resource set; a first parameter-group set comprises a positive integer number of parameter group(s), any parameter group in the first parameter-group set is used for the operating action of a signal in the first signal group; any reference signal resource in the first reference-signal-resource set is used for determining a parameter group in the first parameter-group set. The above method unifies beam management mechanisms for both Uplink and Downlink, which improves performance of Uplink transmission and reduces corresponding signaling overhead and delay.
This application provide a method, includes: receiving first information, where the first information is included in sidelink control information (SCI); obtaining a cyclic redundancy check, CRC, code based on the first information; and obtaining the reference signal sequence of the channel state information reference signal, CSI-RS, based on a scrambling identity, where the scrambling identity is L least significant bits of the CRC code or L most significant bits of the CRC code and L is a positive integer.
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a first transmit-receive point (TRP) and a second TRP, downlink control information (DCI) with a radio network temporary identifier (RNTI) that schedules downlink common signaling. The UE may receive, from one or more of the first TRP or the second TRP based at least in part on the DCI, the downlink common signaling in a common search space (CSS) associated with a single frequency network (SFN) control resource set (CORESET) that is activated with two transmission configuration indicator (TCI) states, wherein the downlink common signaling is received from one or more of the first TRP or the second TRP based at least in part on a UE capability of an SFN transmission scheme for reception of the downlink common signaling. Numerous other aspects are described.
Apparatus and method to allow for the activation of SPS/G with multi-PDSCH/PUSCH. The apparatus receives DCI comprising a TDRA assignment that is configured with multiple PUSCHs or multiple PDSCHs. The apparatus selects a first SLIV of a TDRA row indicated by the TDRA assignment comprising one or more SLIVs to activate SPS or a CG. The apparatus transmits the multiple PUSCHs or receiving the multiple PDSCHs based on a selected SLIV of the TDRA row. The apparatus may select the first SLIV for transmission of the multiple PUSCHs or reception of the multiple PDSCHs if a row indicated by the DCI comprises a plurality of SLIVs.
The present disclosure provides a periodic time slot scheduling method for a wireless network. The method includes: connecting a plurality of nodes by using a wireless network; constructing time slot parameter sets of nodes in the wireless network and an interval array between time slots of each of the nodes; calculating an acceptable total time interval of each of the nodes in the wireless network, selecting a node with a minimum acceptable total time interval in the wireless network as a time slot allocation node, allocating a time slot for each time slot request of the time slot allocation node, and allocating a time slot for each time slot request of a remaining node except the time slot allocation node in the wireless network; and detecting and determining a delay of time slot allocation.
The present disclosure provides a method and device used in node for wireless communication. A first node transmits a first sequence and a first radio signal; receives a first signaling; and receives a second radio signal; the second radio signal carries a first information block and a second information block, the first information block being used to determine X characteristic sequence(s), X being a positive integer; the second information block comprises X second-type information sub-block(s), and the X second-type information sub-block(s) corresponds(correspond) to the X characteristic sequence(s) respectively. By interpreting the existing signaling in a new way, the method provided in the present disclosure prevents unnecessary signaling overhead and meanwhile supports a flexible switch between 2-step random access and 4-step random access.
With development of communications technologies, an internet-of-vehicles technology for vehicle-to-everything (V2X) communication is proposed. In this application, a third device receives first information and/or sidelink control information. The first information includes indication information of a first resource set, the first resource set is for receiving data, the sidelink control information includes indication information of a second resource set, and the second resource set is for sending data. The third device determines an available resource in the first resource set, and/or determines an available resource in the second resource set. The method can resolve a hidden node problem and an exposed node problem on a sidelink.
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a method and apparatus for paging transmission and reception, SI window determination and UL carrier selection.
A method for measuring a distance is provided. The method includes receiving a fine time measurement (FTM) message, extracting channel state information (CSI) from the FTM message, determining with a channel condition classifier a probability that the FTM message is multi-path based on the corresponding CSI, and discarding the FTM message in response to the probability that the FTM message is multi-path is above a threshold level of probability.
An area identifying apparatus and method and a communication system. The area identifying method includes: receiving, by a UE, area identification information used for identifying an area transmitted by a base station; comparing the received area identification information with area identification information currently stored in the UE; and determining whether an area where the UE is located is changed according to a result of comparison. Hence, whether the area where the UE is located is changed or which area the UE is located may be efficiently identified.
A method for discerning single registration subscribers and dual registration subscribers, and routes single registration traffic as internal and routes dual registration traffic as external.
Methods, systems, and computer-readable mediums are configured to perform operations including detecting a plurality of synchronization signal blocks (SSBs) that are transmitted for a physical broadcast channel (PBCH), each of the SSBs having a SSB index comprising a set of bit values; detecting, from the plurality of SSBs, a first SSB received at a first time and a second SSB received at a second time that is different from the first time; decoding, for a first SSB of the plurality, first bit values of a first SSB index representing the first SSB and of a second SSB index representing the second SSB; determining, based on the first time and the second time, a receive time gap between the first SSB and the second SSB; and determining, based on the receive time gap and the first bit values of the first SSB index and the second SSB index, at least a second bit value of the first second SSB index representing the first SSB and the second SSB representing the second SSB.
A method for enhanced autonomous uplink timing adjustment includes determining that a user equipment (UE) is traveling above a predetermined velocity. In response to the determination that the UE is traveling above the predetermined velocity, a maximum aggregate adjustment rate to an uplink timing for the UE and a maximum amount of a magnitude of a timing change to the uplink timing for the UE are determined. The uplink timing for the UE is adjusted based on the maximum aggregate adjustment rate and the maximum amount of the magnitude of the timing change.
Methods and devices for configuring, sending, and receiving a discovery reference signal (DRS) are provided. The configuration method includes setting the DRS to occupy a first preset number of consecutive time symbols in a time slot, where the first preset number is no larger than 14. Further, the method includes setting the DRS to include at least one or two synchronization signal blocks (SSBs).
An SRS power control method includes: receiving a power control parameter, the power control parameter being used to determine a transmitting power of an additional SRS; and determining the transmission power and a power headroom of the additional SRS according to the power control parameter.
A method and apparatus for saving energy for a Distributed Unit in a wireless communication system is provided. A CU establishes a connection between a Distributed Unit (DU). The CU receives, from the DU, a first message including deactivation request for the DU. The CU determines whether to permit deactivation of the DU or not. The CU transmits, to the DU, a second message in response to the first message, wherein the second message includes information informing that the deactivation request for the DU is accepted or not based on the determination.
A UE performs PDCCH monitoring for at least one serving cell by switching a search space set of a first SSSG to a search space of a second SSSG at a search space set group (SSSG) switching time. When PDCCH monitoring is performed in a unit of a slot-group for the at least one serving cell, the UE determines the SSSG switching time based on a largest Xs value among Xs values for the at least one serving cell.
A method for enhancing User Equipment (UE) handling in a limited service state over non-Third Generation Partnership Project (non-3GPP) access is provided. A UE sends a REGISTRATION REQUEST message or a SERVICE REQUEST message to a Public Land Mobile Network (PLMN) over non-3GPP access. The UE receives a REGISTRATION REJECT message or a SERVICE REJECT message from the PLMN over non-3GPP access. In particular, the REGISTRATION REJECT message or the SERVICE REJECT message indicates serving network not authorized. In response to the reception of the REGISTRATION REJECT message or the SERVICE REJECT message which indicates serving network not authorized, the UE enters a limited service state and performs a non-3GPP access network selection.
Methods, systems, apparatuses, and computer program products are provided for managing mode of access to a compatible set of network slices of a communications network. In this regard, a registration request message is received from user equipment. The registration request message includes an indication of at least one simultaneous network slice use mode of operation for the user equipment. Furthermore, a selected simultaneous network slice use mode of operation for the user equipment is determined. The selected simultaneous network slice use mode of operation is a simultaneous network slice use mode of operation indicated by the user equipment or an alternate mode of operation associated with a configured network slice selection assistance information (NSSAI). Configuration information is also provided to the user equipment. The configuration information includes instructions for the user equipment to be configured with the selected simultaneous network slice use mode of operation, the configured NSSAI, and an allowed NSSAI.
A method for controlling use of user plane radio communication resources of a telecommunications network and/or for controlling access of a user equipment to the telecommunications network includes: transmitting, by the telecommunications network, a plurality of specific suspend time indications to the user equipment, wherein each one of the plurality of specific suspend time indications relates to a different network slice and/or to a different network service; and controlling the use of user plane radio communication resources of the telecommunications network and/or the access of the user equipment to the telecommunications network by deciding whether an attempt to use user plane radio communication resources of the telecommunications network is allowed or disallowed and/or whether an attempt to access the telecommunications network is allowed or disallowed.
Disclosed according to various embodiments are a method for performing a discovery procedure by a first user equipment (UE) in a wireless communication system supporting a sidelink, and an apparatus therefor. Disclosed are a method and an apparatus therefor, the method comprising the steps of: receiving a discovery signal; and transmitting a discovery response signal, wherein the discovery response signal includes information on a first resource region selected from among a plurality of resource regions for sidelink communication related to the discovery signal.
A base station may restrict access by a user equipment (UE). The base station broadcasts access restrictions to one or more UE within a cell coverage area of the base station, wherein the access restrictions include one or more predetermined criteria that must be satisfied for a UE to be allowed to camp on the base station. The base station performs a random access channel (RACH) procedure to allow the UE to camp on the base station when the UE satisfies the one or more predetermined criteria.
In some examples, a user equipment (UE) is capable of dual registration with a first core network and a second core network. The UE receives a first indication during a first registration of the UE via a first access network with the first core network, determines based on the first indication that emergency services are not supported by the first core network, attempts a second registration via a second access network with the second core network, detects an emergency indication, and initiates a call in response to the emergency indication via a second access network different from the first access network.
A method for over-the-top, OTT, management in a communication network is presented. The method is performed in a packet data network gateway, PGW. The method comprises receiving (S200) a request for an application network interaction protocol, ANIP, service from an application client, sending (S210) the received request to a global ANIP server, wherein the request is extended with a public land mobile network, PLMN, identity, receiving (S220) an address to a local ANIP server from the global ANIP server, and sending (S230) the received address to the local ANIP server to the Send request for application client. Methods, a PGW, an application client, an ANIP server, computer programs, and a ANIP service computer program product for OTT management in a communication network are also presented.
Embodiments of this application disclose a positioning method and an apparatus, to reduce a quantity of transmission points needed to calculate a position of a terminal, thereby reducing positioning calculation complexity. The method for calculating the position includes: receiving, by a terminal, positioning assistance information sent by a positioning entity, where the positioning assistance information includes a cell identity of a cell in which a to-be-measured transmission point is located, an identity of the to-be-measured transmission point, and positioning reference signal configuration information of the to-be-measured transmission point; measuring, by the terminal, the to-be-measured transmission point based on the positioning assistance information, to obtain a measurement result, where the measurement result includes positioning reference signal information of the to-be-measured transmission point; and sending, by the terminal, the measurement result to a positioning entity.
Provided are an electronic device and a control method for providing call continuity in a weak electric field environment. The electronic device according to various embodiments of the present document comprises: a processor; a memory operatively connected to the processor; and a wireless communication circuit operatively connected to the processor and the memory, wherein the processor can control the wireless communication circuit such that the electronic device receives a wireless signal for executing a call with an external electronic device through a first network, check the state of the wireless signal received through the wireless communication circuit, control, on at least a partial basis of a result of checking the checked state of the wireless signal, the wireless communication circuit such that an authentication request for performing the call is transmitted to a second network connected to the electronic device, and control, on at least a partial basis of a result of the authentication request, the wireless communication circuit such that the wireless signal, which is transmitted from the first network, for performing the call with the external electronic device is received through the second network.
A technique of performing a handover procedure involves providing a proper timing adjustment indication for the UE performing RACH-less HO. Even though the discussion herein is on IAB scenarios and the idea takes an advantage of IAB nodes being in fixed locations (i.e., not moving in the network), it can be applied to UEs in general. The timing adjustment provided in performing a HO in an IAB network according to the improved techniques involves computing a timing advance (TA) to be used by an IAB node prior to executing HO to an alternative serving node. Such a use of a TA may enable a bypassing of a RACH procedure when accessing a cell.
A user communications device having active and idle states operates in a cellular communications network in which user communications devices communicate via network communications devices of cells of the network. History data identifying the cells in which the user communications device has been present whilst in the idle state is maintained. This history data is used by the user communications device or by a network communications device to enable adjustment of cell selection/reselection parameters for the user communications device in the active state.
Machine-learning based techniques are described herein for determining and modifying handover parameters within multilayer wireless networks. Various communication session data, such as key performance indicators, may be analyzed and compared at multiple frequency layers to determine sets of custom parameters associated with one or more wireless networks. The sets of custom parameters and network performance data may be used to train one or more machine-learned models to improve and/or optimize the handover parameters used by the network nodes. In some examples, different trained models may be associated with different network performance metrics, such as throughput optimization, network speed, and/or dropped call minimization, etc. A trained machine-learned model may be used to analyze the session data from a set of network nodes, and to determine or tune the handover parameters used by the network nodes.
The present disclosure provides a frequency band switching method, an apparatus, a terminal device, a communication node and a computer-readable storage medium. The frequency band switching method comprises: determining a need for switching a frequency band of an uplink operation according to transmission power information of a terminal device when the uplink operation of the terminal device is performed in a first frequency band; performing, by the terminal device, a beam scanning for a second frequency band to switched to; and switching, by the terminal device, to the second frequency band according to a beam scanning result.
This application discloses a communication method, a communications apparatus and a communications system, to resolve a problem that a terminal cannot quickly resume a communication connection to a secondary node. The method includes: sending a first message to a first master node to request state transition of a terminal from a third mode to a connected mode; receiving a second message from the first master node, where the second message comprises a first security parameter and SCG configuration information, and completing, based on the first security parameter and the SCG configuration information, a communication connection to the secondary node.
The present application is at least directed to an apparatus in a network including a non-transitory memory including instructions stored thereon for obtaining a resource for accessing a target cell in the network. The apparatus includes a processor, operably coupled to the non-transitory memory, configured to execute the instructions of detecting plural beams associated with the target cell. The processor also executes the instructions of determining one or more of the plural detected beams meeting a threshold for performing random access. The processor also executes the instructions of evaluating if a physical random access channel (PRACH) resource is associated with the one or more determined beams meeting the threshold. The processor further executes the instructions of selecting one of the evaluated beams exhibiting a reference signal received power (RSRP) above a predetermined value. The processor even further executes the instructions of picking the PRACH resource associated with the selected beam.
According to the remote operation system or a remote operation server 20 included in the remote operation system, when the “environment information control process” is performed, a data amount of environment data is reduced such that the reduction in the information amount of one or a plurality of low environment information factors is greater than the reduction in the information amount of one or a plurality of high environment information factors (meaning the reduction in the information amount of the environment information due to a change in the environment information factor). The environment information control process is performed by classifying the environment information factors into the high environment information factor and the low environment information factor according to a difference in the operation state.
A method for a terminal for reporting measurement data may comprise the steps of: receiving, from a base station, interference measurement resource (IMR) configuration data or sounding reference symbol (SRS) configuration data for measuring terminal-to-terminal (UE-to-UE) cross-link interference; measuring UE-to-UE cross-link interference on the basis of IMR or SRS configuration data; and transmitting a report containing the measured UE-to-UE cross-link interference measurement value to the base station.
A communications system is disclosed. The communications system includes a first access point and a second access point whose operating channels overlap. The first access point and the second access point each measure a signal strength of a response frame sent by a terminal device associated with the first access point, to obtain a first signal strength and a second signal strength. The first access point determines, based on the first signal strength and the second signal strength, a power, a power upper limit, or a power adjustment value to be used by the second access point when the second access point and the first access point perform concurrent transmission. The communications system can perform a step of measuring the signal strength in the concurrent transmission between the access points, and reduce dependence on the terminal device.
Systems, methods, and apparatuses for providing dynamic, prioritized spectrum utilization management. The system includes at least one monitoring sensor, at least one data analysis engine, at least one application, a semantic engine, a programmable rules and policy editor, a tip and cue server, and/or a control panel. The tip and cue server is operable utilize the environmental awareness from the data processed by the at least one data analysis engine in combination with additional information to create actionable data.
Embodiments described herein relate to wireless communications, including methods and apparatus for configuring synthetic electronic subscriber identity module (eSIM) profiles for wireless devices based on user credentials. A synthetic eSIM profile is generated at a wireless device based on transformation of user credentials that include a user identity and user cryptographic information. The user identity can include an identifier for a user account, and the user cryptographic information can include a password for the user account. The wireless devices can use the synthetic eSIM profile to obtain and load one or more fully functional eSIM profiles to an embedded universal integrated circuit card (eUICC) to without requiring a bootstrap eSIM profile or non-cellular wireless access.
Identification information indicates that a communication parameter to be provided in accordance with a Device Provisioning Protocol standard is a communication parameter that allows connection processing compliant with an Institute of Electrical and Electronics Engineers 802.11r standard. The identification information is set in an Authentication and Key Management field, and the communication parameter that allows connection processing compliant with the Institute of Electrical and Electronics Engineers 802.11r standard is provided.
Unauthorized tracking devices, including those that change their identification information periodically, are detected to protect an individual's privacy. A mobile device of a user detects a first advertisement signal from an unknown wireless device, the first advertisement signal containing information representative of the unknown device. Multiple advertisement signals may be received as the mobile device moves a distance greater than a broadcast range away from the location where the first signal was detected. Responsive to detecting a second advertisement signal containing the same identity information after the mobile device has moved at least the distance greater than the broadcast range away from the location where the first signal was detected, the system generates an interface on the mobile device. The generated interface indicates to a user of the mobile device the presence of an unknown device.
Provided are a CHO resource processing method, apparatus and system. The CHO resource processing method includes: sending, by a source base station of a UE, CHO resource change request indication information to at least one CHO target base station of the UE, where the CHO resource change request indication information is configured for indicating the at least one CHO target base station to change a resource of at least one CHO target cell of the UE; and sending, by the source base station, a CHO resource change notification to the UE, where the CHO resource change notification includes information indicating that the resource of the at least one CHO target cell is changed and an identifier of the at least one CHO target cell.
The present disclosure relates to methods, apparatus and systems for encoding an audio signal into a bitstream, in particular at an encoder, comprising: encoding or including audio signal data associated with 3DoF audio rendering into one or more first bitstream parts of the bitstream, and encoding or including metadata associated with 6DoF audio rendering into one or more second bitstream parts of the bitstream. The present disclosure further relates to methods, apparatus and systems for decoding an audio signal and audio rendering based on the bitstream.
The present disclosure discloses a sound generating device, which comprises: a magnetic conductive yoke; a housing extending along an edge of the magnetic conductive yoke and having an annular shape, wherein a leakage opening is formed in a gap between the housing and the magnetic conductive yoke; and a metal mesh covering the leakage opening, wherein a portion of the metal mesh corresponding to the leakage opening is provided with a plurality of air holes. The sound generating device of the present disclosure can reduce the defective rate of products.
A soundbar with a housing and a plurality of acoustic radiators carried by the housing and configured to output sound for at least left, right, and center audio channels, wherein at least one of the acoustic radiators comprises a dipole acoustic radiator that is configured to emit sound in opposite directions along a main radiation axis.
Methods for performing dynamic range compression (DRC) on audio in a manner intended to produce output audio for playback by systems or devices with limited power handling capabilities and preferably also to reduce or prevent undesirable artifacts (e.g., pumping and/or breathing) in the output audio. Some embodiments perform the DRC so as to maximize average loudness (while preventing loss of quieter elements) during playback, and also to reduce or prevent distortion. Other aspects are systems or devices configured to perform embodiments of the method. In some embodiments, reduced DRC is applied when average loudness of the input audio approaches (or matches or exceeds) a target (e.g., a knee point for DRC, or a signal level near to a maximum playback level of the intended playback system), since such input audio is assumed to have already been compressed, and otherwise applying full DRC to the input audio.
The conversion element member of the present disclosure includes: a conversion element having an opening capable of functioning as a ventilation port and/or a sound-transmitting port; and a waterproof membrane. The conversion element has an outer surface provided with the opening. The waterproof membrane is joined, at a joining portion thereof, to the outer surface of the element so as to cover the opening, the joining portion having a shape surrounding the opening when viewed in a direction perpendicular to the outer surface. The waterproof membrane has a non-joining portion defined as a portion surrounded by the joining portion when viewed in the direction, the non-joining portion having a region overlapping the outer surface when viewed in the direction. A spacing distance D1 between the membrane and the outer surface in the region is 0.01 mm to X mm, where X represents, in an indentation test on the waterproof membrane.
A method and apparatus is proposed for accurately evaluating the performance of optical transmitters under test conditions (such as high bit-rate modulation formats) that compromise the operability of standard test equipment used for this purpose. The proposed apparatus and method are similar to the elements associated with existing testing standards based on an optical eye diagram, with an important distinction that allows for accurate measurements of the transmitter's performance to be made. In particular, the sampling point for collecting eye diagram data samples in the inventive arrangement is shifted by half a period with respect to the conventional mid-eye sampling point, eliminating the need to include representative reference equalizer in the test equipment and providing an evaluation not influenced by the test equipment, resulting in a more accurate measurement of transmitter-related distortions.
A multi-port Ethernet fiber switch converts the TDD to OD and then provides the OD to multi-port Ethernet fiber switch ports for transmission on optical lines connected to the multi-port Ethernet fiber switch ports. The OD on the multiple optical lines is then transmitted to multiple integrated converter/receiver in-wall mounted data access stations through the multiple optical lines. Each integrated converter/receiver in-wall mounted data access station includes an integrated OD to TDD converter/receiver that is positioned in a cavity in the wall in which the integrated converter/receiver in-wall mounted data access station resides. Each integrated converter/receiver in-wall mounted data access station includes one or more data ports, such as standard RJ-45 ports.
A focus identification method adaptable for a focus identification system is provided. The focus identification method includes: capturing a projection picture to generate a captured picture; dividing the captured picture into a plurality of image regions; calculating a plurality of sharpness values corresponding to the plurality of image regions respectively according to image data of the plurality of image regions; and displaying the plurality of sharpness values on the projection picture corresponding to the plurality of image regions respectively the to generate a first focus identification picture. Moreover, the disclosure further discloses a focus identification system applying the focus identification method. The focus identification method and the focus identification system using the same in the disclosure may improve the remote maintenance efficiency.
A rearward image displaying device includes an imaging portion configured to generate a captured image by imaging, through a camera, to the rear of a vehicle; a first generating portion configured to generate a first rearward image by extracting an image from a region of a portion of the captured image; an incline detecting portion configured to detect an incline angle of the vehicle; a second generating portion configured to extract an image from a region that is another portion of the captured image, based on the incline angle, to generate a second rearward image that is different from the first rearward image; and a display controlling portion configured to displaying the first rearward image and the second rearward image on a display.
An image sensor is positioned such that a field-of-view of the image sensor encompasses at least a portion of a structure configured to store items. The image sensor generates angled-view images of the items stored on the structure. A tracking subsystem determines that a person has interacted with the structure and receives image frames of the angled-view images. The tracking subsystem determines that the person interacted with a first item stored on the structure. A first image is identified associated with a first time before the person interacted with the first item, and a second image is identified associated with a second time after the person interacted with the first item. If it is determined, based on a comparison of the first and second images, that the item was removed from the structure, the first item is assigned to the person.
This technology is to enable high quality audio reproduction on the reception side without supplying a transmission clock using a clock signal line from the reception side to the transmission side. The transmission apparatus receives encoded data capable of clock recovery from a reception apparatus (external device), generates an audio clock on the basis of a carrier clock recovered from the encoded data, and transmits audio data to the reception apparatus in synchronization with the audio clock. The reception apparatus transmits the encoded data capable of clock recovery to the external device in synchronization with the carrier clock generated on the basis of an self-generating audio clock, receives the audio data from the transmission apparatus (external device), and processes the audio data on the basis of the self-generating audio clock.
According to certain embodiments, an electronic device comprises: a motion sensor; a first camera module including a lens assembly and a driving circuit configured to move the lens assembly in a direction substantially perpendicular to an optical axis, the first camera module having a first angle of view when the lens assembly is positioned in a reference position; a second camera module having a second angle of view, wherein the first angle of view is entirely in the second angle of view; and at least one processor electrically connected to the motion sensor, the first camera module, and the second camera module, wherein the at least one processor is configured to: control the driving circuit to move the lens assembly based on motion data received from the motion sensor, thereby causing the first camera module to have a third angle of view, offset from the first angle of view by an angle, acquire, from the first camera module, a first image corresponding to the third angle of view, acquire a second image corresponding to the second angle of view from the second camera module, acquire depth information for the first image based on the second image and the motion data, and apply a bokeh effect to the first image based on the depth information.
Examples include column readout amplifiers and image sensors including same. In one example, a column readout amplifier includes a signal amplifier having an amplifier output and first and second amplifier inputs, a filter capacitor having first and second terminals, the second terminal connected to a ground terminal, a buffer amplifier having a buffer amplifier input and a buffer amplifier output, a switching network configured to switchably connect the amplifier output to the buffer amplifier input and the buffer amplifier output to the first terminal of the filter capacitor during a first time period, and to switchably connect the amplifier output directly to the first terminal of the filter capacitor during a second time period, and a low-pass filter connected in a feedback path of the signal amplifier between the amplifier output and the first amplifier input, the low-pass filter including a series resistor and a capacitor.
Provided is a solid-state imaging element including a pixel circuit and a comparison transistor. In the solid-state imaging element, the pixel circuit generates a pixel signal and outputs the pixel signal to a vertical signal line. Further, the comparison transistor has a source connected to a constant current source configured to supply a constant current to the vertical signal line. The comparison transistor has a gate to which a predetermined reference signal is input. Further, the comparison transistor has a drain from which a comparison result between the pixel signal and the reference signal is output.
Provided is a solid-state imaging device including a substrate having a pixel array unit sectioned into a matrix, a plurality of normal pixels, a plurality of phase difference detection pixels, and a plurality of adjacent pixels adjacent to the phase difference detection pixels, each provided in each of the plurality of sections. Further, each of the normal pixel, the phase difference detection pixel, and the adjacent pixel has a photoelectric conversion film, and an upper electrode and a lower electrode that sandwich the photoelectric conversion film in a thickness direction of the photoelectric conversion film. Furthermore, the lower electrode, in the adjacent pixel, extends from the section in which the adjacent pixel is provided to cover the section in which the phase difference detection pixel adjacent to the adjacent pixel is provided, when viewed from above the substrate.
An embodiment of the present disclosure provides a virtual image display system, including: a photoelectric conversion part for receiving an optical image signal and converting the optical image signal into a current signal; a voltage conversion part electrically connected to the photoelectric conversion part, for receiving the current signal and converting the current signal into a voltage signal; and a display part electrically connected to the voltage conversion part, for receiving the voltage signal and displaying an image according to the voltage signal.
The imaging element has a first and a second phase difference pixel region each including the plurality of phase difference pixels, and an imaging pixel region between the first and the second phase difference pixel region in the first direction. The processor is configured to cause the imaging element to perform imaging at a frame cycle, execute first readout processing of reading out a signal from the first phase difference pixel region during a first frame period, and execute second readout processing of reading out a signal from the second phase difference pixel region during a second frame period subsequent to the first frame period. A first exposure time, during which the first phase difference pixel region is exposed, and a second exposure time, during which the second phase difference pixel region is exposed, are different from an exposure time of the imaging pixel region.
An omnidirectional ghost imaging system based on a mechanism of bio-inspired retina-like includes a projection system, a collimating lens, a spectroscope, a curved mirror, a bucket detector, a data acquisition card and an arithmetic system. According to the application, the logarithmic polar mapping characteristic of the bio-inspired retina-like structure is utilized to generate an annular pattern sequence of the bio-inspired retina-like, and the pattern sequence is utilized to modulate a light source. After being reflected by the target around the curved mirror, the light is projected onto the curved mirror and diffusely reflected. According to the reversible characteristics of the optical path, the light after diffuse reflection is reflected to the original light source by the half mirror and half lens, and the reflected light intensity with target information is received by the bucket detector.
This application relates to the technical field of electronic devices, and provides an image display method and an electronic device. The solution includes: receiving, a first operation performed by a user on a first interface, where the first interface is a viewfinder interface for image capture by the electronic device, and the first interface includes a preview image; saving, in response to the first operation; displaying, the first image; receiving, a third operation, where the third operation is used for triggering the electronic device to display a first region image in a magnified first image, and the first region image includes a first target region image; and splicing, the second image to the first target region image for displaying in response to the third operation.
A camera may include a substrate for placing components. An image sensor having a light-receiving side and an opposite non-light-receiving side may be attached to a first side of the substrate to receive light from one or more lenses of the camera to capture an image. The camera may also include one or more additional components separate and distinct from the image sensor. The additional components may be placed beneath the non-light-receiving side of the image sensor. The components may be attached to a second side of the substrate opposite the first side where the image sensor is mounted at least partially inside one or more recesses, or embedded at least partially inside the substrate.
A camera device comprises: a bracket; a camera module coupled to the bracket to be rotatable about a first axis; a viewing angle adjustment member including a side coupled to the bracket and an opposite side coupled to the camera module; and a support member coupled to the bracket, wherein the side of the viewing angle adjustment member includes a hook portion arranged between the bracket and the support member.
Disclosed are a theme video generation method and apparatus, an electronic device and a readable storage medium. method includes: after acquiring a selection triggering operation on a target theme, sending a theme resource package acquisition request to a corresponding resource server; receiving the corresponding theme resource package that is fed back by the resource server in response to the theme resource package acquisition request, acquiring at least one target picture from a local album based on the at least one target picture label; and generating a corresponding theme video based on the least one target picture.
Systems and method of the present disclosure enable immersive experiences associated with live and/or recorded events. The immersive experience is created by generating a 3D model of the user. A presence of the user is detected at the live event via the software application. Upon detecting the presence, the software application controls the user's device to disable a function of the user device during the live event, and determine fusion points in the imagery to identify a particular position at which to integrate the 3D model into the imagery. The 3D model is inserted into the imagery at the particular position so as to integrate the 3D model into the imagery. The live event is recorded for the user to access, using the software application, after the live event, in which the 3D model is inserted into one or more of the same or different fusions points.
Systems and methods are described for operating a group watching session, in which a group watching session for presentation of a media content item is initiated at a first participant device and a second participant device; a segment of the media content item for which the presentation of the media content item is to be synchronized at the first participant device and the second participant device is identified; a viewing progress of the media content item at the first participant device is determined to be different from a viewing progress of the media content item at the second participant device; and in response to the determining, the viewing progress at the first and second participant devices is synchronized for the presentation of the identified segment.
The present invention recognizes media content using signatures generated by network devices with limited processing power. An audio signal is prepared for application of a discrete Fourier transform (DFT). Outputs from the DFT include real components and imaginary components that are used to calculate output magnitudes associated with frequency bins. The frequency-amplitude pairs include the output magnitudes and the associated frequency bins. A signature of the audio signal is generated by selecting a predetermined number of frequency-amplitude pairs having dominant output magnitudes. The network devices that generate the signatures may transmit the signatures to a server for analysis. The server may trigger actions in response to detecting known content based on the received signatures matching known signatures.
Techniques for encoding a signal are described. A signal is down-sampled to generate a version of the signal. This version of the signal is then encoded to produce a first encoded signal. The first encoded signal is then decoded to produce a first decoded signal. The second decoded signal is up-sampled to obtain a first up-sampled decoded signal. A first residual signal is obtained by taking a difference between the first up-sampled decoded signal and a first reference signal. The first reference signal corresponds to the signal prior to down-sampling. The first residual signal is encoded to produce a first encoded residual signal. The first encoded residual signal and the first encoded signal may be received and decoded by a decoder to reconstruct the signal. The signal may comprise a set of frames of video.
A video decoding method according to the present document comprises the steps of: configuring an MPM list by deriving candidate intra prediction modes on the basis of a first neighboring block located on the left side and a second neighboring block located on the upper side with respect to the current block; deriving an intra prediction mode for the current block on the basis of the MPM list; generating prediction samples for the current block on the basis of the intra prediction mode; and generating a reconstructed picture for the current block on the basis of the prediction samples, wherein a first intra prediction mode of the first neighboring block and a second intra prediction mode of the second neighboring block are the same, wherein the candidate intra prediction modes including a DC mode are derived on the basis of a case where both the first intra prediction mode and the second intra prediction mode are the DC mode.
A computer-implemented method of decoding video data in multiple resolution formats includes receiving an encoded video stream including a salient data and a non-salient data, the salient data having a higher resolution format than the non-salient data. The video stream is decoded into the non-salient data in a lower-resolution format and the salient data in the higher-resolution format. The non-salient data is reconstructed to a higher resolution format. The salient data and the reconstructed non-salient data are combined to form a video stream in the higher-resolution format of the salient data.
A method for decoding an image signal according to the present invention may comprise the steps of: determining whether there is a brightness change between a current image including a current block and a reference image of the current image; if it is determined that there is a brightness change between the current image and the reference image, determining weight prediction parameter candidates for the current block; determining a weight prediction parameter for the current block on the basis of index information which specifies any one of the weight prediction parameter candidates; and performing a prediction on the current block on the basis of the weight prediction parameter.
Restrictions on motion vector difference (MVD) are disclosed. In one example method of video processing, performing a conversion between a first block of video and a bitstream representation of the first block based on a constrained MVD component associated with the first block, wherein a value of the MVD component is constrained in a predetermined range of [−2M, 2M−1], where M=17.
An image encoding/decoding method and apparatus are provided. An image decoding method according to the present disclosure may include: obtaining palette information and palette index prediction information of a current block from a bitstream; constructing a palette predictor for the current block based on the palette information and constructing a palette table for the current block based on the palette predictor; generating a palette index map for the current block based on the palette index prediction information; and decoding the current block based on the palette table and the palette index map, wherein the palette predictor may be initialized using a user defined palette entry obtained from at least one of an adaptation parameter set (APS), a picture parameter set (PPS) or a slice header.
A method for video processing includes applying a sub-block residual coding scheme to a current video block, wherein the residual of the current video block is split into a plurality of sub-blocks each having a size of M*N, determining at least one sub-block with non-zero coefficients based on characteristic associated with each of the plurality of sub-blocks; coding the residue of the current video block based on the derived at least one sub-block with non-zero coefficients.
An image encoding/decoding method and apparatus are provided. An image decoding method performed by an image decoding apparatus includes determining a splitting type of a current block, splitting the current block into a plurality of lower-layer blocks based on the splitting type, and decoding the lower-layer blocks. In this case, the current block may be a chroma block, and the determining the splitting type of the current block may be performed by disallowing a predetermined splitting type having a width or height of the lower-layer blocks being a predetermined value, among a plurality of splitting types.
An image decoding method performed by a decoding device according to the present document comprises: a step for deriving the number of samples of upper peripheral chroma samples and left peripheral chroma samples of a current chroma block on the basis of a specific value and the width and height of the current chroma block; a step for deriving said number of upper peripheral chroma samples and said number of left peripheral chroma samples; and a step for deriving CCLM parameters on the basis of the upper peripheral chroma samples, the left peripheral chroma samples, and down-sampled peripheral luma samples, wherein, when the specific value is derived as 2 and the width and the height of the current chroma block are larger than the specific value, the number of samples is derived as the specific value.
A method suitable for use by a time-of-flight (TOF) imaging system (500), wherein the system emits illumination in multiple configurations, each configuration having a different spatially-varying intensity over a field of view of an image sensor (512), the method comprising: moving an actuation mechanism (506) to change the illumination via a first sequence of configurations from a first configuration (A) to a final configuration (B); moving the actuation mechanism (506) to subsequently change the illumination via a second sequence of configurations from the final configuration to the first configuration or a second configuration; and obtaining a set of data from the image sensor (512) for each of the configurations (A, B) in the first and second sequences, thereby obtaining two sets of data for each configuration that are suitable for producing two depth image frames, wherein the two sets of data corresponding to the final configuration are consecutively obtained from the first and second sequences. Light emitted by light source (502) passes through a set of one or more optical elements (504) before being emitted from the TOF system (500). The set of optical elements (504) includes a diffractive optical element to produce an optical field, and also includes a shift lens to which the actuation mechanism (506) is operatively connected. Translational movement of the shift lens in directions perpendicular to the optical axis result in steering of the light. The imaging part includes a receiver lens and/or filter system (510) and an image a multipixel sensor (512). The TOF system (500) also includes a controller (500).
An image forming apparatus that dynamically and suitably switches login processing between a user who selects an icon and a user who is identified by reading of a card. The image forming apparatus searches user information of a user who logs in by selecting a user icon displayed on a display unit and a user who logs in using a card, and performs the login processing on a searched user.
Techniques for tracking and display of compliance with instructions provided by emergency call takers are provided. An artificial intelligence (AI) bot monitors a conversation between an emergency caller and an emergency call taker. The AI bot identifies at least one instruction issued by the emergency call taker to the emergency caller. The AI bot determines when execution of the at least one instruction has been confirmed.
An inmate telecommunications system, apparatus and method. The system enables muting of the incoming audio of one of the call parties of a cell being monitored. A phone switch isolates the non-muted call channel and sends the audio to the monitoring individual.
Various embodiments concern a non-transitory computer readable medium having embodied instructions, which when executed by a processor, perform steps of a method for obtaining communication data and generating activity logs. More specifically, communication data such as contact information and call time associated with communications are obtained. The obtained data is then used to generate a report including the time, duration, and project or client associated with communication. Thus, an activity log is automatically generated using the communication data.
Disclosed is a method for determining a most cost effective wireless service for a wireless device implemented at least in part in the wireless device. The method includes obtaining with a wireless device processor wireless service usage information for the wireless device. The method further includes determining with a processor a cost of various wireless service plans based on the wireless service usage information, determining with the processor the most cost effective wireless service in response to the determining with the processor the cost of various wireless service plans, and displaying a most cost effective wireless service information in a graphical user interface on a display of the wireless device. A device for implementing the method is disclosed as well.
A mobile phone configured to operate in a normal notification mode and an emergency notification mode. The mobile phone includes a memory adapted to maintain profiles relating to user contacts, an output device operable to emit audible notifications responsive to incoming communications, at least one input device operable to receive a user selection of a silent notification mode of the device and a user selection of a silent mode disabled setting associated with the profiles and a processor coupled to the memory, the output device and the at least one input device. When the device is in the silent notification mode, audible notifications are not emitted from the output device responsive to incoming communications from the user contacts having profiles without the silent mode disabled and audible notifications are emitted from the output device responsive to incoming communications from the user contacts having profiles with the silent mode disabled.
A mobile terminal includes a first frame; a second frame coupled to be movable in a first direction from the first frame, and comprises a third rear unit moving along the back surface of the first frame, and a first roller on the end part in the first direction of the third rear unit; a flexible display having one end fixed to the front surface of the first frame, and covering the first roller; a drive unit moving the second frame in the first direction or moves same in a second direction opposite direction from the first direction; and a connection band covering the end part in the second direction of the third rear unit, has one end thereof connected to the end part in the first direction of the first frame, and has the other end thereof connected to the other end of the flexible display.
Methods and systems for a processing architecture that maintains a separate logic pathway corresponding to a first operation type and a second operation type, until a blockchain operation is submitted to the blockchain network using either the first operation type or a second operation type. Following submission of the blockchain operation to the blockchain network, the architecture collapses the parallel logic pathways to a single logical pathway for both types.
Permission control and management for messaging application bots is described. A method can include providing a messaging application, on a first computing device associated with a first user, to enable communication between the first user and another user, and detecting, at the messaging application, a user request. The method can also include programmatically determining that an action in response to the user request requires access to data associated with the first user, and causing a permission interface to be rendered in the messaging application, the permission interface enabling the first user to approve or prohibit access to the data associated with the first user. The method can include accessing the data associated with the first user and performing the action in response to the user request, upon receiving user input from the first user indicating approval of the access to the data associated with the first user.
The present application provides methods for downloading a key, a client, a password device, and a terminal device, in which, the client sends a request for downloading an initial key to a backend server, and receives a server identity certificate delivered by the backend server and forwards the server identity certificate to the password device. The client acquires a device identity ciphertext returned by the password device and sends the device identity ciphertext to the backend server. The client acquires a server identity ciphertext and an initial key ciphertext generated by the backend server, and sends the server identity ciphertext to the password device. After the password device successfully verifies an identity of the backend server, the client sends the initial key ciphertext to the password device.
Techniques are described herein that are capable of provisioning a trusted execution environment (TEE) based on (e.g., based at least in part on) a chain of trust that includes a platform on which the TEE executes. Any suitable number of TEEs may be provisioned. For instance, a chain of trust may be established from each TEE to the platform on which an operating system that launched the TEE runs. Any two or more TEEs may be launched by operating system(s) running on the same platform or by different operating systems running on respective platforms. Once the chain of trust is established for a TEE, the TEE can be provisioned with information, including but not limited to policies, secret keys, secret data, and/or secret code. Accordingly, the TEE can be customized with the information without other parties, such as a cloud provider, being able to know or manipulate the information.
A computer device receives a cross-chain request carrying a cross-chain protocol data packet and a first electronic signature that is initiated by a first service application. The cross-chain protocol data packet is encapsulated with cross-chain data, permission information, and a service application public key address. The first electronic signature is obtained by performing a cross-chain signature on the cross-chain protocol data packet based on a service application private key. When the cross-chain signature verification succeeds, the device replaces the service application public key address in the cross-chain protocol data packet with an account public key address to obtain a target cross-chain protocol data packet. The device performs an indirect cross-chain signature on the target cross-chain protocol data packet to obtain a second electronic signature, and generates an updated cross-chain request. The device transmits the updated cross-chain request to a cross-chain node corresponding to a second service application.
A method and an apparatus for issuing a smart contract are provided. The method may include: acquiring the smart contract; determining whether the smart contract comprises a preset function; generating, in response to determining that the smart contract does not include the preset function, verification data of the smart contract based on a proof-of-work technology; and sending a request for issuing the smart contract re based n the verification data.
Examples described herein include systems and methods for contextually providing automated device enrollment into a management system. A management application on a user device can receive network settings for connecting to a local server. The network settings can be preconfigured by an administrator. The management application can cause the user device to send an enrollment request and a device identifier to the local server. The device identifier can be used to validate the device and provide a security token to the management application. The management application can use the security token to complete enrollment of the user device.
An electronic device and a method of operating the electronic device are provided. Data corresponding to a user input is received through a user interface of the electronic device. The data is stored in a normal area of a memory of the electronic device. A quantity of information in the stored data is identified. At least one key is selected from a plurality of keys stored in the memory, based on at least the quantity of information. The data is encrypted using the at least one key. The encrypted data and information indicating the at least one key are transmitted to a secure area of the memory, which requires access authority.
In one arrangement, a method for using symmetric keys between two entities comprising a device and a host include initiating, by the device, a transaction involving original data, wherein the original data needs to be verified by the host. The method further includes deriving, by the device, a first key based on a previously generated key and a first number, wherein the first key is unique to the transaction, and the first number is randomly generated. The method further includes sending, by the device, the first key to the host for verification.
An operator for a global total order broadcast domain may send an operation out of band to nodes of participating parties, receive a certificate and a signature on an operation identifier for each participating node, generate a randomness vectors for each party participating in the operation, generate a random symmetric encryption key, encrypt the certificates, the signatures, and the randomness vector for each participating party with the symmetric encryption key, encrypt the symmetric encryption key under each public key for each participating party, and hash the symmetric encryption key, and recording, by the operator, the hashed symmetric encryption key on the global total order broadcast domain.
A method and system of providing verification of information of a user relating to an attestation transaction is provided, and includes sending a request for information of the user, wherein the information has been previously attested to in an attestation transaction stored within a centralized or distributed ledger at an attestation address; receiving at a processor associated with a verifier the information of the user; sending a cryptographic challenge nonce; receiving at the processor associated with the verifier the cryptographic challenge nonce signed by the user's private key; verifying user identity with the cryptographic challenge nonce signed by the user's private key; deriving a public attest key by using the information of the user; deriving an attestation address using the public attest key; and verifying the existence of the attestation transaction at the attestation address in the centralized or distributed ledger.
A cryptography system comprises a noising engine and a de-noising engine. The noising engine is configured to receive a key pattern, determine a final membership value based on one or more input parameters and a first knowledge base, and generate a noised key pattern based on the key pattern and the final membership value. The de-noising engine is configured to receive the noised key pattern and the final membership value, and generate a de-noised key pattern based on the noised key pattern, the final membership value, and a second knowledge base.
Systems, methods, and computer program products are provided for quantum computing (QC) detection. An example QC detection system includes QC detection data generation circuitry that generates QC detection data. The QC detection system also includes cryptographic circuitry that distorts the QC detection data via a first post-quantum cryptographic (PQC) technique and generates a pair of asymmetric cryptographic keys including a public cryptographic key and a private cryptographic key. The cryptographic circuitry further generates encrypted QC detection data based on the pair of asymmetric cryptographic keys and destroys the private cryptographic key. The QC detection system further includes data monitoring circuitry that monitors a set of data environments for electronic information related to the encrypted QC detection data.
The present application provides a method and a device for encryption of a video stream, a communication equipment, and a storage media. The method for encryption of a video stream includes: acquiring a video stream, encrypting a data part of an I frame by using a first encryption algorithm to obtain a first encrypted data, and encrypting an encryption key of the first encrypted data by using a second encryption algorithm to obtain a second encrypted data, and storing the second encrypted data in a frame header of the I frame to obtain an encrypted I frame.
A method for determining a cryptographic key is carried out in a data processing system, and comprises: providing a plaintext and a ciphertext determined from the plaintext using a cryptographic key and a cryptographic procedure which comprises cryptographic operations; for each cryptographic operation of the cryptographic procedure, providing at least one intermediate relation which comprises an intermediate equation and/or an intermediate inequality; determining an optimization problem comprising: the plaintext and the ciphertext; at least one optimization expression assigned to a round of the cryptographic procedure; and optimization variables comprising state variables of the cryptographic procedure and a cryptographic key variable; wherein the at least one optimization expression is determined from the at least one intermediate relation and comprises at least one preceding state variable assigned to a preceding round. The method further comprises: solving the optimization problem and determining the cryptographic key from an optimizing value of the cryptographic key variable.
Detailed herein are embodiments which allow for integrity protected access control to provide defense against deterministic software attacks. Software attacks such as rowhammer attacks which target the TD bit itself are defended against using cryptographic integrity which the data itself is protected by the TD-bit alone. As such, software is reduced to performing only non-deterministic attacks (e.g., random corruption), but all the deterministic attacks are defended against. Additionally, integrity-protected access control bits are protected against simple hardware attacks where the adversary with physical access to the machine can flip TD bits to get ciphertext access in software which can break confidentiality.
There is provided a method performed by a network repository function (NRF) node (60). In response to receiving a request (400), transmission of a response (402) is initiated towards a network node (10, 20) that initiated transmission of the request (400). The network node (10, 20) is a first network function (NF) node (20) of a service consumer or a first service communication proxy (SCP) node (10) that is configured to operate as an SCP between the first NF node (20) and second NF nodes (30) of at least one service producer. The response (402) comprises first information indicative of any second NF nodes (30) identified for providing a service (40) requested by the first NF node (20), and second information indicative of whether any second NF nodes (30) identified for providing the service are identified based on a criterion, and/or if a plurality of second NF nodes (30) are identified, third information indicative of whether the plurality of second NF nodes (30) are prioritised according to the criterion.
A connection request is received from a user device associated with a user. The connection request includes an identifier associated with a profile associated with the user, the profile being a static profile or a dynamic profile. An observability profile associated with the user is identified based on the profile when the profile is a static profile and based on a current traffic profile associated with the user device when the profile is a dynamic profile. Measurements associated with a data session are executed for the user device based on the observability profile and one or more configurations are adjusted in a network to improve performance of the data session based on the measurements.
An electronic device includes a communication circuit and a processor, The processor is configured to obtain a connection code related to an external electronic device through the communication circuit, discover the external electronic device through the communication circuit based on the connection code, establish a first secure channel with the external electronic device, based on the connection code, through the communication circuit, and transmit a control command for an internet-of-things (IoT) device to perform a designated action to the external electronic device through the first secure channel using the connection code.
A mobile device may comprise: a power source, one or more sensors, a communication device, and an actuator. The power source can be configured to provide power to one or more components of the mobile device. The one or more sensors can be configured to generate sensor data. The communication device can be removably coupled to the power source to receive power therefrom and can be further configured to communicate with one or more computing devices remote to the mobile device. The actuator can be configured to transition between at least a first state and a second state to cause the communication device to electrically disconnect from the power source to terminate communication of the communication device with the one or more computing devices remote to the mobile device. The one or more sensors can be configured to generate sensor data when the actuator is in the first state or the second state.
An edge configuration server, a multi-access system, a method, and a computer-readable medium are provided that make it possible to relocate an application context between different multi-access edge computing systems. An edge configuration server according to the present disclosure is a server included in a multi-access edge computing (MEC) system, and includes: a reception unit configured to receive, from a source-edge enabler server (S-EES) in the MEC system, an inquiry about a relocation target of an application context; and a transmission unit configured to transmit, to another edge configuration server (ECS) in another MEC system, an inquiry about the relocation target.
Systems and methods for retrieving regional content via remote access point servers are disclosed. In one embodiment, the disclosure relates to a network system for content retrieval from remote network regions. The network system may comprise a first device. The first device may be configured to receive a request for content. The content may be on one or more content servers located in a remote network region. The first device may be further configured to at least one of forwarding the request, via tunneling, to a destination access point server located in proximity to the one or more content servers and receiving the content from the destination access point server, obtaining the content from a cache of the first device.
A media system enables creation, editing, and presentation of a media experience with dynamically generated personalized content. An editor application enables creation of media content based on a set of media objects and a configuration file that controls the timing and positioning of the media objects. At least some of the media objects may be presented conditionally based on user interactions or dynamic data sources that map variables associated with the customizable objects to specific values when a media player loads the media experience. The mapping rules may derive the values from various data sources to enable the media experience to be customized to the publisher, to the viewer, based on external events, or other dynamic data. At least some dynamic objects may be presented as overlays on an underlying video in a manner that seamlessly combines the dynamic objects with static media.
A command services manager of a control device can receive a command from a user interface device and provide for the storing and sharing of the command with one or more service providers so as to provide an improved user experience. Media service providers can register with a network resource associated with the command services manager. The command can be encrypted and stored locally at the control device or remotely at a network resource and be sent to a registered media service provider so that the media service provider can provide improved search responses and/or customize the interaction with the user, recommendation of content availability from other service providers, etc. The command services manager can also receive notifications from the media service provider and provide the notifications to the user, for example, notifications indicative of the success or failure of a command.
Systems and methods for creating video watch parties are shown and described. Video and audio data indicative of the content being displayed on a plurality of smart TVs is compared to stored data in a content recognition database to determine what content is being viewed by each of a plurality of viewers at a given time. Viewers watching the same content are invited to become members of a watch party, and the televisions of those who accept the invitation are operatively connected to one another in a peer-to-peer network, enabling them to view the watch party content on a watch party screen that displays the watch party content and images or graphical icon representations of each other member of the watch party who is watching the content. Watch party participants can communicate with one another on the watch party display orally, using text messages in a text message area of the display, or by projecting emojis in the content region of other participants' displays.
A media stream is transmitted from a server device to a client device. The client device (10) transmits set-up request messages (43a), discovery messages (44b) and a play command message (45a). The server receives versions of the set-up request messages 43b), the discovery message (44b) and the play message (45b) with matching identifier in the payloads if the messages. The server device (12) receives the discovery messages (44b) on a predetermined port and stores information recording that the discovery messages (44b) have been received, at least when no corresponding set-up request message 43b has been received before. The server device (12) compares the identifiers from the received set up request message (43b) and the discovery message (44b) according to the information recording reception, at least when the discovery message (44b) has been received before the set-up request message (43b). The server device (12) selects transport parameters for transmission of the media stream responsive to detection that the first and second identifier have matching values, the selected transport parameters being based on data from said set-up request message (43b) and a port identification from a source field of the discovery message (44b). The media stream is transmitted in accordance with the selected transport parameters to the client device (10) addressed to the port determined from the source field of the discovery message (44b).
A system and method for conducting a privileged communication session between a client user and an attorney subscriber includes initiating a communication session between the client user and the attorney member in response to a communication session request, via a communication application where the communication session is configured to be selectively conducted via the communication application in a non-privileged mode and in a privileged mode such that in the non-privileged mode, the communication session is conducted via a communication server in communication with a user client computing device and an attorney computing device, and such that in the privileged mode the communication session is conducted via a direct communication link initiated via the communication application such that, in the privileged mode the communication server is disconnected from the direct communication link.
Methods, apparatus, systems, and articles of manufacture are disclosed to identify and report cloud-based security vulnerabilities. An example apparatus includes memory, instructions, and processor circuitry. The example processor circuitry is to execute the instructions to assess a first security vulnerability associated with an application programming interface (API) of a cloud compute network, the first security vulnerability corresponding to at least one call to the API that deviates from a baseline report, the baseline report based on at least one communication in the cloud compute network, and assess a second security vulnerability associated with identity and access management in the cloud compute network based on an entity in the cloud compute network permitted to access a service provided by the cloud compute network, the second security vulnerability corresponding to an unauthorized request to access at least one of a device of the cloud compute network or the service.
Systems and methods for providing remote network security using a network embeddings model are provided. A method consistent with the present disclosure includes retrieving a corpus of network activity data associated with a first network. The network activity data may be generated from users within the first network submitting network requests for network assets to service the network requests. The method also includes creating a crafted encoded corpus by selecting a subset of the corpus of network activity data and creating a network embeddings model based on the crafted encoded corpus. Lastly, the method includes generating an alert in an event that the network security system identifies an anomaly associated with the crafted encoded corpus of network activity data.
Example systems and methods permit threat intelligence to be determined and used at a local, regional, and/or global level in a communications network. A threat intelligence system may collect traffic information from local computing systems and analyze it for malicious traffic. If a measure of malicious traffic in a local computing system is reached, mitigation actions may be taken in that local computing system. In addition, threat measures may be amplified in other local computing systems, other regions, or globally in the network, in order to more quickly react to a known threat as it may spread in a network.
Techniques are provided for detecting compromised credentials in a credential stuffing attack. A set model is trained based on a first set of spilled credentials. The set model does not comprise any credential of the first set of spilled credentials. A first request is received from a client computer with a first candidate credential to login to a server computer. The first candidate credential is tested for membership in the first set of spilled credentials using the set model. In response to determining the first set of spilled credentials includes the first candidate credential using the set model, one or more negative actions is performed.
Systems, methods, and devices implement security operations in security platforms implemented across web servers and application servers. Systems include a first server including one or more processors configured to identify one or more patterns of malicious activity based, at least in part, on event information associated with a request and at least one of a plurality of custom parameters, and a second server including one or more processors configured to host an application accessed by the client device, wherein the first server is coupled between the client device and the second server and is configured to handle requests between the client device and the second server. Systems also include a database system configured to store application data associated with the application and the client device.
A method comprises: monitoring a data stream comprising a plurality of data events; identifying a data pattern comprising one or more of the plurality of data events; determining that at least one of the data events comprising the data pattern supports virtual card generation; determining that the at least one of the data events comprising the data pattern is performed using a physical card number at a geolocation; determining that at least one virtual number has been associated with profile data associated with a user; transmitting a notification comprising a request to generate a virtual number; and upon receipt of an approval of the request, executing a script to generate the virtual number and associate the virtual number with the geolocation.
An application programming interface (API) call is received to obtain an access data object that includes a permission of an application provider to access a resource of an entity. A previous permission to access a second resource of the entity is identified. As a result of receiving the API call, an access data object is generated to include the permission and the previous permission.
A system, apparatus, method, and machine-readable medium are described for personalizing and pre-registering an authenticator. For example, one embodiment of a method comprising: confirming an identity of a user by a first relying party using a first identity verification technique responsive to the user performing a first transaction with the first relying party; generating or collecting initial user verification reference data (IUVRD) upon verifying the identity of the user through the first identity verification technique; requesting personalization of an authenticator; storing the IUVRD into the authenticator; generating, by the authenticator, Fast Identity Online (FIDO) credentials including a private and public key pair; storing the FIDO credentials in a secure storage of the authenticator; providing the public key to the first relying party; securely providing the authenticator to the user; and implementing a second identity verification technique by comparing the stored IUVRD to data collected from the user.
A system implemented on a server computer for managing digital certificates includes a certificate management agent module, a digital certificate processing module and a configuration module. The certificate management agent module processes requests to create a plurality of certificate management agents. Each of the certificate management agents is configured to manage a lifecycle of a digital certificate for a client electronic device. The digital certificate processing module processes requests from the certificate management agent module for digital certificates for the plurality of certificate management agents. The configuration module receives and processes configuration parameters for the certificate management agents and for the digital certificates.
Aspects of the disclosure relate to a system and method for cryptographically transmitting and storing identity tokens and/or activity data among spatially distributed computing devices. The system may comprise a plurality of chains, such as an identity chain and an activity chain. In some aspects, identity data associated with a user may be used to generate an identity token for the user. The identity token may be transmitted to a plurality of computing devices for verification. Based on a verification of the identity token, the identity token may be stored in the identity chain. A request to perform an activity may also be received, and identity data associated with the user may be received in order to authenticate the user. The computing device may generate, based on the received identity data, an identity token for the user.
Disclosed are systems and methods that require/force bots to access and interact with webpages at a similar level to humans, by including an executable script that generates/updates a test value for a webpage. The client devices must perform certain processing and/or rendering of the webpage to call the computations necessary for generating the updated test value. The script must be executed as a function of processing and/or rendering the webpage. The script may be retrieved from the webserver as a function of processing and/or rendering the webpage. When the browser executes this script, the browser generates the updated test value. At some point, the client device submits a request for certain process with the updated test value. The server compares the inbound test value from the client device against an initial/previously received test value or an expected test value to determine whether the browser is being operated by a human.
Discussed herein is a technique for replication of keys across regions of a cloud infrastructure. A first vault is created in a first region. The first vault stores a plurality of records, each of which is associated with a key and corresponding metadata. A second region, different from the first region, is selected where replication of the plurality of records is desired. A second vault is created in the second region. The plurality of records are relayed from the first vault to the second vault, so that each of the plurality of records is replicated in the second vault based on an entropy value of the record. A mutation operation executed with respect to the first vault is stored as a new record in the first vault. The new record is transmitted to the second vault, which is updated to reflect the mutation operation performed on the first vault.
Systems and methods for providing services are disclosed. One aspect comprises authenticating a user associated with a first service, receiving a selection of a second service, generating an opaque identifier associated with the user and the first service, wherein the opaque identifier facilitates the anonymous collection of data relating to the second service. Another aspect can comprise transmitting the opaque identifier to the second service, and receiving data relating to the second service.
A VPN servers request is received from a user device. An ISP of the user device is obtained. A geolocation of the user device is obtained. Respective server penalty scores of available VPN servers are obtained. The respective server penalty scores of the available VPN servers are adjusted using respective ISP data, where ISP data of a VPN server include data indicative of connections from devices in the geolocation to the VPN server. At least one VPN server is transmitted to the user device based on the adjusted respective server penalty scores.
Disclosed are various examples for configuring network security based on device management characteristics. In one example, a specification of a set of network resources on an internal network is received from an administrator client. The set of network resources are those network resources that a particular application executed in client devices on an external network should be authorized to access. A gateway from the external network to the internal network is then configured to permit the particular application to have access to the set of network resources.
A method for detecting fraudulent transactions entering a payment environment, the method comprising: receiving packets of a transaction from a network; reconstructing and framing the packets into respective transaction messages; decoding each transaction message into its respective fields; correlating the respective transaction messages into an end-to-end model of the transaction; applying one or more predefined rules to the respective fields to determine whether the transaction is fraudulent; when the transaction is determined to be fraudulent, determining one or more specified fields of the respective fields to use to selectively block, deny, or rate limit the transaction; selecting a corresponding predefined rule from a server rule base; storing the predefined rule in a transaction firewall rule base; and, applying the predefined rule to the transaction to selectively block, deny, or rate limit the transaction based on content of the one or more specified fields in the transaction.
The disclosure describes a mesh network including a first device and a second device, which acts as an exit device with respect to the first device such that communication between the first device and an external device, outside the mesh network, is communicated via the second device. The first device receives access information utilized by the second device to access a DNS server in a LAN that includes the second device, and transmits a meshnet query packet that includes a DNS query for domain information associated with the external device. The first device receives, based on transmitting the meshnet query packet, the domain information associated with the external device, and transmits a meshnet initiation packet that includes a network communication for communicating with the external device, the network communication including the domain information. Various other aspects are contemplated.
A device implementing a system for initiating a business messaging session includes at least one processors configured to receive a selection of a telephone number on a device. The at least one processor is further configured to transmit an encoded identifier corresponding to the telephone number to a server. The at least one processor is further configured to determine whether the telephone number is registered for a business messaging system based at least in part on a response received from the server. The at least one processor is further configured to provide a first display element for initiating communication with the telephone number via the business messaging system when the telephone number is registered for the business messaging system, otherwise providing a second display element for initiating communication with the telephone number via a user messaging system.
A receiving state feedback method, comprising: receiving, by a receiving terminal in a Wi-Fi network, data frames simultaneously sent by a transmission terminal in n frequency bands, n>1; generating a feedback information frame according to the receiving states of receiving respective data frames in n frequency bands, the feedback information frame including at least n sets of preset bits, and the n sets of preset bits being used for indicating receiving states of receiving the respective the data frames in the n frequency bands; and sending the feedback information frame to the transmission terminal.
Implementations of the present disclosure relate to a wireless communication method and a terminal device. The method includes: detecting, by a terminal device, a first type of Synchronous Signal Block (SSB) at a frequency on an asynchronous raster; determining, by the terminal device, a frequency domain position of a Control Resource Set (CORESET) of Remaining Minimum System Information (RMSI) associated with the first type of SSB based on the first type of SSB.
An apparatus of a New Radio (NR) User Equipment (UE), a method and system. The apparatus includes one or more processors to encode a two part CSI including: encode a two part CSI including: encoding information bits of a first channel state information (CSI) type and information bits of a second CSI part to generate, respectively, encoded bits of a first CSI part and encoded bits of a second CSI part, a payload size of the second CSI part being based on encoded bits of the first CSI part and further being encoded separately from information bits of the first CSI part; and mapping the encoded bits of the first CSI part onto a first physical resource and the encoded bits of the second CSI part onto a second physical resource different from the first physical resource; and configure the two part CSI in a long or short PUCCH for transmission to a NR evolved Node B (gNodeB).
Methods, apparatuses, systems, etc. directed to beam management for, and/or for use in connection with, multiple cells and/or multiple transmission/reception points are provided. Among the methods is a method that may include any of determining first and second reference signals sets (RS sets) associated with first and second sets of beams; receiving information for first and second beam failure recovery (BFR) sets corresponding to the first and second RS sets, wherein the information indicates an RS set associated with candidate beams (CB-RS set) and an uplink resource set for each of the first and second BFR sets; determining beam failures based on the first and second RS sets; selecting the CB-RS set and UL resource set from the first or second BFR set; determining an RS of the selected CB-RS set; and transmitting information indicating the beam failures using uplink resources of the selected uplink resource set.
A method for determining mapping of antenna ports includes: determining mapping of antenna ports of an SRS according to the number of the antenna ports of the SRS, wherein the SRS is an SRS with a comb size of N, N is an even number greater than 4, and the number of the antenna ports is 1, 2 or 4.
In one example aspect, a method of transmitting packets wirelessly is provided. The method comprises, for each packet, requesting to transmit the packet, waiting for a respective random or pseudorandom time period before transmitting the packet, and transmitting the packet containing a respective data portion, wherein a position of the respective data portion in the packet is selected such that a time interval between transmission of respective data portions in adjacent packets is a constant time interval.
Methods, systems, and devices for wireless communications are described. An access point (AP) may transmit, to a second AP and during a first portion of a transmission opportunity (TxOP), a request to participate in a multi-user (MU) transmission. The AP may receive, from the second AP and during the first portion of the TxOP, an indication of intent to participate in the MU transmission during the second portion of the TxOP, the indication of intent including a resource request of the second AP for participation in the MU transmission. The AP may transmit, during an initial period of the second portion of the TxOP, a trigger signal to the second AP indicating a set of one or more resources for the second AP during the MU transmission. The AP may participate, in conjunction with the second AP and during the second portion of the TxOP, in the MU transmission.
Embodiments of the disclosure provide techniques for measuring congestion and controlling quality of service to a shared resource. A module that interfaces with the shared resource monitors the usage of the shared resource by accessing clients. Upon detecting that the rate of usage of the shared resource has exceeded a maximum rate supported by the shared resource, the module determines and transmits a congestion metric to clients that are currently attempting to access the shared resource. Clients, in turn determine a delay period based on the congestion metric prior to attempting another access of the shared resource.
A system includes input or output channels linked to nominal and redundant equipment items, and at least one redundancy matrix for routing the signals of a channel from one equipment item to a redundant or nominal equipment item, represented by a connection grid having rows corresponding to the channels of the system and columns corresponding to the equipment items of the system, and connection points comprising: the points of intersection of a nominal path situated on a nominal diagonal of the connection grid, and the points of intersection of a redundant path of the connection grid situated between each row corresponding to a channel Ci and a column corresponding to a redundant element Rƒ(i) of index ƒ(i), ƒ being surjective, the redundancy matrix being implemented in the form of a circuit comprising switches arranged according to the connection grid.
Disclosed herein is a network management apparatus, comprising: a notification acquisition unit configured to acquire a notification that is notified when a predetermined operation is performed with respect to a target device; a necessity determination unit configured to determine whether or not to necessitate handling that requires human intervention to handle the notification based on the notification acquired by the notification acquisition unit; and an informing unit configured to inform, when the handling that requires human intervention is determined to be necessitated, a to-be-informed destination that is to perform the handling.
System communications tailored to individual users may be dynamically provided based on monitored types of user activity in a virtual space. A given system communication may include one or more of a third-party advertisement, an offer for in-space products, an offer in-space services, an informative message, and/or other system communications. Monitored types of user activity include registering as a user, establishing a relationship with another user, and customizing a user character. Responsive to such activity, information is obtained regarding an amount of real-world money the user has spent and the total time spent by the user during gameplay. This information is used to select system communications. System communications may be provided for presentation to users via one or more communication channels.
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, using a beam, a plurality of reference signals associated with a channel for wireless communication. The UE may report, based at least in part on a plurality of measurements associated with the beam, a plurality of beam failure indicators according to a periodic beam failure indicator reporting configuration. Numerous other aspects are described.
The present disclosure provides a signal processing apparatus and a signal processing method, the signal processing apparatus includes: a preprocessing unit configured to generate a joint matrix according to channel matrixes of subcarriers, and perform a parallel-to-serial conversion on QAM signals of the subcarriers to obtain a serial QAM signal; a judgment unit configured to determine a constraint relationship of a constellation point in each element according to a determining result obtained by determining that whether the constellation point is to be extended in a constellation diagram; a processing unit configured to establish a convex optimization model according to the joint matrix, the serial QAM signal and the determining result, and determine a joint time-domain signal of antenna channels according to the constraint relationship of the constellation point and the convex optimization model; and a conversion unit configured to perform a serial-to-parallel conversion on the joint time-domain signal.
A wireless communication method for use in a wireless terminal is disclosed. The wireless communication method comprises determining at least one synchronization value based on at least one time stamp, and transmitting, to a wireless network node, a signal based on the at least one synchronization value.
A method and apparatus of a device that performs a new radio (NR) downlink (DL) positioning reference signal (PRS) resource scheduling is described. In an exemplary embodiment, the device configures at least one of a NR DL PRS Resource Pool, a NR DL PRS Resource Set, a NR DL PRS Resource, and a muting pattern. In addition, the configured NR DL PRS Resource Set may be assigned to a separate Transmission Reception Point (TRP). Furthermore, a list of configured NR DL PRS Resource Sets can be assigned to a separate TRP. The assigned NR DL PRS Resource Set may include PRS Resources with different spatial filters. In addition, the assigned NR DL PRS Resource Set can include PRS Resources with the same spatial filter.
Presented herein are techniques to conserve power by network devices in a software define wide area network (SDWAN). A method includes monitoring operations of a software defined wide area network including a network device in the software defined wide area network, based on results of the monitoring, generating a usage model for the network device, determining, based on the usage model, a power management scheme for a multi-core network processing unit operating on the network device, and causing the multi-core network processing unit operating on the network device to execute the power management scheme.
An approach for transmission provides a method of enabling Hybrid Automatic Request, HARQ, in an IEEE 802.11 communication. The method includes transmitting, in an element in a Block Acknowledgement, BA, setup of a Medium Access Control, MAC, message, which element indicates a request to use HARQ, receiving a response to said request, and starting to apply HARQ. The approach includes a network entity of a wireless network using IEEE 802.11. The network entity includes a transmitter arranged to transmit, in an element in a Block Acknowledgement, BA, setup of a Medium Access Control, MAC, message, which element indicates a request to use HARQ, a receiver arranged to receive a response to said request, and a communication handler arranged to start to apply HARQ.
Provided is a wireless communication terminal that communicates wirelessly. The terminal includes: a transceiver; and a processor. The processor is configured to receive a Downlink Multi-User (DL MU) PPDU including information for an Uplink Multi-User (UL MU) transmission from a base wireless communication terminal by using the transceiver, and transmit the UL MU PPDU to the base wireless communication terminal based on the information for UL MU transmission.
Provided is a communication apparatus and a method that allow for synthesis of information using an original signal and a retransmission signal for retransmitting information of the original signal whose demodulation has failed, in wireless communication with independent physical layer and MAC layer. Information is transmitted regarding a configuration of a retransmission signal for retransmitting information of an original signal whose demodulation has failed to a sender of the retransmission signal, and the retransmission signal transmitted from the sender is received on the basis of the information regarding the configuration of the retransmission signal transmitted.
A data unit sending or receiving method and a related apparatus that belong to the field of communication technologies are provided. In this solution, a transmit end sends a first aggregated media access control protocol data unit (A-MPDU) and determines an MPDU that needs to be retransmitted in the first A-MPDU. The MPDU that needs to be retransmitted is included in a first A-MPDU subframe in the first A-MPDU. The first A-MPDU subframe includes a first MPDU delimiter, and the first MPDU delimiter includes a first end of frame (EOF) field and a first MPDU length field. The transmit end sends a second A-MPDU, where the second A-MPDU includes a second A-MPDU subframe, the second A-MPDU subframe includes the MPDU that needs to be retransmitted and a second MPDU delimiter, and the second MPDU delimiter includes a second EOF field and a second MPDU length field.
The present invention relates to a method of processing a data unit by a User Equipment (UE) in a wireless communication system. In particular, the method includes the steps of: configuring, by the UE, a radio bearer comprising a Packet Data Convergence Protocol (PDCP) entity, wherein the PDCP entity is related to two or more Radio Link Control (RLC) groups and at least one of the two or more RLC groups comprises two or more RLC entities; selecting, by the PDCP entity of the UE, one of the two or more RLC groups; and based on a RLC group comprising two or more RLC entities being selected from the two or more RLC groups, duplicating, by the PDCP entity of the UE, a PDCP Protocol Data Unit (PDU); and submitting, by the PDCP entity of the UE, the PDCP PDU to the two or more RLC entities belonging to the selected RLC group.
Message faults are caused by network crowding and signal fading at high frequencies of 5G and 6G. Current error-detection and correction algorithms are computationally demanding, especially for new low-cost reduced-capability IoT devices. Disclosed are methods for (a) determining whether a message is faulted using a compact error-detection code, (b) localizing the most likely faulted message element(s) according to the waveform signal, and (c) determining the likely corrected version by back-calculating from the error-detection code. Other versions include testing various modulation substitutions for the most suspicious message elements, having the worst signal quality. The waveform parameters may include a deviation from an average amplitude, phase, frequency, or polarization, as well as an amount of amplitude variation and phase variation within the message element. Identification of the most likely faulted message elements may enable recovery of the message without a costly retransmission.
A user equipment includes a receiver and a transmitter and is configured to report channel state information (CSI) to a base station in a communication system in which a plurality of downlink component carriers and at least one uplink component carrier are configured. The receiver receives, in a slot nTrigger, a trigger message that triggers reporting of the CSI for at least one unlicensed downlink component carrier of the plurality of downlink component carriers. The transmitter transmits, in a slot nReport, the CSI based on reference signals present in a slot nRS on the at least one unlicensed downlink component carrier. Responsive to the at least one unlicensed downlink component carrier being occupied for a period of time for a bursty downlink transmission, only the reference signals in the slot nRS are evaluated for the CSI, and other slots in the period of time are not evaluated for the CSI.
Apparatus, systems, articles of manufacture, and methods to identify media using watermarks and signatures are disclosed. An example apparatus includes at least one memory, instructions, and processor circuitry to execute the instructions to: determine a first time and a category indicated by a watermark detected in the media, determine a search window based on the first time indicated by the watermark, the search window to at least one of (i) extend a first duration of time before the first time indicated by the watermark or (ii) extend a second duration of time after the first time indicated by the watermark, and compare (i) a query signature associated with a second time within the search window with (ii) a subset of reference signatures associated with the category to identify the media, the query signature generated from the media, the subset of reference signatures generated from reference media associated with the category.
A method may include determining, by a user equipment, a beam alignment reference value and a beam alignment test value; and determining, by the user equipment, based on the beam alignment reference value and the beam alignment test value, that a user equipment receive beam used by the user equipment is not aligned with a transmit beam of the base station.
A method, network node and customer premises equipment for pre-equalization using beamforming functionality are disclosed. According to one aspect, a method in a network node includes estimating an uplink channel of a hybrid fiber cable network using references signals received from consumer premises equipment, determining a downlink channel using an inverse of the uplink channel estimate, mapping a downlink signal to a plurality of layer-specific signals, and applying beamforming weights to the layer-specific signals to produce layer-specific downlink signals, and summing the layer-specific downlink signals to produce a frequency-compensated downlink signal for transmission over the hybrid fiber cable network.
In a case where an A-BFT period is not present in a BI, a PCP/AP uses a format that includes an Unsolicited RSS Enabled sub-field for indicating support for responding to unsolicited RSSs within a CBAP, for a Beacon Interval Control field of a DMG beacon frame used for executing a BTI-ISS. For example, in a case where it is indicated that responding to unsolicited RSSs within a CBAP is supported, the PCP/AP sets the value of the Unsolicited RSS Enabled sub-field to 1. In a case where the value of the Unsolicited RSS Enabled sub-field included in a received DMG beacon frame is 1, a STA responds with an unsolicited CBAP-RSS.
Channel state information (CSI) feedback in a wireless communication system is disclosed. A precoding matrix is generated for multi-antenna transmission based on precoding matrix indicator (PMI) feedback, wherein the PMI indicates a choice of precoding matrix derived from a matrix multiplication of two matrices from a first codebook and a second codebook. In one embodiment, the first codebook comprises at least a first precoding matrix constructed with a first group of adjacent Discrete-Fourier-Transform (DFT) vectors. In another embodiment, the first codebook comprises at least a second precoding matrix constructed with a second group of uniformly distributed non-adjacent DFT vectors. In yet another embodiment, the first codebook comprises at least a first precoding matrix and a second precoding matrix, where said first precoding matrix is constructed with a first group of adjacent DFT vectors, and said second precoding matrix is constructed with a second group of uniformly distributed non-adjacent DFT vectors.
A multiple-input multiple-output (MIMO) mode configuration method is applied to a terminal, and includes: determining a triggering factor, the triggering factor including terminal information that triggers MIMO mode adjustment; sending a first instruction, the first instruction being used for requesting a network device to configure an MIMO mode matched with the triggering factor for the terminal; and obtaining a second instruction, the second instruction being used for representing the MIMO mode configured by the network device for the terminal.
Disclosed in the present invention are a wireless power and data synchronous transfer system and a data modulation method, wherein a power/information complex modulation is carried out on a primary side front converter and a secondary side back converter, and output power/information flow can be transmitted across the wireless power transfer circuit, thus realizing communication between the primary side and the secondary side. With the method of the present invention, by modulating a digital frequency band signal to a direct current bus, frequency mixing effect of an inverter/rectifier circuit is utilized to move a spectrum of modulated digital signal to a frequency near a power transfer frequency and then the modulated digital signal is transmitted to a circuit on the other side, and the circuit on the other side demodulates the signal to obtain a baseband signal. The present invention has wide applicability and can be used in various wireless power transfer systems, especially for high-frequency systems.
Methods and devices for dynamically designated first and second subsets of a plurality of frequency channels as upstream and downstream channels, respectively, for performing wired communications using virtual segmentation between a network controller and an endpoint device, performing virtual segmentation to service an endpoint device. Communications are performed between the network controller and the endpoint device through a wired communication medium using the upstream and downstream channels. The first subset and second subsets of the plurality of channels are designated as upstream channels and downstream channels, respectively, based at least in part on one or both of upstream and downstream channel demand and channel availability.
A method for aligning an antenna device to a peer antenna device is disclosed. The method includes receiving, by an alignment management computing device, first geolocation data and a first orientation data for the antenna device. A second set of geolocation data for the peer antenna device is received. A static vector is determined for aligning the antenna device to the peer antenna device based on the first geolocation data, the first orientation data, and the second geolocation data. A first set of instructions is provided for adjusting the position of the antenna device based on the static vector to align the antenna device to the peer antenna device. An articulated antenna device configured to operate in accordance with the method is also disclosed. An antenna alignment management computing device and a non-transitory computer readable medium for performing the alignment method are also disclosed.
Optical transmitter includes: signal processing circuit, optical modulator, optical filter, and delay circuit. The signal processing circuit generates N drive signals for generating a modulated optical signal. Symbol rate of the modulated optical signal is fs and each symbol of the modulated optical signal transmits N bits. The optical modulator includes Mach-Zehnder interferometer and N phase-shift segments each of which shifts a phase of light propagating through an optical path of the Mach-Zehnder interferometer according to the N drive signals. The optical filter removes, from output light of the optical modulator, a frequency component in a range of ±fs/2 with respect to a center frequency of the modulated optical signal, and extracts at least a part of other frequency components. The delay circuit controls timings of the N drive signals so as to reduce optical power of the frequency component extracted by the optical filter.
An IC-TROSA point-to-multipoint optical network system includes a point-to-multipoint optical network that is coupled to subscriber devices, and that is coupled to a hub device via a hub IC-TROSA device included in a hub coherent optical transceiver device coupled to the hub device. The hub IC-TROSA device includes a quadrature optical modulator subsystem, and an optical directional coupler device in the quadrature optical modulator subsystem provides a first transmit connection and a second transmit connection to the point-to-multipoint optical network. The optical directional coupler device receives first optical signals from the quadrature optical modulator subsystem and transmits them via the first transmit connection to a first subset of the subscriber devices via the point-to-multipoint optical network, and receives second optical signals from the quadrature optical modulator subsystem and transmits them via the second transmit connection to a second subset of the subscriber devices via the point-to-multipoint optical network.
An optical communication unit for sending and receiving optical communication signals is described. The optical communication unit includes an optical unit, an elevation drive and an azimuth drive. The optical unit emits and/or receives optical communication signals. The elevation drive is coupled with the optical unit by way of an elevation bearing and swivels the optical unit about an elevation axis. The azimuth drive is coupled with the optical unit and the elevation drive and turns the optical unit together with the elevation drive about an azimuth axis. The elevation axis is arranged eccentrically with respect to the azimuth axis, so that the elevation axis is offset with respect to the azimuth axis by a lateral offset. This allows the optical unit to be swiveled to alongside the azimuth drive, so that a swiveling range of the optical unit is increased.
Various embodiments relate to spread spectrum communication. A communication system may include a base station and a user equipment. The base station may be configured to: add a cyclic prefix (CP) to each block of a number of blocks of a first direct sequence spread spectrum (DSSS) signal to generate a first cyclic prefix-direct sequence spread spectrum (CP-DSSS) signal; add artificial noise to the first CP-DSSS signal; and transmit, via a channel, the first CP-DSSS signal. The user equipment is configured to receive the first CP-DSSS signal. Associated methods and communications systems are also disclosed.
In a high-frequency module, a plurality of filters are connected to a first switch. A plurality of amplifiers are connected to a second switch. A first inductor is disposed on a common path between a second common terminal of the second switch and a first common terminal of the first switch. A plurality of second inductors are disposed, on a one-to-one correspondence, in sections different from the common path, the sections being included in the plurality of respective signal paths. The first inductor is a surface mount inductor located on a first main surface of a mounting substrate. The plurality of second inductors are each an inductor disposed within an IC chip including the plurality of amplifiers or an inductor including a conductive pattern formed in or on the mounting substrate.
A feeder link handover method, device and apparatus, and a handover method, device and apparatus for user equipment belonging to a satellite are provided. The method includes: interacting with a target gateway by a source gateway and determining a handover time instant T and/or a target cell activation time instant T′, wherein the handover time instant T is a time instant at which a previous feeder link is disconnected and establishment of a new feeder link is initiated, the target cell activation time instant T′ is T+a time period Δ (delta) required for the establishment of the new feeder link; initiating a feeder-link handover at the handover time instant T, and instructing a user equipment to synchronize with a target cell at the T′.
A system and method to compress application control data, such as weights for a layer of a convolutional neural network, is disclosed. A multi-core system for executing at least one layer of the convolutional neural network includes a storage device storing a compressed weight matrix of a set of weights of the at least one layer of the convolutional network and a decompression matrix. The compressed weight matrix is formed by matrix factorization and quantization of a floating point value of each weight to a floating point format. A decompression module is operable to obtain an approximation of the weight values by decompressing the compressed weight matrix through the decompression matrix. A plurality of cores executes the at least one layer of the convolutional neural network with the approximation of weight values to produce an inference output.
Embodiments of multi-mode sigma-delta analog-to-digital converter (ADC) circuits and a microphone circuit are disclosed. In an embodiment, a multi-mode sigma-delta ADC circuit includes a pair of operational transconductance amplifiers (OTAs), a filter connected to the pair of OTAs, a quantizer connected to the filter, a differential digital-to-analog converter (DAC) connected to the quantizer, and a controller configured to switch the multi-mode sigma-delta ADC circuit between a single-ended operational mode, a pseudo differential operational mode, and a full differential operational mode to improve common mode rejection (CMR) performance by controlling the pair of OTAs. An output of a microphone and a differential output of the differential DAC are inputted into input terminals of the pair of OTAs.
A memory device includes: a memory device configured to store data bits to be written to the memory device; and a memory controller. The memory controller includes: a first level error correction code (ECC) circuit coupled to the memory device, wherein the first level ECC circuit is configured to generate a first plurality of first level check bits corresponding to the data bits based on a first error detection scheme; and a second level ECC circuit coupled to the memory device, wherein the second level ECC circuit is configured to generate a second plurality of second level check bits corresponding to both the data bits and the first plurality of first level check bits based on a first error correction scheme.
In an embodiment, an error correction code circuit is provided. The error correction code circuit includes an error correction code engine and data processing circuit. The error correction code engine is configured to generate a second parity signal and syndrome information by performing an operation on operation source data and a first parity signal. The data processing circuit is configured to output write data as the operation source data and output an internally generated dummy parity signal as the first parity signal during a write operation, and to output read data as the operation source data and output a read parity signal as the first parity signal during a read operation.
A transmission apparatus includes a signal processing circuit configured to obtain information data bits to be transmitted; add known information data bits to the information data bits to generate first data blocks; perform error-correction coding on the first data blocks to generate first coded data blocks including parity data blocks such that the first coded data blocks satisfy a first code rate; remove the known information data bits from the first coded data blocks to generate second coded data blocks, the second coded data blocks satisfying a second code rate different from the first code rate; and modulate the second coded data blocks using a modulation scheme to generate a modulated signal, which is then transmitted. A number of the known information data bits depends on a number of the information data bits such that the first code rate is fixed regardless of the number of the information data bits.
A batteryless wireless sensor system includes a data acquisition system, a radio frequency (RF) transceiver, and a batteryless wireless sensor device. The RF transceiver is in communication with the data acquisition system, transmits a RF signal, and receives sensor data and provide the sensor data to the data acquisition system. The batteryless wireless sensor device includes a RF transmitter, an analog to digital converter (ADC), and a sensor. The batteryless wireless sensor harvests energy from the RF signal and generates a DC signal based on the energy harvested from the RF signal, powers up and operates the ADC and the sensor based on the DC signal, and generates sensor data. The batteryless wireless sensor then transmits the sensor data via the RF transmitter to the RF transceiver. In certain examples, the ADC is implemented as a current mode ADC.
The present invention discloses an analog-to-digital conversion circuit having quick tracking mechanism is provided. A positive and a negative capacitor arrays receive a positive and a negative input voltages and output a positive and a negative output voltages. A first and a second comparators performs comparison thereon respectively according to and not according to a reference voltage to generate a first and a second comparison results. A control circuit does not perform level-shifting when a difference between the positive and the negative output voltages is not within a predetermined range. The control circuit assigns the positive and the negative capacitor arrays a voltage up-tracking direction and a voltage down-tracking direction respectively to switch a capacitor enabling combination with digital codes according to the second comparison result, and outputs the digital codes as a digital output signal when the positive and the negative output voltages equal.
A semiconductor device includes a digital-analog converter provided with a plurality of current cells, and a test circuit electrically connected to the digital-analog converter to test the digital-analog converter. The test circuit includes: a charge information holding circuit that holds, as differential charge information, a difference value between a first charge according to a first current and a second charge according to a second current by at least one or more current cells among the plurality of current cells; a reference voltage generation circuit that generates a reference voltage to be comparative object; and a comparison circuit that compares a determination voltage according to the differential charge information and the reference voltage to output a comparison result.
Aspects of the disclosure are directed to compensating for errors in in an analog-to-digital converter circuit (ADC). As may be implemented in accordance with one or more embodiments, an apparatus and/or method involves an ADC that converts an analog signal into a digital signal using an output from a digital-to-analog converter circuit (DAC). A compensation circuit generates a compensation output by, for respective signal portions provided to the DAC, generating a feedback signal based on an incompatibility between the conversion of the signal portions into an analog signal and the value of the signal portions provided to the DAC. A compensation output is generated based on the signal input to the DAC with a gain applied thereto, based on the feedback signal. Hereby, the digital inputs provided to the DACs are non-randomized.
An accelerometer/gravitometer based on coherent oscillatory matterwaves (COMW). The accelerometer includes a pair of COMW generator systems, each with an oscillator and a respective resonator to stabilize the oscillator output. One of the resonators can be aligned with acceleration, while the other is transverse to the acceleration. The COMW generator outputs can be compared to derive a measurement of acceleration.
A switching device may include an input terminal, an output terminal, a primary switching transistor coupled between the input terminal and the output terminal, logic circuitry configured to receive a control signal to selectively activate the switching device, a first cascode arrangement coupled between the logic circuitry and a first reference voltage supply, and a second cascode arrangement coupled between the input terminal and the primary switching transistor. The first cascode arrangement may include cascode transistors having gate terminals coupled to a first voltage divider coupled between the first reference voltage supply and a second reference voltage supply that is coupled to the logic circuitry. The second cascode arrangement may include a first cascode transistor coupled to a fixed voltage at the first voltage divider and second and third cascode transistors coupled to variable cascode bias voltages at a second voltage divider coupled to a variable voltage input.
A driving circuit applies a voltage to a switching element to switch between an ON state and an OFF state. The switching element includes a control terminal, a high-potential terminal, and a low-potential terminal, and is switched between the ON state and the OFF state depending on the voltage of the control terminal in a case in which a potential of the low-potential terminal is defined as a reference potential. The driving circuit includes a negative-voltage power supply for applying a negative voltage as the voltage to the control terminal when the switching element is switched from the ON state to the OFF state, and a voltage changing unit for changing the voltage immediately before the switching element is switched from the OFF state to the ON state to be higher than the negative voltage immediately after the switching element is switched from the ON state to the OFF state.
Acoustic filters devices and methods of making the same. A filter device includes two or more series resonators acoustically coupled along a shared acoustic track, and two or more shunt resonators electrically coupled to the two or more series resonators.
A semiconductor device including a first functional module arranged on a first substrate and having a chip, an electrical connection component and a sealing ring, where the sealing ring surrounds the chip, and the chip is electrically connected to the electrical connection component; a second functional module having a packaging substrate, where the packaging substrate includes at least two metal layers and a dielectric layer between the metal layers; a third functional module having multiple redistribution lines and multiple micro through holes for electrical connection between the first functional module and the second functional module, where the electrical connection component in the first functional module is electrically connected to the third functional module; and a second substrate, where the second substrate is sealed with the first substrate.
Techniques for improving acoustic wave device structures are disclosed, including filters and systems that may include such devices. An apparatus may comprise a first electrical filter including an acoustic wave device. The first electrical may having a first filter band in a Super High Frequency (SHF) band or an Extremely High Frequency (EHF) band to facilitate compliance with a regulatory requirement or a standards setting organization specification. For example, the first electrical filter may comprise a notch filter having a notch band overlapping at least a portion of an Earth Exploration Satellite Service (EESS) band to facilitate compliance with a regulatory requirement or the standards setting organization specification for the Earth Exploration Satellite Service (EESS) band.
A variable filter for an RF circuit has a signal loop comprising a signal input port and a signal output port, and a plurality of circuit elements connected within the signal loop. The plurality of circuit elements comprise a multi-pole resonator comprising a plurality of frequency tunable resonators and an adjustable scaling block that applies a gain factor. Adjacent frequency tunable resonators within the multi-pole resonator are reciprocally coupled. A controller is connected to tune the multi-pole resonator and to adjust the gain factor of the adjustable scaling block such that the signal loop generates a desired bandpass response.
A radio frequency (RF) equalizer in an envelope tracking (ET) circuit is disclosed. A transmitter chain includes an ET circuit having an RF equalizer therein. The RF equalizer includes a two operational amplifier (op-amp) structure that provides a relatively flat gain and a relatively constant negative group delay across a frequency range of interest (e.g., up to 200 MHz). The simple two op-amp structure provides frequency response equalization and time tuning adjustment and/or creates a window Vcc signal.
A device for supplying cold energy, heat energy and electrical energy by efficiently converting renewable deep-space energies includes a solar-energy conversion device, a radiation refrigeration device, a rotary bracket, a dip-angle adjustment component, and a support base. The solar-energy conversion device and the radiation refrigeration device are connected to the rotary bracket in a mutually perpendicular manner, and the rotary bracket is connected to the dip-angle adjustment component which is connected to the support base. The dip-angle adjustment component is configured to adjust a dip angle between the rotary bracket and a horizontal plane, and the rotary bracket is configured to drive the solar-energy conversion device and the radiation refrigeration device to rotate, such that a sunward side of the solar-energy conversion device is always perpendicular to light rays irradiated by the sun, and a reflective surface of the radiation refrigeration device is always parallel to the light rays.
An apparatus and method for rotating a part includes a sequence of relays to rotate the part given number of degrees. The apparatus does not require software or complex mechanical gearing.
Electromechanical actuation systems and related operating methods are provided. A method of controlling an electromechanical actuator in response to an input command signal at an input terminal involves determining a commanded actuation state value based on a characteristic of the input command signal, generating driver command signals based on the commanded actuation state value and an actuator type associated with the electromechanical actuator, and operating driver circuitry in accordance with the driver command signals to provide output signals at output terminals coupled to the electromechanical actuator.
Provided is a magnetic pole position detection device with which it is possible to shorten the detection time of the initial magnetic pole position of the rotor of a synchronous motor. A magnetic pole position detection device that detects the magnetic pole position of the rotor of the synchronous motor, the magnetic pole position detection device comprising an excitation command unit that excites the synchronous motor while changing the current phase of the excitation current from a preset initial value, and a torque zero determination unit that determines whether the torque generated by the rotor has reached zero, the excitation command unit: continuously executing an operation for exciting the synchronous motor using, as the current phase of the excitation current, a value obtained with a subtraction process for subtracting, from the initial value, a phase angle corresponding to the cumulative value of the movement amount of the rotor from the starting point of excitation at the initial value of the current phase, during the period after the synchronous rotor was excited at the initial value of the current phase until the torque is determined to have reached zero; and acquiring, as the magnetic pole initial position, the value obtained with the subtraction process when the torque is determined to have reached zero.
Described is a method of determining a speed of a synchronous motor having a rotor and a stator having windings. The method comprises sensing currents in the windings of the stator while the rotor is rotating and transforming the currents into a two-dimensional (2D) coordinate system using an alpha-beta (α-β) transformation, wherein the alpha-beta (α-β) transformation is a Clarke transformation, the 2D coordinate system having an α-axis and a β-axis. The method includes determining a rotor angle θ from an arc tangent (A tan) of a ratio of a current iα in the α-axis to a current iβ in the β-axis and determining a speed of the motor from the rotor angle θ.
Disclosed in the present invention is a dual-rotor microfluidic energy capturing and power generating device based on a piezoelectric effect. An inner ring of blades and an outer ring of blades are coaxially and movably sleeved, and rotate relatively. Sheet-like magnetic piezoelectric components and steel magnets are provided in an annular gap between the inner ring of blades and the outer ring of blades. Magnetic piezoelectric components are connected to an inner peripheral surface of the outer ring of blades, the magnetic piezoelectric components are magnetically repulsive to the steel magnets, and the outer sides of the magnetic piezoelectric components are axially arranged. The inner ring of blades and the outer ring of blades rotate relatively to drive the magnetic piezoelectric components and the steel magnets to rotate relatively, and further drive the magnetic piezoelectric components to oscillate to generate mechanical energy which is then converted into electric energy.
An apparatus and a method for controlling an inverter are disclosed. A method, according to one embodiment of the present disclosure, receives an operation command for an inverter, outputs a first PWM control signal, to an inverter unit, such that the inverter unit outputs at least one among a plurality of valid vectors for the diagnosis of a short circuit of the output of the inverter, and blocks the output of the inverter if a short circuit current of the inverter is detected.
A GaN layer is formed over the substrate. An AlGaN layer is formed on the GaN layer. A first source electrode, a first gate electrode, a second gate electrode, and a second source electrode are formed on or over the AlGaN layer. A first p-type Alx1Ga1-x1N layer where 0≤x1<1 is interposed between the first gate electrode and the AlGaN layer. A second p-type Alx2Ga1-x2N layer where 0≤x2<1 is interposed between the second gate electrode and the AlGaN layer. The substrate is electrically insulated from all of the first source electrode, the second source electrode, the first gate electrode, and the second gate electrode. The bidirectional switch further includes a terminal used to connect the substrate to a fixed potential node. The terminal is connected to the substrate.
A method for driving an electro-optical functional layer by a control, the functional layer being applied on a substrate and being variable in its transmissive and/or reflective properties by applying an electric field, the control unit having a supply voltage input and a feed output, and a voltage measuring system and an energy store, includes measuring a voltage actually available at the supply voltage input, if the available voltage is greater than a reference value, driving the functional layer with an AC voltage via the feed output, the energy store being charged at least in sections, if the available voltage is less than or equal to a reference value, driving the functional layer with a DC voltage via the feed output. At least part of the energy for the driving is drawn from the energy store. The DC voltage is less than the peak value of the AC voltage.
Electronic control system for electric machine and electric assembly. The electronic system includes an electronic power module for converting a DC current into an AC current, and an electronic control module configured to generate a control signal for the electronic power module. The electronic control module includes a first electronic sub-assembly including at least a first trace and at least one electronic control component, the at least one electronic control component being electrically connected to the at least one first trace. A second electronic sub-assembly, separate from the first electronic sub-assembly, includes an electronic control device for generating the control signal and/or an electronic measuring device for measuring an operating parameter of the electronic power module. The second electronic sub-assembly being connected to the first electronic sub-assembly by a first control pin. An electric assembly includes the electronic system and a rotating electric machine.
A method for converting an input voltage (Vin) of a converter (1) into an output voltage (Vout), the circuit comprising a first bridge arm consisting of two switches (A) and (B), a second bridge arm consisting of two switches (C) and (D), connected in parallel, a primary coil coupled to a secondary coil, and connected by a center point pole (PAB) of the first bridge arm, and by another center point pole (PCD) of the second bridge arm; the circuit further comprising a capacitor in parallel between the respective terminals of each of the switches (A, B, C, D); a third bridge arm formed by two switches (E) and (F), connected in series; each of the switches (A, B, C, D, E, F) being associated with a diode at the terminals of said switch; an injection inductance (Linj) connected to the center point (PAB) of the first bridge arm, and to the center point (PEF) of the third bridge arm; a monitoring-control unit configured to control the switches to turn them ON or OFF, according to a control cycle configured to ensure soft switching between ON and OFF.
An apparatus includes a ramp generator configured to produce a set signal for determining a phase shift between a first phase and a second phase of a power converter, a first phase on-timer configured to produce a first reset signal for determining a turn-on time of a high-side switch of the first phase of the power converter, a second phase on-timer configured to produce a second reset signal for determining a turn-on time of a high-side switch of the second phase of the power converter, and a control logic block configured to generate gate drive signals for the first phase and the second phase of the power converter based on the set signal, the first reset signal and the second reset signal.
A method for precharging half bridge modules and full bridge modules of a modular multilevel converter includes providing the modular multilevel converter with at least one phase module branch with half bridge modules and full bridge modules connected electrically in a series circuit, and each of the half bridge modules and full bridge modules having at least first and second module connections, two electronic switching elements and an electrical energy store. In a first charging phase after connecting the multilevel converter to an energy supply network with the electronic switching elements of the half bridge modules and the full bridge modules not actuated, the energy stores of the half bridge modules and the full bridge modules are charged in an uncontrolled manner. In a second charging phase, the electronic switching elements of at least some full bridge modules are actuated such that the half bridge modules are charged further.
Turn-off circuits. In one aspect, the turn-off circuit includes a transistor having a gate terminal, a source terminal and a drain terminal, a first pull-down circuit connected to the gate terminal, a second pull-down circuit connected to the gate terminal, and a third pull-down circuit connected to the gate terminal. In another aspect, the first, the second and the third pull-down circuits are arranged to cause a turn off of the transistor by changing a voltage at the gate terminal at a first rate of voltage with respect to time from an on-state voltage to a first intermediate voltage, and from the first intermediate voltage to a second intermediate voltage at a second rate of voltage with respect to time, and from the second intermediate voltage to an off-state voltage at a third rate of voltage with respect to time, wherein the first rate is higher than the second rate.
A motor stator includes a plurality of stacked annular stator laminates defining a stator core having an inner circumference, an outer circumference, a plurality of stator teeth on the inner circumference, and a plurality of ears extending outward from the outer circumference with a respective bolt hole defined in each ear. A first set of the stator laminates includes a plurality of coolant openings therethrough, wherein the coolant openings of adjacent stator laminates communicate with one another in order to define cooling channels inside the stator core. A second set of the stator laminates each include one or more generally radially extending first openings therethrough, wherein the first openings of adjacent stator laminates communicate with one another to define one or more first radial channel segments inside the stator core for providing radial coolant flow between one or more bolt holes and one or more cooling channels.
A stator assembly for a BLDC motor includes a stator core, at least one magnet wire wound on poles of the stator core, an end insulator mounted on an end surface of the stator core, a non-conductive mount member mounted on the outer circumferential surface of the stator core, and conductive terminals mounted on the non-conductive mount member. Each conductive terminal includes: a main portion mounted on the non-conductive mount, a tang portion extending from a first longitudinal end adjacent the end insulator and folded over the main portion, and a connection tab extending angularly from a second longitudinal end. A contact portion of the magnet wire is wrapped around the tang portion and fused to make an electric connection to the conductive terminal.
The invention relates to an electric machine (1) having a rotor (3), a stator (2) and several rigid winding pieces (5) formed as hollow conductors, which form various coils of a winding (4) of the electric machine (1) and are each part of a cooling circuit of the electric machine (1). According to the invention, the winding pieces (5) each have at least one lateral tap (34) in the region of their end sections (8), via which tap a coolant can be fed into the winding pieces (5) or removed from the winding pieces (5).
In a method for producing a material layer with a recess, a first suspension containing a binder is applied through a first opening in a first template and a second suspension containing a binder and solid particles is applied through a second opening in a second template. The first opening in the first template is completely contained within the second opening in the second template such that the second suspension completely surrounds the first suspension to produce a green body. The green body containing the first and second suspensions is sintered such that the first suspension is evaporated to provide the recess and permanent cohesion of the solid particles in the second suspension is achieved.
A motor controller for a motor having an end cap. The motor controller including a power board adapted to couple with a first surface of the end cap, on an internal side of the motor, and including opposing first and second sides and a control board adapted to couple to a second surface of the end cap, on an external side of the motor, and including a processor. The power board including position sensors disposed on the first side and switching elements disposed on the second side.
A method of inspecting a stator stack includes disposing the stator stack on a support surface of an inspection system, and performing a depth measurement of a stator slot. The depth measurement includes rotating the stator slot along a first direction to a plurality of first orientations, taking a first image at each of the first orientations, and measuring a depth based on at least one of the first images. The method includes performing a width measurement of the stator slot, which includes rotating the stator slot along a second direction to a plurality of second orientations, taking a second image at each of the second orientations, and measuring a width based on at least one of the second images. The method further includes inspecting edges of the stator slot in the at least one of the first images to detect a potential deviation.
A rotor includes a rotating shaft, a core and a Halbach array magnet. The Halbach array magnet has first magnet portions each having its magnetization direction oriented along a radial direction and second magnet portions each having its magnetization direction oriented along a circumferential direction. The first magnet portions and the second magnet portions are alternately arranged in the circumferential direction. The core has a shaft-fixed portion, a yoke portion and a plurality of connection portions. The connection portions are arranged in the circumferential direction with gaps formed therebetween. On an inner circumferential surface of the yoke portion, there are formed additional-function portions to extend radially inward from the inner circumferential surface of the yoke portion. Each of the additional-function portions is located radially inside a corresponding one of the second magnet portions and has an additional function in addition to a function of forming the magnetic path.
A rotor for a rotating electrical machine includes a rotor core body that includes a bridge through which a first inner surface is connected to a second inner surface of an innermost flux barrier when the rotor core body is viewed in an axial direction of a rotor core. The innermost flux barrier has an outer-side closed space that is a defined space and is formed between the bridge and an outer periphery of the rotor core body. The outer diameter closed space is filled, in the axial direction of the rotor core body, with a reinforcing part that is made of a non-magnetic material.
The application relates to an energy storage including a plurality of energy modules arranged in one or more energy module strings. A string controller is configured for controlling a current path through the energy module strings by controlling the status of a plurality of semiconductor switches. A first end of a current path is electrically connectable to a first electric system of a first electric bus via a first bus switch and to a second electric system of a second electric bus via a second bus switch. A second end of the current path is electrically connectable to a first reference potential being the same as the reference potential of the electric systems connected to the first end of the current path. An energy storage controller is configured for controlling the status of the first bus switch and of the second bus switch in dependency of the received power status.
An uninterruptible power supply device includes a housing having a rectangular parallelepiped shape, a plurality of units vertically stacked and accommodated in housing, and a fan unit having a plurality of fans aligned on an upper surface of housing. Each of the upper surface and the lower surface of housing is formed with an opening through which a wire is led into housing.
A working method of a modular uninterruptible power supply (UPS) includes: obtaining working parameters of the modular UPS, where the working parameters include an input voltage parameter, a load parameter, and a battery parameter; and adjusting a working mode of a power module in the modular UPS according to at least one of the working parameters of the modular UPS, so that not all power modules are in a same working mode, where the modular UPS includes K working modules, and 2≤K.
The disclosure relates to a method for adaptively fast-charging a battery pack using a battery charging device. At least one voltage and the temperature of the battery pack are continuously or periodically detected by means of a detection unit. A charging current of the battery charging device is adapted by means of a control and/or regulating unit of the battery charging device on the basis of the detected voltage and/or the detected temperature of the battery pack. At least one battery-specific threshold of the voltage and/or the temperature is taken into consideration in order to adapt the charging current by means of the control and/or regulating unit. Prior to starting the charging process, the battery-specific threshold of the voltage and/or the temperature is transmitted from a memory unit of the battery pack and/or the battery charging device to the control and/or regulating unit by means of a communication unit.
Disclosed herein is a power supply device and a control method for the power supply device. The power supply device includes: a battery; an external interface electrically connected to the battery and electrically attachable to or detachable from an external device; a voltage converter provided between the battery and the external interface; a low-voltage circuit that branches from an interface connection circuit connecting the external interface and the voltage converter and is connected to a low-voltage load having a rated voltage lower than a voltage of the battery; an interrupt circuit provided in the low-voltage circuit and configured to electrically interrupt the low-voltage circuit and the interface connection circuit; and an electronic control unit configured to control operations of the voltage converter and the interrupt circuit. The electronic control unit operates the interrupt circuit when a voltage of the interface connection circuit exceeds the rated voltage of the low-voltage load.
A device for supplying power from a vehicle battery to the outside is provided. The device includes an inverter circuit having a bridge circuit with multiple switching elements and that converts the received DC power into the AC power by switching the switching elements and that outputs the AC power. A controller controls an on/off state of each switching element through pulse width modulation. When an output AC output to the load has a value greater than a preset reference value or an input direct current input into the inverter has a value greater than a preset reference value, the controller changes a duty of each switching element to reduce an output AC voltage output from the inverter. When the reduced output AC voltage has a value equal to or less than a preset reference value, the controller stops a power conversion operation of the inverter.
A method of reducing a power consumption of a wireless device according to one embodiment includes performing, by the wireless device, a calibration of wireless communication circuitry of the wireless device in response to establishing a wireless communication connection with a wireless access point, determining, by the wireless device, a number of disconnections between the wireless device and the wireless access point over a predefined period of time, and increasing, by the wireless device, a sleep interval of the wireless communication circuitry of the wireless device in response to determining the number of disconnections between the wireless device and the wireless access point over the predefined period of time is less than a threshold number of disconnections.
The present specification provides a wireless power reception apparatus comprising: a power pick-up unit configured to receive wireless power from a wireless power transmission apparatus by magnetic coupling with the wireless power transmission apparatus and convert an AC signal generated by the wireless power into a DC signal; a communication/control unit configured to receive the DC signal from the power pick-up unit and control the wireless power; and a load configured to receive the DC signal from the power pick-up unit. When foreign material is detected before power transmission, wireless power transmission is sustained on the basis of a safe basic power profile of 5 W or less, without interrupting power transmission, and thus, a charging delay can be prevented and the accuracy and reliability of detection of foreign material can be increased despite individual characteristics of the wireless power reception apparatus.
Operating a renewable energy generator forming part of a renewable energy power plant. During a fault experienced by a power network: determining an active current set point to enable a reactive current supply boost at the point of connection between the plant and the network, the active current set point being based on a voltage level associated with the generator and on operational characteristics of the generator, plant, power network and/or connecting network; calculating a time period for the reactive current boost, the time period being the maximum time that the active current set point can be maintained for; and controlling the generator during the calculated time period to alter active current output to the determined active current set point, thereby providing the reactive current supply boost at the point of connection.
Provided is a jump starting device for boosting a depleted or discharged battery having a positive terminal and negative terminal, including a battery device including multiple battery cells connected together in series, a positive battery connector for connecting the positive terminal of the battery device to the positive terminal of the depleted or discharge battery, a negative battery connector for connecting the negative terminal of the battery device battery to the negative terminal of the depleted or discharged battery, and electronics in circuit with the battery device, positive battery connector, and negative battery connector, the electronic configured for selectively connecting at least one or more battery cells of the battery device to the depleted or discharge battery in a normal boost mode or in an enhanced boost mode.
A wall-embedded wire and cable box is configured for installing in an installation hole of a wall. The embedded wire box includes a main body of embedded wire box, connecting members, and locking members. The locking members are connected to the main body of embedded wire box and the connecting members, and the locking members are capable of driving the connecting members to move, so that the connecting members have an unfolded state and a restored state. When the connecting members are in the restored state, the main body of embedded wire box can be installed in the installation hole of the wall. When the connecting members are in the unfolded state, the locking members can be used for locking the wall between the main body of embedded wire box and the connecting members.
A prechamber spark plug. The prechamber spark plug includes a housing and a cap, which is arranged at a combustion-chamber end of the prechamber spark plug. The cap has, on the combustion-chamber side, a recess in an outer side.
A light emitting device includes a first active layer on a substrate, a current spreading length, and a plurality of mesa regions on the first active layer. At least a first portion of the first active layer can comprise a first electrical polarity. Each mesa region can include, at least a second portion of the first active layer, a light emitting region on the second portion of the first active layer with a dimension parallel to the substrate smaller than twice the current spreading length, and a second active layer on the light emitting region. The light emitting region can be configured to emit light with a target wavelength from 200 nm to 300 nm. At least a portion of the second active layer can comprise a second electrical polarity.
An optical semiconductor device includes a semiconductor substrate with a protrusion that forms a lower end portion of a mesa stripe structure in a stripe shape extending in a first direction; a multi-quantum well layer in a stripe shape extending in the first direction on the protrusion, wherein the multi-quantum well layer forms an intermediate portion of the mesa stripe structure; a semiconductor layer in a stripe shape extending in the first direction on the intermediate portion, wherein the semiconductor layer forms an upper end portion of the mesa stripe structure; and a semi-insulating semiconductor layer in contact with side surfaces of the mesa stripe structure on both sides in a second direction perpendicular to the first direction. The optical semiconductor device may include a first electrode on a surface of the semiconductor substrate and/or a second electrode on the upper end surface of the mesa stripe structure.
A vertical cavity surface emitting laser (VCSEL) device includes a substrate, a first mirror layer, a tunnel junction layer, a second mirror layer, an active layer, an oxide layer and a third mirror layer sequentially stacked with one another. The first mirror layer and the third mirror layer are N-type distributed Bragg reflectors (N-DBR), and the second mirror layer is P-type distributed Bragg reflector (P-DBR). The tunnel junction layer is provided for the VCSEL device to convert a part of the P-DBR into N-DBR to reduce the series resistance of the VCSEL device, and the tunnel junction layer is not used as current-limiting apertures. This disclosure further discloses a VCSEL device manufacturing method with the in-situ and one-time epitaxy features to avoid the risk of process variation caused by moving the device into and out from an epitaxial cavity.
A multipass laser amplifier includes a mirror, a mirror device, a gain crystal, and refractive or diffractive beam-steering element. The gain crystal is positioned on a longitudinal axis of the multipass laser amplifier between the mirror and the mirror device. The beam-steering element is positioned on the longitudinal axis between the gain crystal and the mirror device. The beam-steering element has no optical power and deflects a laser beam, by refraction or diffraction, for each of multiple passes of the laser beam between the first mirror and the mirror device, such that each pass goes through the gain crystal for amplification of the laser beam and goes through a different respective off-axis portion of the beam-steering element. The no optical power of the beam-steering element enables maintaining a large beam size in the gain crystal, thereby facilitating amplification to high average power.
A coaxial electrical cable assembly may include a central conductor disposed within a shield conductor of the coaxial cable. A coaxial electrical cable assembly may include a shield terminal having a tubular portion. The central conductor of the coaxial cable is disposed within the tubular portion and wherein the tubular portion is disposed within the shield conductor of the coaxial cable. A coaxial electrical cable assembly may include a first outer ferrule crimped around the shield conductor of the coaxial cable forming a first seam. A coaxial electrical cable assembly may include a second outer ferrule crimped around the first outer ferrule and forming a second seam. The first outer ferrule is arranged over the tubular portion of the shield terminal and the second outer ferrule is arranged over the first outer ferrule and an outer insulative jacket of the coaxial cable.
An electronic assembly includes a circuit board having a plurality of conductive traces and electronic components forming an electronic circuit disposed thereon, a plurality of flexible electrical terminals configured to attach to electrical contacts disposed on a glass surface and electrically connected to the plurality of conductive traces, and a coaxial cable connector electrically connected to the plurality of conductive traces. A method of manufacturing an electronic assembly, e.g., the electronic assembly described above, is also presented herein.
According to some embodiments of the present disclosure, there is provided a first connector configured to be connected to an electrical cable, the first connector including an electrical connector configured to mate with and electrically connect to the electrical cable, and a body having a first end carrying a plurality of electrical terminals and having a second end coupled to an end of the electrical connector, the body including a sleeve extending from the first end to the second end, the sleeve being molded over and extending around the end of the electrical connector, and a flange axially extending outwardly from the first end of the body.
An electrical connector assembly includes an electrically conductive structure having a flat flexible conductor with a plurality of end portions. Each of the plurality of end portions includes a plurality of electrically conductive traces. A plurality of wire contact wedges respectively support the plurality of end portions of the electrically conductive structure. A connector housing supports the plurality of wire contact wedges and the electrically conductive structure.
A phased array system has a substrate, a plurality of elements, and a plurality of beamforming ICs. Each beamforming IC has a first set of element interfaces and a second set of element interfaces. The first set of element interfaces may be configured to be polarized in a first polarization, while the second set of element interfaces may be configured to be polarized in a second (different) polarization. Each beamforming IC has a first common interface electrically coupled with its first set of element interfaces and, in a corresponding manner, each beamforming IC also has a second common interface electrically coupled with its second set of element interfaces. The system further has an interconnect element (e.g., a circuit trace, metallization on a PCB, etc.) electrically coupling the first common interface with the second common interface of another beamforming IC.
Disclosed is an antenna array system including an antenna array of N≥2 antenna elements that output N antenna signals; an interferer-nulling beam forming network (IN-BFN) coupled to the antenna array, N non-linear filters coupled to the IN-BFN, and a desired signal BFN. The IN-BFN may include N “null BFNs” to generate N null signals, each null BFN applying a respective nulling beam weight set to the N antenna signals to generate a respective one of the N null signals. Each respective nulling beam weight set corresponds to a different respective set of (N−1) independent nulls. Each of the N non-linear filters may filter a respective one of the N null signals to provide a respective one of N filtered signals. The desired signal BFN may apply a desired signal beam weight set to the N filtered signals to generate an output signal.
A satellite antenna positioner having a predictive maintenance function, according to an embodiment of the present inventive concept, relates to a satellite antenna positioner having a predictive maintenance function, which supports an antenna and is configured to orient the antenna on the basis of a received satellite signal, the satellite antenna positioner comprising: a first motor which generates driving power for adjusting the elevation of the antenna; a first gear which rotates the antenna about a first axis while reducing the rotation speed of the first motor; a second motor which generates driving power for adjusting the azimuth of the antenna; a second gear which rotates the antenna about a second axis perpendicular to the first axis while reducing the rotation speed of the second motor; a control module which controls the first motor and the second motor on the basis of the sensitivity of the received satellite signal; and a predictive maintenance module which monitors whether at least one of the first gear and the second gear is abnormal.
The antenna device includes multiple first radiation plates and multiple second radiation plates. Each of the first radiation plates has a first feed point and a first ground end portion, and radiates a first radio wave. Each of the second radiation plates has a second feed point and a second ground end portion, and radiates a radio wave of a frequency different from the frequency of the first, radio wave. When the antenna device is viewed in a direction orthogonal to the polarization direction of the first radio wave, the first radiation plate and the second radiation plate are disposed so as not to overlap.
Waveguide and/or antenna structures for use in RADAR sensor assemblies and the like. In some embodiments, the assembly may comprise a waveguide groove extending along an elongated axis on a first side of a block and an antenna structure operably coupled with the waveguide groove. The antenna structure may comprise an antenna slot extending along the elongated axis on a second side of the block opposite from the first side and the antenna slots may be positioned and configured to deliver electromagnetic radiation from the waveguide groove therethrough. Some embodiments may further comprise one or more grooves extending adjacent to the antenna slot, such as opposing grooves extending adjacent to the antenna slot.
A vehicle skeleton structure including: a roof reinforcement that configures a part of a roof section of a vehicle body, the roof reinforcement extending in a vehicle width direction, the roof reinforcement having a closed cross-sectional shape when viewed from the vehicle width direction, the roof reinforcement being configured such that a communication device capable of at least one of sending or receiving of radio waves can be disposed at an inner side thereof, and a penetrating section being formed at a portion at a vehicle upper side of the roof reinforcement; and a lid member that closes off the penetrating section, the lid member being configured by a material capable of transmitting radio waves.
An antenna stack structure according to an embodiment includes a lower dielectric layer, an antenna electrode layer formed on the lower dielectric layer, and an upper dielectric layer disposed on the antenna electrode layer. A dielectric constant of the upper dielectric layer is 1 or more and less than 7, and a thickness of the upper dielectric layer is in a range from 100 μm to 1,300 μm. A frequency and a band width are finely controlled using the upper dielectric layer while suppressing excessive gain reduction and frequency shift.
Disclosed herein are embodiments of low temperature co-fireable dielectric materials which can be used in conjunction with high dielectric materials to form composite structures, in particular for isolators and circulators for radiofrequency components. Embodiments of the low temperature co-fireable dielectric materials can be scheelite or garnet structures, for example barium tungstate. Adhesives and/or glue is not necessary for the formation of the isolators and circulators.
A control device for controlling a power supply device that supplies power to a work machine includes a load amount acquisition unit configured to acquire load information indicating a load amount of the work machine during a work period of the work machine, and an output condition determination unit configured to determine an output rate of a fuel cell based on the load amount indicated by the load information during the work period. The power supply device includes the fuel cell. The work period may be a period starting when information indicating start of work of the work machine is received and ending when information indicating end of the work of the work machine is received.
Described herein are solid oxide fuel cells (SOFCs), comprising anode-conductor seals and/or cathode-conductor seals used for sealing porous metal structures and controlling the distribution of fuel and oxidants within these porous structures. For example, a SOFC comprises an anode conductor, cathode conductor, and electrolyte, disposed between the anode and cathode conductors. The anode conductor comprises multiple porous portions (permeable to the fuel) and a non-porous portion. The SOFC also comprises an anode-conductor seal, forming a stack with the non-porous portion. This sealing stack extends between the electrolyte and current collector and separates two porous portions thereby preventing the fuel and oxidant migration between these portions. In some examples, the sealing stack forms an enclosed boundary around one porous portion of the anode conductor. In the same or other examples, another sealing stack is formed in the cathode conductor, e.g., surrounding a fuel port extending through the cathode conductor.
Provided is a separator for an electrochemical device, including: a porous polymer substrate; and a porous organic/inorganic coating layer formed on at least one surface of the porous polymer substrate and including heat conductive inorganic particles and core-shell particles, wherein the particles are bound to one another by a binder polymer, and wherein the core-shell particle includes a core portion and a shell portion surrounding the surface of the core portion, the core portion includes a metal hydroxide having heat-absorbing property at 150-400° C., the shell portion includes a polymer resin, and the polymer resin is a water-insoluble polymer or crosslinked polymer. An electrochemical device including the separator is also provided. It is possible to provide a separator with an improved heat-absorbing effect and safety, and an electrochemical device including the same.
Embodiments of the present application provide a battery cell, a battery, a power consumption apparatus, a method for producing a battery cell and an apparatus for producing a battery cell. The battery cell includes: a pressure relief mechanism, the pressure relief mechanism being disposed on at least one wall of the battery cell; and a protective film enclosing an outer surface of the at least one wall, the protective film being configured to provide insulation protection for the at least one wall; where the protective film includes a first portion at least covering the pressure relief mechanism. Through technical solutions of the embodiments of the present application, insulation performance of a battery cell could be improved; meanwhile, deformation of a pressure relief mechanism could be suppressed, creep of the pressure relief mechanism could be reduced, and the service life of the pressure relief mechanism could be increased.
The present disclosure provides a battery that can further reliably suppress penetration of moisture and so forth inside the battery. A battery according to an embodiment of the present disclosure includes a power generation element; and a sealing member containing an insulating material and zeolite particles. The power generation element includes a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode. The zeolite particles have an average particle size less than or equal to 1 μm.
A battery manufacturing method and a battery are provided. The battery manufacturing method includes: providing a first housing, including a bottom wall and a side wall, wherein the side wall extends upward from the bottom wall, the side wall encloses to form an opening, the side wall extends outward from the opening to form a first flange, and a first reinforcing part is formed on the first flange; providing a second housing, wherein the second housing includes an intermediate part and a second flange, the intermediate part covers the opening, and the second flange is in contact with the first flange; and welding the first flange and the second flange.
An anode for an energy storage device includes a current collector. The current collector includes: i) an electrically conductive substrate including a first electrically conductive material; ii) a plurality of electrically conductive structures in electrical communication with the electrically conductive substrate, wherein each electrically conductive structure includes a second electrically conductive material; and iii) a metal oxide coating. The metal oxide coating includes one or both of: a) a first metal oxide material in contact with the electrically conductive substrate; or b) a second metal oxide material in contact with the electrically conductive structures; or both (a) and (b). The anode further includes lithium storage coating overlaying the metal oxide coating, the lithium storage layer including a total content of silicon, germanium, or a combination thereof. The electrically conductive structures are at least partially embedded within the lithium storage coating. Methods of making the anode are described.
A method of preparing a positive electrode active material is disclosed herein. In some embodiments, the method includes firing a first mixture at 400° C. to 700° C. to prepare a primary firing product, wherein the first mixture has a positive electrode active material precursor having a specific composition, a first lithium-containing source material, and optionally, an aluminum-containing source material, and firing a second mixture at a temperature above the firing temperature of the first mixture to prepare a positive electrode active material, wherein the second mixture has the primary firing product, a second lithium-containing source material, and a specific doping element M1-containing source material. The method is capable of degrading the cake strength of a primary firing product and providing a positive electrode active material having excellent quality by dividing a firing process into two steps.
The present invention relates to a lithium composite oxide capable of improving capacity and lifetime characteristics of a lithium secondary battery and a lithium secondary battery including the same. According to the present invention, since the atomic ratio of boron (B) and nickel (Ni) in the surface region of the lithium composite oxide including primary particles enabling lithium intercalation and deintercalation and secondary particles formed by aggregating the primary particles is in a specific range, the stability of the lithium composite oxide may be improved, and thus it is possible to improve the capacity and lifetime characteristics of the lithium secondary battery using the lithium composite oxide as a positive electrode active material.
A layered sodium ion battery positive electrode material and a preparation method therefor. The chemical formula of the layered sodium ion battery positive electrode material is NaxMnO2-a(MO4)a, wherein 0
A method for forming a cathode includes milling a suspension of precursors via a micromedia mill to form a mixture of primary particles in the suspension. The precursors include one or more metal compounds. The method includes spray drying the suspension after the milling to form secondary particles. The secondary particles are agglomerations of the primary particles. The method also includes annealing the secondary particles to form a disordered rocksalt powder.
A positive electrode active material composite body according to the present disclosure includes a positive electrode active material containing a transition metal element and having a particulate shape, and an ion conductor provided in contact with a surface of the positive electrode active material, wherein the ion conductor is constituted by a material containing Li, Zr, and M which is at least one type of element selected from the group consisting of Nb, Sb, and Ta, the transition metal element is partially diffused in the ion conductor, and an average decrease ratio of a content ratio of the transition metal element until a point where the content ratio of the transition metal element in the ion conductor to be determined by a characteristic X-ray has reached 12% of the content ratio of the transition metal element at an interface between the positive electrode active material and the ion conductor based on a substance amount is 0.5% or more and 6.1% or less per 1 nm thickness from the interface.
An all-solid lithium secondary battery, including: a cathode including a cathode active material layer; a solid electrolyte layer; and an anode including an anode active material layer, which forms an alloy or a compound with lithium, wherein the cathode, the solid electrolyte is between the cathode and the anode, wherein the anode active material layer includes about 33 weight percent to about 95 weight percent of an amorphous carbon with respect to the total mass of an anode active material in the anode active material layer, and a ratio of the initial charge capacity of the cathode active material layer to the initial charge capacity of the anode active material layer satisfies 0.01
This disclosure details exemplary traction battery pack venting systems for use in electrified vehicles. An exemplary traction battery pack system may include a venting system having one or more vent ducts for expelling battery vent byproducts from a battery pack. The vent ducts may include a thermal barrier configured to block heat emitted by the battery vent byproducts during cell venting events. In some embodiments, the thermal barrier includes a thermal barrier coating. In other embodiments, the thermal barrier includes both a thermal barrier coating and a thermal barrier layer. In still other embodiments, a second thermal barrier may be applied to vehicle components located near the battery pack for improving the thermal barrier properties.
A battery module comprising a housing defining an internal cell cavity and cells located in the cell cavity. The housing comprises two substantially parallel walls and an end structure extending between the two walls, the end structure defining an end of the housing in a first direction, the end structure being inclined with respect to the top and bottom walls such that the cell cavity extends in the first direction beyond the furthest extent of the top wall, and being configured such that the battery module can nest with a similar battery module.
The present invention relates to fire-extinguishing equipment integrated with a secondary battery system for early detection and early extinguishing for reducing the risk of fire spreading inside battery modules, and, more specifically, the present invention comprises: a plurality of battery modules constituting a secondary battery system; module unit fire detection devices mounted inside the modules so as to sense a fire in advance; and integrated fire extinguishing equipment partially coupled to the battery modules so as to directly spray a fire extinguishing agent at the inside of each module, wherein the battery modules include additional members for a cooling effect and the instantaneously supply of a fire-extinguishing agent when a fire is detected.
In at least select embodiments, the instant disclosure is directed to new or improved battery separators, components, materials, additives, surfactants, lead acid batteries, systems, vehicles, and/or related methods of production and/or use. In at least certain embodiments, the instant disclosure is directed to surfactants or other additives for use with a battery separator for use in a lead acid battery, to battery separators with a surfactant or other additive, and/or to batteries including such separators. In at least certain select embodiments, the instant disclosure relates to new or improved lead acid battery separators and/or systems including improved water loss technology and/or methods of manufacture and/or use thereof. In at least select embodiments, the instant disclosure is directed toward a new or improved lead acid battery separator or system with one or more surfactants and/or additives, and/or methods for constructing lead acid battery separators and batteries with such surfactants and/or additives for improving and/or reducing water loss from the battery.
An electrolyte includes a fluorinated cyclic carbonate, a multi-nitrilemulti-nitrile compound having an ether bond and a cyclic phosphonic anhydride. Based on a total weight of the electrolyte, a weight percentage (Cf) of the fluorinated cyclic carbonate is greater than a weight percentage (Cn) of the multi-nitrilemulti-nitrile compound having an ether bond. The electrolyte can control the expansion of the electrochemical device, so that the electrochemical device has excellent cycle, storage and/or floating-charge performance.
The present invention discloses a boron-containing plastic crystal polymer and a preparation method therefor and an application thereof. The described preparation method comprises the following step: curing a mixture containing a plastic crystal, a metal salt, a monomer and a photoinitiator. The plastic crystal polymer prepared by the present invention can be used as all-solid electrolyte, without any liquid additive being added therein. The obtained electrolyte has a room-temperature ionic conductivity up to 3.6×10−4 S/cm, and shows a high sodium ion transference number and a wide electrochemical window up to 4.7V. The present invention further prepares composite positive and negative electrodes for positive and negative electrode modification of a sodium ion battery. A finally assembled all-solid sodium ion battery shows good rate performance and cycle stability at room temperature, achieving a specific discharge capacity up to 104.8 mAh/g at room temperature and a capacity retention ratio of 85.4% after 80 cycles.
A power storage device includes a pair of holding plates, several ribs and thin-walled portions. The ribs includes first ribs inclined to an extending direction of a first edge and an extending direction of a second edge and extending along straight lines connecting first engaging portions and second engaging portions, and second ribs extending along a facing direction in which the first edge and the second edge face each other. At least first ribs extend in different directions from each other and form an intersection where the at least two first ribs intersect with each other. At least one of the second ribs has opposite ends connected to the first ribs intersecting with each other.
A semiconductor light emitting device package includes a circuit board with an upper pad, a light emitting diode chip on the circuit board and having a first surface facing the circuit board and a second surface opposing the first surface, and the light emitting diode chip including a substrate, a semiconductor stack structure on the substrate that emits ultraviolet light, and electrodes connected to the semiconductor stack structure, connection bumps between the circuit board and the light emitting diode chip, the connection bumps connecting the upper pad and the electrodes, an underfill resin on the upper pad of the circuit board and covering at least a portion of a side surface of the light emitting diode chip, and a passivation layer on the light emitting diode chip and the underfill resin, the passivation layer covering the underfill resin and being spaced apart from the semiconductor stack structure.
A method for manufacturing a vertical blue light emitting diode (LED) includes: bonding a growth substrate to a conductive substrate; peeling off the growth substrate; etching the nitride epitaxial layer to remove the buffer layer and the undoped GaN layer and to thin the N-type GaN layer, such that a thickness of a residual nitride epitaxial layer is less than a wavelength of blue light; and forming an N-type electrode on a surface of a residual N-type GaN layer.
A light emitting device includes a light emitting diode chip, a light transmitting member, a white barrier member, and a conductive adhesive member. The light emitting diode chip has a bump pad formed on the lower surface thereof. The light transmitting member covers the side surfaces and the upper surface of the light emitting diode chip, and the upper surface of the light transmitting member has a rectangular shape having long sides and short sides. The conductive adhesive member is formed to extend through the white barrier member from the bottom of the light emitting diode chip. The upper surface of the conductive adhesive member is connected to the bump pad of the light emitting diode chip, and the lower surface of the conductive adhesive member is exposed at the lower surface of the white barrier member.
A light emitting device includes n columnar parts, and an electrode configured to inject an electrical current into the n columnar parts, wherein each of the n columnar parts includes a first semiconductor layer, a second semiconductor layer different in conductivity type from the first semiconductor layer, and a light emitting layer disposed between the first semiconductor layer and the second semiconductor layer, when viewed from a stacking direction of the first semiconductor layer and the light emitting layer, p first columnar parts out of the n columnar parts fail to overlap an outer edge of the electrode, q second columnar parts out of the n columnar parts overlap the outer edge of the electrode, a number of the second columnar parts centers of which overlap the electrode out of the q second columnar parts is larger than a number of the second columnar parts centers of which fail to overlap the electrode, and n=p+q is fulfilled.
The present disclosure describes methods and epitaxial oxide devices with impact ionization. A method can comprise: applying a bias across a semiconductor structure using a first electrical contact and a second electrical contact; injecting a hot electron, from the first electrical contact, through a second semiconductor layer, and into a conduction band of a first epitaxial oxide material; and forming an excess electron-hole pair in an impact ionization region of the first semiconductor layer via impact ionization. The semiconductor structure can comprise: the first electrical contact; the first semiconductor layer with the first epitaxial oxide material with a first bandgap coupled to the first electrical contact; a second semiconductor layer with a second epitaxial oxide material with a second bandgap coupled to the first semiconductor layer; and a second electrical contact coupled to the second semiconductor layer, wherein the second bandgap is wider than the first bandgap.
A light emitting diode includes an n-type nitride semiconductor layer, a V-pit generation layer located over the n-type nitride semiconductor layer and having a V-pit, an active layer located on the V-pit generation layer, and a p-type nitride semiconductor layer located on the active layer. The active layer includes a well layer, which includes a first well layer portion formed along a flat surface of the V-pit generation layer and a second well layer portion formed in the V-pit of the V-pit generation layer. The active layer emits light having at least two peak wavelengths at a single chip level.
A semiconductor device is provided. The semiconductor device includes a first semiconductor layer; a second semiconductor layer on the first semiconductor layer; an active region between the second semiconductor layer and the first semiconductor layer; an electron blocking structure between the active region and the second semiconductor layer; a first nitride semiconductor layer between the active region and the electron blocking structure; and a second nitride semiconductor layer between the electron blocking structure and the second semiconductor layer. The first nitride semiconductor layer includes a first indium content, a first aluminum content and a first conductivity-type dopant. The second nitride semiconductor layer includes a second indium content, a second aluminum content and a second conductivity-type dopant. The electron blocking structure includes a first semiconductor layer including a third indium content and a third aluminum content; wherein the third indium content is greater than the second indium content.
A semiconductor heterostructure for an optoelectronic device with improved light emission is disclosed. The heterostructure can include a first semiconductor layer having a first index of refraction n1. A second semiconductor layer can be located over the first semiconductor layer. The second semiconductor layer can include a laminate of semiconductor sublayers having an effective index of refraction n2. A third semiconductor layer having a third index of refraction n3 can be located over the second semiconductor layer. The first index of refraction n1 is greater than the second index of refraction n2, which is greater than the third index of refraction n3.
A method of manufacturing a light-emitting device includes providing a structure body including a silicon substrate having a first portion, a second portion, and a third portion between the first portion and the second portion, and a first semiconductor layered body including a first light-emitting layer, the first semiconductor layered body being disposed on or above the silicon substrate. The method includes forming a first resin layer covering a lateral side of the silicon substrate and a lateral side of the first semiconductor layered body. The method includes a removal step of removing the first portion to expose a first surface of the first semiconductor layered body, removing the second portion to expose a second surface of the first semiconductor layered body, and leaving the third portion. The method includes forming a first wavelength conversion member on or above the first surface exposed by the removal of the first portion.
A semiconductor device includes a first dielectric layer, a gate electrode embedded within the first dielectric layer, a layer stack including a gate dielectric layer, a channel layer including a semiconducting metal oxide material, and a second dielectric layer, and a source electrode and a drain electrode embedded in the second dielectric layer and contacting a respective portion of a top surface of the channel layer. A combination of the gate electrode, the gate dielectric layer, the channel layer, the source electrode, and the drain electrode forms a transistor. The total length of the periphery of a bottom surface of the channel layer that overlies the gate electrode is equal to the width of the gate electrode or twice the width of the gate electrode, and resputtering of the gate electrode material on sidewalls of the channel layer is minimized.
Nanowire structures having non-discrete source and drain regions are described. For example, a semiconductor device includes a plurality of vertically stacked nanowires disposed above a substrate. Each of the nanowires includes a discrete channel region disposed in the nanowire. A gate electrode stack surrounds the plurality of vertically stacked nanowires. A pair of non-discrete source and drain regions is disposed on either side of, and adjoining, the discrete channel regions of the plurality of vertically stacked nanowires.
A method includes etching a first portion and a second portion of a dummy gate stack to form a first opening and a second opening, respectively, and depositing a silicon nitride layer to fill the first opening and the second opening. The deposition of the silicon nitride layer comprises a first process selected from treating the silicon nitride layer using hydrogen radicals, implanting the silicon nitride layer, and combinations thereof. The method further includes etching a third portion of the dummy gate stack to form a trench, etching a semiconductor fin underlying the third portion to extend the trench down into a bulk portion of a semiconductor substrate underlying the dummy gate stack, and depositing a second silicon nitride layer into the trench.
A bidirectional switch module includes a plurality of bidirectional switches and a mount board. Each of the plurality of bidirectional switches includes a first source electrode, a first gate electrode, a second gate electrode, and a second source electrode. On the mount board, the plurality of bidirectional switches are mounted. In the bidirectional switch module, the plurality of bidirectional switches are connected in parallel.
A semiconductor device includes a gate structure on a substrate, a single diffusion break (SDB) structure adjacent to the gate structure, a first spacer adjacent to the gate structure, a second spacer adjacent to the SDB structure, a source/drain region between the first spacer and the second spacer, an interlayer dielectric (ILD) layer around the gate structure and the SDB structure, and a contact plug in the ILD layer and on the source/drain region. Preferably, a top surface of the second spacer is lower than a top surface of the first spacer.
A method of manufacturing a MOS transistor includes forming a conductive first gate and forming insulating spacers along opposite sides of the gate, wherein the spacers are formed before the gate.
A method includes forming a gate structure on a semiconductor substrate; depositing a carbon-containing seal layer over the gate structure; depositing a nitrogen-containing seal layer over the carbon-containing seal layer; introducing an oxygen-containing precursor on the nitrogen-containing seal layer; heating the substrate to dissociate the oxygen-containing precursor into an oxygen radical to dope into the nitrogen-containing seal layer; after heating the substrate, etching the nitrogen-containing seal layer and the carbon-containing seal layer, such that a remainder of the nitrogen-containing seal layer and the carbon-containing seal layer remains on a sidewall of the gate structure as a gate spacer.
A method includes forming a gate stack over a semiconductor region, and forming a first gate spacer on a sidewall of the gate stack. The first gate spacer includes an inner sidewall spacer, and a dummy spacer portion on an outer side of the inner sidewall spacer. The method further includes removing the dummy spacer portion to form a trench, and forming a dielectric layer to seal a portion of the trench as an air gap. The air gap and the inner sidewall spacer in combination form a second gate spacer. A source/drain region is formed to have a portion on an outer side of the second gate spacer.
The embodiment of the present application discloses a mounting apparatus and a mounting method. The mounting apparatus comprises: a bracket; a tray movably disposed on the bracket, wherein the tray comprises the first bearing portion and the second bearing portion, the second bearing portion is disposed around the circumference of the first bearing portion and coincides with the center of gravity of the first bearing portion, a first sensor, which is disposed at the center of gravity of the first bearing portion and collects the offset of the center of gravity of the supported first upper electrode portion and the second upper electrode portion; and a driving assembly, which is connected to the tray, drives the tray to ascend and descend and drives the tray to adjust the supporting positions of the first upper electrode portion and the second upper electrode portion.
A SiC MOSFET device with alternating p-well widths, including an undulating channel, is described. The undulating channel provides current paths of multiple widths, which enables optimization of on-resistance, transconductance, threshold voltage, and channel length. The multi-width p-well region further defines corresponding multi-width Junction FETs (JFETs). The multi-width JFETs enable improved response to a short-circuit event. A high breakdown voltage is obtained by distributing a high electric field in a JFET of a first width into a JFET of a second width.
FinFET structures and methods of forming the same are disclosed. In a method, a fin is formed on a substrate, an isolation region is formed on opposing sides of the fin. The isolation region is doped with carbon to form a doped region, and a portion of the isolation region is removed to expose a top portion of the fin, wherein the removed portion of the isolation region includes at least a portion of the doped region.
The present disclosure provides a method of manufacturing a semiconductor structure, and a semiconductor structure. The method of manufacturing a semiconductor structure includes: providing an initial structure, wherein the initial structure includes a substrate, a laminated structure, and capacitor units, and the laminated structure includes support layers; forming a first mask layer, wherein the first mask layer covers a top surface of the laminated structure; forming a first opening in the first mask layer, wherein the first opening exposes the top surface of the laminated structure, and a projection region of the first opening on the substrate at least partially overlaps with projection regions of the capacitor units on the substrate; forming a shielding structure, wherein the shielding structure is located in the first opening, and the shielding structure covers a sidewall of the first opening.
A method to form a fin structure on deep trenches (DTs) for a semiconductor device includes the following steps: A buried oxide layer (BOX) having the DTs, and silicon polies in the DTs is provided. A fin on the BOX and the silicon polies having poly fences is provided. A first mask is disposed on the fin. A liner is disposed on the BOX and the first mask, wherein the liner has a first part above the fin, a second part at lateral sides of the fin and a third part on the DTs and the BOX. A second mask is disposed on the first and the second parts of the liner. The second mask and the third parts of the liner are removed to reveal the first and the second parts of the liner. The poly fences are removed and spacers at the lateral sides are formed.
A semiconductor light emitting device is provided. The semiconductor light emitting device includes a plurality of light emitting structures, each of which includes a first surface and a second surface, a plurality of embossed portions provided on the first surface; a partition wall structure provided on the first surface of the plurality of light emitting structures and including a plurality of partition walls which define a plurality of pixel spaces; and a fluorescent layer provided in the plurality of pixel spaces. A bottom surface of the partition wall structure contacts the plurality of embossed portions.
An imaging device comprises a first chip that includes a first semiconductor substrate including a photoelectric conversion region. The first chip includes a first insulating layer including a first multilayer wiring electrically connected to the photoelectric conversion region. The first multilayer wiring includes a first vertical signal line (VSL1) to output a first pixel signal, and a first wiring. The imaging device includes a second chip including a second semiconductor substrate including a logic circuit. The second chip includes a second insulating layer including a second multilayer wiring electrically connected to the logic circuit. The second multilayer wiring includes a second wiring. The first chip and the second chip are bonded to one another, and, in a plan view, the first wiring and the second wiring overlap with at least a portion of the first vertical signal line (VSL1).
A solid-state imaging device capable of achieving higher image quality is provided.
Provided is a solid-state imaging device including a semiconductor substrate, a first photoelectric conversion unit that is provided above the semiconductor substrate and that converts light into charge, and a second photoelectric conversion unit that is provided above the first photoelectric conversion unit and that converts light into charge. Each of the first photoelectric conversion unit and the second photoelectric conversion unit includes at least a first electrode, a second electrode, and a photoelectric conversion film disposed between the first electrode and the second electrode. The first electrode of the second photoelectric conversion unit and a charge accumulation unit formed in the semiconductor substrate are electrically connected to each other via a conductive portion penetrating at least the first photoelectric conversion unit. An insulation film portion is disposed at least on a part of an outer circumference of the conductive portion. The insulation film portion includes at least one layer of an insulation film. The at least one layer of the insulation film has fixed charge of a type identical to a type of charge accumulated in the charge accumulation unit.
An active matrix substrate includes a thin film transistor including an oxide semiconductor layer, an interlayer insulating layer covering the thin film transistor, a pixel electrode provided above the interlayer insulating layer and electrically connected to the thin film transistor, a common electrode provided between the pixel electrode and the interlayer insulating layer, a first dielectric layer provided between the common electrode and the pixel electrode, and an alignment film covering the pixel electrode. The first dielectric layer includes a plurality of openings each of which exposes a part of the common electrode and includes the alignment film positioned therein.
A semiconductor structure includes a first nitride semiconductor layer; a second nitride semiconductor layer and a first conductive structure. The second nitride semiconductor layer is disposed on the first nitride semiconductor layer. The first conductive structure is disposed on the second nitride semiconductor layer. The first conductive structure functions as one of a drain and a source of a transistor and one of an anode and a cathode of a diode.
A method includes bonding a first package component and a second package component to an interposer. The first package component includes a core device die, and the second package component includes a memory die. An Independent Passive Device (IPD) die is bonded directly to the interposer. The IPD die is electrically connected to the first package component through a first conductive path in the interposer. A package substrate is bonded to the interposer die. The package substrate is on an opposing side of the interposer than the first package component and the second package component.
A semiconductor device includes a first insulating substrate and a first semiconductor element joined to the first insulating substrate through the first conductive spacer. The first insulating substrate includes a first insulating layer and a first inner conductive layer disposed at a side of the first insulating layer. The first inner conductive layer includes a surface having a first region and a second region. The second region surrounds the first region and has larger surface roughness than the first region. The first conductive spacer is joined to the first region of the first inner conductive layer through a first junction layer.
A package includes an integrated circuit. The integrated circuit includes a first chip, a dummy chip, a second chip, and a third chip. The first chip includes a semiconductor substrate that extends continuously from an edge of the first chip to another edge of the first chip. The dummy chip is disposed over the first chip and includes a semiconductor substrate that extends continuously from an edge of the dummy chip to another edge of the dummy chip. Sidewalls of the first chip are aligned with sidewalls of the dummy chip. The second chip and the third chip are sandwiched between the first chip and the dummy chip. A thickness of the second chip is substantially equal to a thickness of the third chip.
A package structure and method of manufacturing is provided, whereby a bonding dielectric material layer is provided at a back side of a wafer, a bonding dielectric material layer is provided at a front side of an adjoining wafer, and wherein the bonding dielectric material layers are fusion bonded to each other.
An embodiment semiconductor structure includes a metal layer. The semiconductor structure also includes a redistribution layer (RDL) structure including an RDL platform and a plurality of RDL pillars disposed between the RDL platform and the metal layer. Additionally, the semiconductor structure includes an under-bump metal (UBM) layer disposed on the RDL platform and a solder bump disposed on the UBM layer, where the UBM layer, the RDL platform, and the RDL pillars form an electrical connection between the solder bump and the metal layer.
Semiconductor structures and methods of testing the same are provided. A semiconductor structure according to the present disclosure includes a substrate, a semiconductor device over the substrate, wherein the semiconductor device includes an interconnect structure, and the interconnect structure includes a plurality of metallization layers disposed in a dielectric layer; and a delamination sensor. The delamination sensor includes a connecting structure and a plurality of contact vias in at least one of the plurality of metallization layers. The connecting structure bonds the semiconductor device to the substrate and does not functionally couple the semiconductor device to the substrate. The plurality of contact vias fall within a first region of a vertical projection area of the connecting structure but do not overlap a second region of the vertical projection area.
An integrated circuit memory includes a state transistor having a floating gate which stores a respective data value. A device for protecting the data stored in the memory includes a capacitive structure having a first electrically-conducting body coupled to the floating gate of the state transistor, a dielectric body, and a second electrically-conducting body coupled to a ground terminal. The dielectric body is configured, if an aqueous solution is brought into contact with the dielectric body, to electrically couple the floating gate and the ground terminal so as to modify the charge on the floating gate and to lose the corresponding data. Otherwise, the dielectric body is configured to electrically isolate the floating gate and the ground terminal.
A semiconductor device includes a first plurality of dies on a wafer, a first redistribution structure over the first plurality of dies, and a second plurality of dies on the first redistribution structure opposite the first plurality of dies. The first redistribution structure includes a first plurality of conductive features. Each die of the first plurality of dies are bonded to respective conductive features of the first plurality of conductive features by metal-metal bonds on a bottom side of the first redistribution structure. Each die of the second plurality of dies are bonded to respective conductive features of the first plurality of conductive features in the first redistribution structure by metal-metal bonds on a top side of the first redistribution structure.
The present disclosure relates to an integrated chip comprising a substrate. A first conductive wire is over the substrate. A second conductive wire is over the substrate and is adjacent to the first conductive wire. A first dielectric cap is laterally between the first conductive wire and the second conductive wire. The first dielectric cap laterally separates the first conductive wire from the second conductive wire. The first dielectric cap includes a first dielectric material. A first cavity is directly below the first dielectric cap and is laterally between the first conductive wire and the second conductive wire. The first cavity is defined by one or more surfaces of the first dielectric cap.
A method of forming a semiconductor device, includes forming an active region; forming first, second and third metal-to-drain/source (MD) contact structures which extend in a first direction, and correspondingly overlap and electrically couple to the active region; forming a via-to-via (V2V) rail which extends in a second direction perpendicular to the first direction, overlaps at least the first MD contact structure and the third MD contact structures; forming a first via-to-MD (VD) structure over, and electrically coupled to, the first MD contact structure and the V2V rail; and forming a first conductive segment which overlaps the V2V rail, is in a first metallization layer, and is electrically coupled to the first VD structure.
Provided is a semiconductor architecture including a wafer, a first semiconductor device provided on a first surface of the wafer, the first semiconductor device being configured to route signals, a second semiconductor device provided on a second surface of the wafer opposite to the first surface of the wafer, the second semiconductor device being configured to supply power, and a buried power rail (BPR) included inside of the wafer and extending from the first surface of the wafer to the second surface of the wafer, the BPR being configured to deliver the power from the second semiconductor device to the first semiconductor device.
An integrated circuit including: a power rail including first and second conductive lines spaced apart from each other in a vertical direction, wherein the first and second conductive lines extend in parallel to each other in a first horizontal direction, and are electrically connected to each other, to supply power to a first standard cell, wherein the first and second conductive lines are disposed at a boundary of the first standard cell; and a third conductive line between the first and second conductive lines and extending in a second horizontal direction orthogonal to the first horizontal direction, to transfer an input signal or an output signal of the first standard cell.
A semiconductor integrated circuit device includes a substrate; a transistor on the substrate; an interlayer insulating film on the transistor; an insulating liner on the interlayer insulating film; a first insulating film on the insulating liner; and a first wiring layer on the interlayer insulating film and surrounded by the insulating liner. A height of a top surface of the first insulating film in a vertical direction from a main surface of the interlayer insulating film is different than a height of a top surface of the first wiring layer in the vertical direction. A step exists between the top surfaces of the first wiring layer and the first insulating film. A height of the first insulating film is greater than a height of the first wiring layer. A width of the first wiring layer gradually narrows as the first wiring layer extends upwards along the vertical direction.
Representative techniques and devices, including process steps may be employed to mitigate undesired dishing in conductive interconnect structures and erosion of dielectric bonding surfaces. For example, an embedded layer may be added to the dished or eroded surface to eliminate unwanted dishing or voids and to form a planar bonding surface. Additional techniques and devices, including process steps may be employed to form desired openings in conductive interconnect structures, where the openings can have a predetermined or desired volume relative to the volume of conductive material of the interconnect structures. Each of these techniques, devices, and processes can provide for the use of larger diameter, larger volume, or mixed-sized conductive interconnect structures at the bonding surface of bonded dies and wafers.
A semiconductor device includes: a first conductive structure having sidewalls and a bottom surface, the first conductive structure extending through one or more isolation layers formed on a substrate; and an insulation layer disposed between at least one of the sidewalls of the first conductive structure and respective sidewalls of the one or more isolation layers, wherein the first conductive structure is electrically coupled to a second conductive structure through at least the bottom surface.
A semiconductor device includes: a chip; a circuit element formed in the chip; an insulating layer formed over the chip so as to cover the circuit element; a multilayer wiring region formed in the insulating layer and including a plurality of wirings laminated and arranged in a thickness direction of the insulating layer so as to be electrically connected to the circuit element; at least one insulating region which does not include the wirings in an entire region in the thickness direction of the insulating layer and is formed in a region outside the multilayer wiring region in the insulating layer; and at least one terminal electrode disposed over the insulating layer so as to face the chip with the at least one insulating region interposed between the at least one terminal electrode and the chip.
The present disclosure provides a method for forming a semiconductor package and the semiconductor package. The method comprises attaching an interconnect device to a semiconductor substrate, and flip-chip mounting at least two chips over the interconnect device and the semiconductor substrate. Each chip includes at least one first bump of a first height and at least one second bump of a second height formed on a front surface hereof, the second height being greater than the first height. The method further comprises bonding the at least one second conductive bump of each of the at least two chips to the upper surface of the semiconductor substrate and bonding the first conductive bump of each of the at least two chips to the upper surface of the interconnect device Thus, the method uses a relatively simple and low cost packaging process to achieve high-density interconnection wiring in a package.
A semiconductor device includes a semiconductor chip in which a field effect transistor mainly containing GaN is formed on a surface of a SiC semiconductor substrate. The semiconductor device includes a metal base on which a back surface of the semiconductor chip is mounted through a conductive adhesive material containing Ag and a resin mold configured to seal the semiconductor chip. A metal having wettability lower than wettability of Au or Cu with respect to Ag is exposed in a region extending along an edge of the back surface.
An in-line power device, a semiconductor assembly, an in-wheel motor driver or a vehicle driver, and a new-energy vehicle are provided. The in-line power device includes: a body including a power chip and a wrapping layer wrapping an outer surface of the power chip; and a plurality of pins provided at a first side of the body at intervals. The plurality of pins includes a power pin, an auxiliary control pin and a control signal pin, and each pin includes a first segment provided inside the wrapping layer and a second segment provided outside the wrapping layer. The second segment of the auxiliary control pin and the second segment of the control signal pin are located in a first plane, the second segment of the power pin and the first side are located in a second plane, and the first plane is not parallel to the second plane.
A clamping element (9) is specified configured to be pressed to a baseplate (2) of at least one power semiconductor module (1) comprising a mold (4), comprising —at least one contact area (10) being configured to be in direct contact to at least one clamping area (7) of the baseplate (2) being free of the mold (4), and —at least one recess (11) provided in the baseplate, wherein —the recess (11) and the contact area (10) are configured to face the baseplate. Further, a method for producing a power semiconductor device is specified.
A package structure and a method of forming the same are provided. The package structure includes a package substrate, an interposer substrate, and a semiconductor device. The interposer substrate is disposed over the package substrate, wherein the interposer substrate has a bottom surface facing the package substrate and a first cavity formed on the bottom surface. The semiconductor device is disposed in the first cavity. The package substrate has a top surface facing the interposer substrate and a second cavity formed on the top surface, wherein the second cavity is configured to accommodate the semiconductor device.
Embodiments of this application provide a semiconductor structure and a method for forming the same. The method for forming the semiconductor structure includes: a first substrate is provided; the back surface of the first substrate is etched to form a trench; a conductive layer is formed in the trench; a first conductive column that extends into the trench is formed at a back surface of the first substrate; a device layer is formed at a front surface of the first substrate, and the device layer includes a storage array and a contact structure; and a second conductive column that penetrates through the device layer and extends into the first substrate is formed; the first conductive column is electrically connected with the second conductive column through the conductive layer.
A 3D semiconductor device, the device including: a first level including a first single crystal layer, the first level including first transistors, where each of the first transistors includes a single crystal channel; a first metal layer; a second metal layer overlaying the first metal layer; a second level including second transistors, first memory cells including at least one second transistor, and overlaying the second metal layer, a third level including third transistors and overlaying the second level, a fourth level including fourth transistors, second memory cells including at least one fourth transistor, and overlaying the third level, where the first level includes memory control circuits which control writing to the second memory cells, and at least one Phase-Lock-Loop (“PLL”) circuit or at least one Digital-Lock-Loop (“DLL”) circuit.
A cart for wafer transportation includes a cart body, a separator disposed between first and second wafer holders, an airtight lock configured to seal the cart body. A wafer transfer system includes a cart including a space for holding a wafer holder, a first workstation configured to load the wafer holder into the space and pressurize the space, and a second workstation configured to depressurize the space and unload the wafer holder from the space, wherein the cart is transportable between the first workstation and the second workstation. A method for transporting wafers includes docking a cart in a workstation; loading a wafer holder into a space of the cart; pressurizing the space to cause a pressure of the space to be greater than an atmospheric pressure; maintaining the pressure of the space at the pressure; and moving the cart carrying the wafer holder away from the workstation.
A bonding apparatus according to an embodiment includes a first chuck, a second chuck, and a pushpin arranged in a center portion of the second chuck. The first chuck includes a first area and a second area in a plane view. The first chuck includes a first rib arranged to divide the first area and the second area from each other in the plane view. The first area includes an area that overlaps the pushpin in the plane view. The second area encircles an outer perimeter of the first area in the plane view. The first chuck has a plurality of pins arranged at intervals in the second area, and has no pin in the area of the first area that overlaps the pushpin in the plane view.
Methods for forming a trench structure with passivated surfaces. In some embodiments, a method of forming a trench structure may include etching a trench into a substrate material of the substrate, forming an oxide layer on surfaces of the trench using a dry oxide process at a temperature of less than approximately 450 degrees Celsius, selectively removing the oxide layer from surfaces of the trench, and forming a passivation layer on surfaces of the trench to form a homogeneous passivation region as part of the substrate material using a low temperature process of less than approximately 450 degrees Celsius.
A method for forming a pattern can include the following operations. A substrate is provided, on the surface of which a patterned photoresist layer is formed. Based on the photoresist layer, isolation sidewalls are formed, in which each isolation sidewall includes a first sidewall close to the photoresist layer and a second sidewall away from the photoresist layer. Core material layers are formed between two adjacent isolation sidewalls. The second sidewalls are removed to form the pattern composed of the first sidewalls and the core material layers.
Improved ion mirrors 30 (FIG. 3) are proposed for multi-reflecting TOF MS and electrostatic traps. Minor and controlled variation by means of arranging a localized wedge field structure 35 at the ion retarding region was found to produce major tilt of ion packets time fronts 39. Combining wedge reflecting fields with compensated deflectors is proposed for electrically controlled compensation of local and global misalignments, for improved ion injection and for reversing ion motion in the drift direction. Fine ion optical properties of methods and embodiments are verified in ion optical simulations.
Systems, methods and apparatus for regulating ion energies in a plasma chamber and avoiding excessive and damaging charge buildup on the substrate surface and within capacitive structures being built on the surface. An exemplary method includes placing a substrate in a plasma chamber, forming a plasma in the plasma chamber, controllably switching power to the substrate so as to apply a periodic voltage function (or a modified periodic voltage function) to the substrate, and modulating, over multiple cycles of the periodic voltage function, the periodic voltage function responsive to a defined distribution of energies of ions at the surface of the substrate so as to effectuate the defined distribution of ion energies on a time-averaged basis, and to maintain surface charge buildup below a threshold.
A multi-source illumination apparatus for illuminating a sample with charged particles, wherein beams, from a plurality of sources, are arranged such that a beam from at least one source intersects, at a plane of a condenser lens, with at least part of one other beam from a different one of the plurality of sources. The condenser lens is configured to separately collimate the received beams from each source. A manipulator array arrangement is configured to manipulate the collimated beams to generate one or more beams, in a single column, that include charged particles from the plurality of sources. The manipulator array arrangement includes a multi-beam generator configured to receive the plurality of substantially parallel substantially collimated beams generated by the deflector array, and generate a multibeam in dependence on the received plurality of substantially parallel substantially collimated beams, wherein the multi-beam includes a plurality of substantially collimated sub-beams.
An electron microscopy grid, includes: (i) a perforated substrate, (ii) a support film on the perforated substrate, the support film having a thickness of 60 Å or less, and (iii) linkers attached on top of the support film. The linkers has at least one affinity group for immobilizing an analyte; wherein the linkers form a non-random pattern on the support film.
According to one embodiment, an X-ray tube includes an outer envelope that maintains a vacuum inside, an anode target provided inside the envelope and generating X-rays by collision of thermal electrons, and a cathode electron gun provided inside the envelope and emitting thermal electrons toward the anode target, and the X-ray tube includes an envelope assembly including a metal-made cylindrical support fixing portion and constituting the envelope, and an anode assembly including a metal-made support holding the cathode electron gun, and the support of the cathode assembly is fixed to an inner circumferential side thereof by welding.
Image intensifier systems incorporating a microchannel plate (MCP) and methods for producing the same are disclosed. In some examples, a device is disclosed that includes a first substrate having a radiation-receiving first surface and an opposed second surface through which electromagnetic radiation is transmitted. A second substrate is coupled to the first substrate to define a vacuum cavity therebetween. An electron-emitting photocathode is disposed within the vacuum cavity for generating electrons from electromagnetic radiation transmitted through the second surface. A microchannel plate is disposed within the vacuum cavity and defines microchannels extending from an input end to an output end. Each of the microchannels is configured to generate electrons in response to an electron generated by the photocathode being received through the input end of the respective microchannel. A phosphorescent layer also is disposed within the vacuum cavity and adjacent the output ends of the microchannels of the microchannel plate.
Embodiments of the present disclosure relate to a control device and method for a contactor. The control device comprises a first high-side control unit, a second high-side control unit, a first low-side control unit and a second low-side control unit. The first high-side control unit and the second high-side control unit respectively connect a first magnetic unit and a second magnetic unit of the contactor to a power supply. The first low-side control unit is connected between the first magnetic unit and a reference voltage node, and the second low-side control unit is connected between the second magnetic unit and the reference voltage node. The control device further comprises a freewheel unit connected to the first magnetic unit and the second magnetic unit. The control device further comprises a controller. The controller is used to control operations of the control units so that in a state that at least one magnetic unit of the first magnetic unit and the second magnetic unit is disconnected from the power supply, a current of the at least one magnetic unit flows through the freewheel unit. According to embodiments of the present disclosure, the contactor may be made more energy-saving, and the operation cost may be reduced.
A method for manufacturing a polymer capacitor and a polymer capacitor are disclosed. In an embodiment a polymer capacitor includes an anode foil, a cathode foil and separator foils wound to a winding, wherein the anode foil is covered by a polymer, wherein one or more additives are distributed in the polymer, and wherein at least one of the additives has a boiling point below 130° C.
A multilayer electronic component includes a body including a plurality of dielectric layers, and a capacitance formation portion including first and second internal electrodes alternately disposed in a third direction with the dielectric layer interposed therebetween, the body including first and second surfaces opposing in a first direction, third and fourth surfaces connected to the first and second surfaces and opposing in a second direction, and fifth and sixth surfaces connected to the first to fourth surfaces and opposing in the third direction, external electrodes disposed on the body, and a dummy electrode disposed to penetrate through the capacitance formation portion in the third direction.
Apparatus and methods to add heat capacity to a cryogenic apparatus such as a superconducting magnet are provided. A body of liquid cryogen having a relatively high heat capacity is stored at cryogenic temperatures in a low temperature vessel that is thermally linked to a cold mass within the cryogenic apparatus. The low temperature vessel is connected to a manifold system located on the exterior of the cryogenic apparatus. The manifold is further connected to a room temperature vessel so that gas is allowed to freely move between the low temperature and room temperature vessels. In one exemplary mode of operation, it is possible to simultaneously operate the system with a full capacity of liquid cryogen in the low temperature vessel, operate the system with a maximum pressure substantially below 757 atmospheres regardless of the temperature of the low temperature vessel, operate the system with positive pressure regardless of the temperature of the low temperature vessel, and cycle the temperature of the low temperature vessel between room and cryogenic temperatures without releasing gas from the system.
A coil component that includes a core, a first wire, and a second wire. The core has a prism-shaped winding core part. The first wire and the second wire are wound around the winding core part. The coil component has an overlapping winding region in which the first wire is wound around the winding core part and the second wire is wound around the winding core part on top of the first wire. The overlapping winding region includes a prescribed part in which the first wire and the second wire are wound around the winding core part in such a manner that a gap is interposed between a part of the first wire that is wound along a first side surface of the winding core part and a part of the second wire that is wound along the first side surface.
The disclosed technology relates to a logic device based on spin waves. In one aspect, the logic device includes a spin wave generator, a waveguide, at least two phase shifters, and an output port. The spin wave generator is connected with the waveguide and is configured to emit a spin wave in the waveguide. The at least two phase shifters are connected with the waveguide at separate positions such that, when a spin wave is emitted by the spin wave generator, it passes via the phase shifters. The at least two phase shifters are configured to change a phase of the passing spin wave. The output port is connected with the wave guide such that the at least two phase shifters are present between the spin wave generator and the output port.
A grommet body of a grommet includes: a large-diameter tubular portion; a first small-diameter tubular portion arranged on one side of a through-hole; and a second small-diameter tubular portion arranged on another side of the through-hole. The grommet body includes an umbrella-like sound insulation portion which covers the through-hole from another side, and the sound insulation portion is configured such that an abutting side surface is folded back in such a way as to face a radial outer side of the grommet body with a folded-back portion as a base point. The sound insulation portion in a state in which the abutting side surface is folded back in such a way as to face the radial outer side of the grommet body has a pleated shape, and an outer diameter of the sound insulation portion in this state is smaller than an inner diameter of the through-hole.
There is a problem that when a silver powder sintering paste that is substantially free from resin is used, an organic solvent used as a dispersion medium bleeds, which results in contamination and wire bonding defects. In order to solve the problem, provided is a metal powder sintering paste that contains, as a principal component, silver particles having an average particle diameter (a median diameter) of 0.3 μm to 5 μm and further contains an anionic surfactant but is substantially free from resin.
Electrically conductive or semi-conductive curable silicone compositions with stable long term electrical resistivity/resistance are provided comprising a mixture of furnace black and acetylene black as conductive fillers. Methods for preparing the electrically conductive or semi-conductive curable silicone compositions and uses of the electrically conductive or semi-conductive curable silicone compositions are also provided.
A mechanical device for grasping an object includes a receiver having a distal end shaft with an internal bore, the internal bore defining a recessed track. The recessed track defines a curvilinear path having two sets of resting peaks, each set of resting peaks being at a different height relative to a centerline of the curvilinear path. An actuator is slidably engaged with the receiver and includes a central shaft and an activator disposed at a distal end portion of the central shaft. A rotatable sleeve is disposed within the internal bore of the receiver and is coupled to the actuator. The rotatable sleeve has opposed protrusions, the opposed protrusions being disposed within the recessed track of the receiver. A pilot is secured to a distal end portion of the receiver and a grasping device is mounted to the pilot and coupled to the activator.
A diagnosis assistance device includes at least one microphone that collects voice around an affected area, and at least one processor. The at least one processor determines, based on image data that is data of a captured image of the affected area, whether the affected area is malignant, and stores in a memory the voice collected by the microphone when determination is made that the affected area is malignant.
Systems and methods for processing, transmitting and displaying data received from an analyte sensor, such as a glucose sensor, are disclosed. In an embodiment, a method for transmitting data between a first communication device associated with an analyte sensor and a second communication device configured to provide user access to sensor-related information comprises activating a transceiver of a first communication device associated with an analyte sensor at a first time. The method also includes establishing a two-way communication channel with the second communication device. The activating comprises waking the transceiver from a low power sleep mode using a forced wakeup from the second communication device.
A method is for the transmission of patient-specific data to an examination log adjustment unit. In an embodiment, the method includes providing a user interface via a software application; receiving patient-specific data of a patient via the user interface, the patient-specific data being based on an input into the user interface; storing the patient-specific data received; and transmitting the patient-specific data to the examination log adjustment unit, the examination log adjustment unit being embodied to adjust an examination log for a medical imaging examination of the patient based upon the patient-specific data.
In some examples, an apparatus, such as a mobile phone may include a camera, a processor, and computer readable medium. The camera capture one or more images of a person. The processor may use a machine learning model to predict the body volume of the person based on the captured images. The model may be trained based at a training data set comprising at least a plurality of user images. The apparatus may transmit the predicted body volume to a medication and medical treatment management system and receive from the same an adjusted medication or medical treatment plan. The apparatus may further execute the adjusted medication or medical treatment plan.
Various types of technology have been incorporated into fitness and other athletic activities. Systems and methods described herein relate to determining activity milestones based on collected user activity data. The user activity data may be collected during an activity time period. User activity information may be displayed via an interactive interface and associated with the activity time period.
Systems and methods for parallel medication processing are disclosed herein. Such methods can include receiving a request for preparation of a plurality of dosed medication delivery containers, determining at least one attribute of the request for preparation of at least one dosed medication delivery container, identifying a template corresponding to the at least one attribute of the request, the template identifying steps and a step sequence for filling the dosed medication delivery container, and executing the template. Executing the template can include iteratively assigning tasks to a plurality of stations within the automated dosing device, the performance of which tasks at least partially overlap, and directing a transport tool to move at least one medication delivery container between the stations of the automated dosing device.
An electronic healthcare system for delivering medical services is described. The electronic healthcare systems can includes modules for accessing patient electronic medical records and ordering medical services. In response to a medical service order, a cost estimation and notification module can receive information associated with the medical service order. The cost estimation and notification module can determine the patient cost responsibility and quickly notify the patient of the costs. The patient can use the determined cost information to decide whether to move forward with the ordered medical tests.
A method for compressing information includes accessing a read of genomic sequencing data, aligning the read to a reference, generating alignment data based on alignment of the read, obtaining a set of contexts based on the alignment data, and compressing quality values corresponding to the alignment data based on the set of contexts. The alignment data may provide an indication of errors in the genomic sequencing data, and each of the quality values may provide an indication of a probability of error at one or more bases in the genomic sequencing data.
An image acquisition and analysis system are disclosed. The system enables high throughput, objective analysis of microbial samples over days or weeks. The system may accommodate upwards of twelve 96- or 384-well plates simultaneously (liquid or solid media). The system may acquire and analyze a large number of samples in a short period of time. For example, over 384 samples per minute or 18,432 samples per hour. The system hardware may include a multi-spectral imager (fluorescence and bright field detection), electro-mechanical assemblies, and an optional high-resolution stage. The system may automate image acquisition, image data processing, simplify data storage, and enable automated analysis tools to significantly reduce the manual labor and time associated with such tasks. The system may allow for quick processing and analysis of data into clear phenotypic classes. The analysis capabilities may include colony growth, colorimetry, and structural morphology assays, and automated phenotype classification capabilities.
Systems and methods for resolving data (DQ) line swapping configuration in Double Data Rate (DDR) memories are described. In an illustrative, non-limiting embodiment, a system may include a memory controller and a memory coupled to the memory controller, the memory having program instructions stored thereon that, upon execution, cause the system to: apply a first technique to resolve DQ line swapping between a memory interface and a memory module with respect to a first subset of a plurality of DQ lines; apply a second technique different than the first technique to resolve DQ line swapping with respect to a second subset of the plurality of DQ lines; and apply a third technique different than the first and the second techniques to resolve DQ line swapping with respect to a third subset of the plurality of DQ lines.
Disclosed are a memory device that performs offset calibration and a method of operating the memory device. The memory device includes an input/output pad configured to receive data from a device external, an on-die termination (ODT) circuit connected to the input/output pad, a plurality of receivers connected to the ODT circuit and configured to receive the data from the input/output pad, an offset calibration circuit configured to perform an offset calibration operation on data output from the plurality of receivers and output an offset correction, a first switch configured to provide a first voltage to the plurality of receivers, and a second switch configured to provide a second voltage to the plurality of receivers. During the offset calibration operation, the plurality of receivers receive a third voltage in response to the ODT circuit being enabled and the first voltage through the first switch.
A memory device includes a plurality of sense amplifiers, a plurality of memory cells, a plurality of data lines, a plurality of reference cells, and a connection line. The memory cells are coupled to a plurality of first inputs of the plurality of sense amplifiers respectively. The data lines are coupled to a plurality of second inputs of the plurality of sense amplifiers respectively. The reference cells are arranged in a plurality of columns respectively and coupled to the plurality of data line respectively. Each of the plurality of reference cells includes a plurality of resistive elements. The connection line is coupled to the plurality of data lines. In a read mode, one of the sense amplifiers is configured to access the plurality of resistive elements arranged in at least one of the plurality of columns.
A semiconductor memory device includes a driver that, in a write operation, applies a first voltage to a first select gate line, applies a second voltage lower than the first voltage to a second select gate line, applies a third voltage equal to or higher than the first voltage to a first dummy word line on an uppermost layer, applies a fourth voltage different from the third voltage and higher than the second voltage to a second dummy word line on an uppermost layer, applies a fifth voltage equal to or higher than the third voltage to a first dummy word line on a lowermost layer, and applies a sixth voltage different from the fifth voltage and equal to or higher than the fourth voltage to a second dummy word line on a lowermost layer.
Methods, systems, and devices for improving write latency and energy using asymmetric cell design are described. A memory device may implement a programming scheme that uses low programming pulses based on an asymmetric memory cell design. For example, the asymmetric memory cells may have electrodes with different contact areas (e.g., widths) and may accordingly be biased to a desired polarity (e.g., negative biased or positive biased) for programming operations. That is, the asymmetric memory cell design may enable an asymmetric read window budget. For example, an asymmetric memory cell may be polarity biased, supporting programming operations for logic states based on the polarity bias.
A program method of a nonvolatile memory device that performs a plurality of program loops is provided. At least one of the plurality of program loops includes dividing a channel of a selected cell string into a first side channel and a second side channel during a first interval and a second interval, turning off a string selection transistor of the selected cell string by applying a string select line voltage of a first level during the first interval, and boosting a first voltage of the first side channel and a second voltage of the second side channel, and turning on the string selection transistor by applying the string select line voltage of a second level different from the first level during the second interval, and performing a hot carrier injection (HCI) program operation on a selected memory cell corresponding to the first side channel or the second side channel.
The memory device includes a control circuitry that is communicatively coupled to memory cells are arranged in a plurality of word lines. The control circuitry is configured to perform a first programming pass on a selected word line. The first programming pass includes a plurality of programming loops, each of which includes the application of a programming pulse (Vpgm). The programming pulse voltage is increased between programming loops of the first programming pass by a step size. The step size is a first step size between two programming loops of the first programming pass and is a second step size that is different than the first step size between two other programming loops of the first programming pass. The control circuitry is also configured to perform a second programming pass to further program the memory cells of the selected word line to the plurality of data states.
In an embodiment an electrically erasable programmable readable memory includes a plurality of memory cells organised in a memory plane arranged in a matrix fashion in rows and in columns, wherein each memory cell includes a state transistor having a source region, a drain region, an injection window situated on the side of the drain, a control gate and a floating gate and an isolation transistor having a source region, a drain region and a gate; and an isolation barrier including a buried layer and at least one wall extending from the buried layer to a surface of a substrate, wherein the at least one wall is perpendicular to the buried layer, and wherein the isolating barrier forms an interior substrate surrounding at least one of the memory cells and isolating it from the remainder of the substrate.
A structure for in-memory pipeline processing includes a memory bank array. Each bank includes single resistor or dual resistor memory elements connected between input nodes, respectively, and bitline(s) (e.g., a single bitline for a single resistor memory element and first and second bitlines for a dual resistor memory element). A feedback buffer is connected to each bitline and a corresponding output node in each bank and a column interconnect line connects corresponding output nodes of all banks in the same column. The initial bank in each row includes amplifiers connected between the input nodes and memory elements and track-and-hold devices (THs) connected to the input nodes to facilitate pipeline processing. Outputs of the amplifiers are also connected by row interconnect lines to memory elements in downstream banks in the same row. Optionally, voltage buffers are connected to row interconnect lines and integrated into at least some banks.
Methods of configuring a memory might include characterizing a read window budget for a programming operation of the memory as a function of a programming step voltage for a plurality of memory cell ages, determining a respective programming step voltage for each memory cell age of the plurality of memory cell ages in response to a desired read window budget, and storing data to the memory indicative of the determined respective programming step voltage for each memory cell age of the plurality of memory cell ages.
A memory device includes a conductive segment, first and second rows of memory cells. The conductive segment receives a first reference voltage signal. The first row of memory cells is coupled to a first word line. The second row of memory cells is coupled to a second word line. The first row of memory cells includes first and second memory cells. The first memory cell is coupled to the conductive segment to receive the first reference voltage signal. The second row of memory cells includes third and fourth memory cells. The third memory cell is coupled to the conductive segment to receive the first reference voltage signal. The first and third memory cells share the conductive segment, and the third memory cell is arranged between the first and second memory cells. The second memory cell is arranged between the third and fourth memory cells.
Apparatuses, systems, and methods for data timing alignment with fast alignment mode. A stacked memory device includes an interface die and a number of core die. The interface and the core die each have an adjustable delay circuit adjusted by an interface delay code or a respective core delay code. The delay codes are adjusted based on a measured phase difference along a replica path. In a default maintenance state, the delay codes may be adjusted based on an average of the phase differences over time. Each time the phase difference matches a previous phase difference, the interface die changes a count value associated with that core die. If one or more of the count values cross a threshold, a state machine of the interface die enters a different delay adjustment state where averaging is not used. This may allow for correction of systemic errors such as voltage drift.
Apparatuses, systems, and methods for access based refresh operations. A memory bank may be divided into multiple sub-banks, each of which has a refresh control circuit. A word line in a first sub-bank may be refreshed responsive to a word line in a second sub-bank being accessed. Once a threshold number of refreshes have been performed in the sub-bank, further accesses to the other sub-banks may be ignored. If the threshold has not been met at the end of a refresh period, then the refresh control circuit may issue a refresh signal.
Various illustrative aspects are directed to a data storage device comprising one or more disks; a spindle motor for rotating the one or more disks, wherein the spindle motor comprises a plurality of magnetic pole-pairs, and wherein the spindle motor is configured to operate in a plurality of modes, including at least a first mode and a second mode; and one or more processing devices configured to select a reference point for spindle motor interrupt service routines (ISRs), determine a delay time, wherein the delay time is based at least in part on a number of magnetic pole-pairs and a mechanical revolution period of the spindle motor, start a timer at a first ISR, and when the timer is equal to the delay time, switch operation of the spindle motor from the first mode to the second mode.
A computer program product, device, system, and method are provided for decommissioning a tape cartridge internally within a tape library. In one embodiment, a decommission canister is configured to be accepted within a tape library canister bay. The decommission canister has a fusing element configured to fuse together at least a portion of layers of magnetic tape of a tape cartridge within the tape library, to decommission the tape cartridge within the tape library. In one embodiment, the fusing element is a heating element adapted to emit heat directed at layers of magnetic tape of a tape cartridge to melt together at least a portion of layers of magnetic tape of a tape cartridge within the tape library. As a result, unwinding and reading of the magnetic tape is inhibited.
Systems, methods, and techniques for assessing driver safety based on noise levels or sounds associated with the interior of a vehicle are provided. Noise levels or sounds associated with the interior of a vehicle over a first interval of time may be compared to indications of vehicle motion over the first interval of time to identify noise levels or sounds at times when the indications of vehicle motion indicate unsafe driving. The identified noise levels or sounds may be analyzed to determine noise levels, sources, and/or characteristics of sounds associated with unsafe driving. Noise levels or sounds associated with the interior of the vehicle over a second interval of time may be analyzed to determine instances in which the noise levels, sources, and/or characteristics of sounds associated with unsafe driving occur over the second interval of time. Alerts may be generated for vehicle operators based on the determined instances.
A stereo sound decoding method and system decode left and right channels of a stereo sound signal, using received encoding parameters comprising encoding parameters of a primary channel, encoding parameters of a secondary channel, and a factor β. The primary channel encoding parameters comprise LP filter coefficients of the primary channel. The primary channel is decoded in response to the primary channel encoding parameters. The secondary channel is decoded using one of a plurality of coding models, wherein at least one of the coding models uses the primary channel LP filter coefficients to decode the secondary channel. The decoded primary and secondary channels are time domain up-mixed using the factor β to produce the decoded left and right channels of the stereo sound signal, wherein the factor β determines respective contributions of the primary and secondary channels upon production of the left and right channels.
This disclosure describes, in part, techniques for determining device groupings, or clusters, for multiple voice-enabled devices. The device clusters may be determined based on metadata data for audio signals (or audio data) generated by each of the multiple voice-enabled devices. For example, a remote system may analyze timestamp data for the audio signals received from the devices, and determine that the devices detected the same voice command of a user based on the timestamp data indicating that the audio signals were received within a threshold period of time from each other. Additionally, the remote system may analyze other metadata of the audio data, such as signal-to-noise (SNR) values, and determine that the SNR values are within a threshold value. The remote system may determine device clusters for the voice-enabled devices of a user based on these, and potentially other, types of metadata of the audio signals.
Techniques for encouraging group discussion participation are provided. A conversational analytics system monitors a discussion within a Push to Talk (PTT) radio talkgroup. A topic of discussion within the PTT radio talkgroup is identified. A participation level of each member of the PTT radio talkgroup is identified. It is determined that a member of the PTT radio talkgroup may have information relevant to the topic of the discussion within the PTT radio talkgroup. It is determined that the participation level of the member determined to have information relevant to the topic of discussion within the PTT radio talkgroup is below a threshold. The member determined to have information relevant to the topic of discussion within the PTT radio talkgroup is prompted to participate in the discussion.
A method for training a neural network includes receiving a training input audio sequence including a sequence of input frames defining a hotword that initiates a wake-up process on a user device. The method further includes obtaining a first label and a second label for the training input audio sequence. The method includes generating, using a memorized neural network and the training input audio sequence, an output indicating a likelihood the training input audio sequence includes the hotword. The method further includes determining a first loss based on the first label and the output. The method includes determining a second loss based on the second label and the output. The method further includes optimizing the memorized neural network based on the first loss and the second loss associated with the training input audio sequence.
Methods, apparatus, and systems are disclosed to segment audio and determine audio segment similarities. An example apparatus includes at least one memory storing instructions and processor circuitry to execute instructions to at least select an anchor index beat of digital audio, identify a first segment of the digital audio based on the anchor index beat to analyze, the first segment having at least two beats and a respective center beat, concatenate time-frequency data of the at least two beats and the respective center beat to form a matrix of the first segment, generate a first deep feature based on the first segment, the first deep feature indicative of a descriptor of the digital audio, and train internal coefficients to classify the first deep feature as similar to a second deep feature based on the descriptor of the first deep feature and a descriptor of a second deep feature.
Systems and methods for correcting recognition errors in speech recognition systems are disclosed herein. Natural conversational variations are identified to determine whether a query intends to correct a speech recognition error or whether the query is a new command. When the query intends to correct a speech recognition error, the system identifies a location of the error and performs the correction. The corrected query can be presented to the user or be acted upon as a command for the system.
An audio processing system includes at least one first microphone, at least one adaptive filter, and a processor. The at least one first microphone acquires a first audio signal and outputs a first signal based on the first audio signal. The first audio signal includes at least one of a first audio component generated at a first position and a second audio component generated at a second position different from the first position. The first signal is input to the at least one adaptive filter. The at least one adaptive filter outputs a passing signal based on the first signal. The processor, when executing a program stored in a memory, performs: making a determination of which of the first audio component and the second audio component the first audio signal includes more; and controlling a filter coefficient of the adaptive filter based on a result of the determination.
An instrument case for receiving a string instrument, has a housing, has a receiving region, delimited by the housing, for receiving an instrument and has at least one neck support module has a neck support unit for supporting an instrument neck,
wherein the neck support module has a bearing unit having two bearing elements and supporting the neck support unit in the receiving region in an adjustable manner.
A signal processing circuit, complying with DisplayPort standard and operated in a display device which is as a DisplayPort sink device, includes a main physical circuit, which is configured to receive a first signal from one of a plurality of DisplayPort connectors of the display device connected to a first DisplayPort source device and a plurality of auxiliary physical circuits. Only a first auxiliary physical circuit of the plurality of auxiliary physical circuits is enabled to receive a second signal from the DisplayPort connector connected to the first DisplayPort source device.
A method of compensating for degradation of a display device includes: determining a reference region including a part of a first display region and a second display region having pixel structures from each other; determining first stress data of first pixels based on a first average luminance value of the first pixels disposed on the part of the first display region; determining second stress data of second pixels based on a second average luminance value of the second pixels disposed on a central region of the second display region; determining third stress data of third pixels based on a third average luminance value of the third pixels disposed on an outer region of the second display region; compensating for degradation of the second pixels based on the first and second stress data, and compensating for degradation of the third pixels based on the first and third stress data.
An organic light emitting diode display device calculates a cumulative current of each of the plurality of pixels, calculates a consumed current consumed by each of the plurality of pixels during a reproduction period of the image, estimates an expected deterioration time of each of the pixels based on a difference between the cumulative current and the consumed current, and operates the display unit in a normal output mode as an image output mode when a number of pixels expected to burn in among the plurality of pixels based on the estimated expected deterioration time is less than a preset number.
A display device, a data driving circuit and a display driving method are discussed. The display device can include a display panel in which a plurality of subpixel circuits including a light emitting element, a driving transistor, and a sensing transistor are disposed. The display device further can include a gate driving circuit configured to supply a plurality of scan signals to the display panel through a plurality of gate lines, a data driving circuit configured to supply a plurality of data voltages to the display panel through a plurality of data lines and supply a constant current to the plurality of subpixel circuits during a resistance sensing period, and a timing controller configured to control the gate driving circuit and the data driving circuit, and supply compensation image data to the display panel by using the resistance of the sensing transistor detected in the resistance sensing period.
An electronic device may include an electronic display having display pixels that display an image based on compensated image data. The electronic display may also include pixel drive circuitry that provides power to the display pixels in accordance with the compensated image data. Additionally, the electronic device may include burn-in compensation circuitry communicatively coupled to the electronic display that receives input image data and generates the compensated input image data based on the input image data, a pixel aging history corresponding to the display pixels, and a driver aging history corresponding to the pixel drive circuitry.
A display device includes: a plurality of data lines extending in a first direction, and first to third pixels connected to the plurality of data lines. The first pixel includes a first pixel electrode overlapping the plurality of data lines in a plan view in a thickness direction. The second pixel includes a second pixel electrode spaced apart from the plurality of data lines in the plan view in the thickness direction. The third pixel includes a third pixel electrode overlapping the plurality of data lines in the plan view in the thickness direction.
Disclosed is a digital display system based on a common interface. More particularly, a cluster pixel circuit includes a row terminal connected to a row line for receiving PWM (Pulse Width Modulation) clock signal; a column terminal connected to a column line for receiving N-bit data; a first individual pixel driver for driving a first pixel in the cluster pixel; and a second individual pixel driver connected to the first individual pixel driver and for driving a second pixel in the cluster pixel.
A method for adjusting ambient contrast ratio and an electronic apparatus are provided. The electronic apparatus includes a transparent display and a transmittance adjustment plate disposed at the back of the transparent display. In the electronic apparatus, an adjustment transmittance used to adjust the transmittance adjustment plate and a luminance percentage used to adjust the transparent display are calculated, a grayscale layer is generated based on the luminance percentage; a voltage generator is used to control the transmittance of the transmittance adjustment plate to the adjustment transmittance, and in a case that the transmittance of the transmittance adjustment plate is the adjustment transmittance, a graphic controller is used to display a frame on the transparent display while display the grayscale layer on top of the frame.
A data driving circuit includes: a resistor string in which a plurality of resistors are connected in series; and a plurality of data channels connected to a high voltage node, intermediate voltage nodes, and a low voltage node of the resistor string and configured to convert a digital data signal into an analog data voltage. Each of the plurality of data channels includes: a main digital-to-analog converter connected to the high voltage node, the intermediate voltage nodes, and the low voltage node, a multiplier connected to an output terminal of the main digital-to-analog converter, a sub digital-to-analog converter connected to some of the high voltage node, the intermediate voltage nodes, and the low voltage node, and a voltage synthesizer connected to an output terminal of the multiplier and an output terminal of the sub digital-to-analog converter.
A display substrate and a display apparatus are provided. The display substrate includes a base substrate, a crack detection line and an electrostatic discharge element electrically connected to the crack detection line. The base substrate includes a main body area, an auxiliary area, and a necked-down area connecting the main body area and the auxiliary area, and a display area of the display substrate is in the main body area. The crack detection line surrounds, at least in part, the display area and extends through the necked-down area to the auxiliary area. A length direction of the necked-down area is parallel to a first direction; the main body area, the necked-down area and the auxiliary area are connected in a second direction intersecting the first direction; and the electrostatic discharge element is located in the auxiliary area.
An apparatus for data ingestion and manipulation, the apparatus including at least a processor and a memory communicatively connected to the at least a processor, the memory containing instructions configuring the at least a processor to receive a resource data file from one or more data acquisition systems, classify the resource data file to one or more educational categorizations, generate an educational module as a function of the resource data file and the classification of the educational categorizations wherein the education module comprises one or more machine learning models, retrieve a user profile of a plurality of user profiles as a function of a user input, create user-specific outputs as a function of the educational module, the user profile, and a conversational input and generate a virtual avatar model as a function of the user specific outputs.
A system and process for dynamic security monitoring of test taking. The system combines historical information about the test taker or relevant conditions, and includes sensors which objectively monitor test taker's actions, inactions, and involuntary response to the test given before and during the test, and at a specific test location. The information collected from the sensors is compared to a plurality of predetermined individual risk factors, which indicate a possibility of test fraud by the individual test taker to create a test event risk profile. The individual risk profile is combined with non-individual specific risk factors to create a holistic test event security profile. Security resources are then dynamically assigned to or removed from the test event based on the unique test event security profile.
Disclosed are a semantic reasoning method and a terminal for a learning target in an education metaverse. The method includes receiving a description text of a learning target, segmenting the description text into a lexical item sequence, extracting an entry from the lexical item sequence, extracting a semantic lexical item based on the entry, and mapping the semantic lexical item into a first word vector. By capturing the semantic feature vector in the word vector, the subject and knowledge points in the learning target are obtained by reasoning, the target knowledge points of the learning target are determined and positioned, and the association relationship between the target knowledge points is obtained, so that the semantic information of the learning target can be fully mined, and the accuracy of the learning target extraction can be improved. It matches with the corresponding teaching scene based on the learning targets.
A system for improving performance of chest compressions includes at least one mobile computing device, an accelerometer configured to measure a vertical displacement of a user's hands to determine information relating to rate and depth of chest compressions, and a processor; and a computer device configured to send information to and receive information from the mobile computing device(s). The system associates the information relating to the rate and depth of the chest compressions with the user; sends the information to the computer device; analyzes the information to determine a proficiency level of the user; compares the proficiency level of the user to a proficiency standard required to be certified in life saving activities; and provides an indication of whether the user of the mobile computing device is ready for certification if the proficiency level of the user meets the proficiency standard. Also, a method for certification is provided.
In an embodiment, an injection simulation device is provided. The injection simulation device may include a housing defining an opening, the housing having a proximal end and a distal end, a plunger movable relative to the housing, the plunger comprising a first interfacing portion, and distal movement of the plunger initiates an injection simulation, a rotatable component comprising a proximal end and a distal end, and an aperture extending between the proximal and distal ends of the rotatable component for receiving a portion of the plunger, rotatable component comprising a second interfacing portion for interfacing with the first interfacing portion to rotate the rotatable component when the plunger is moved toward the proximal or distal end of the housing. The injection simulation device may further include a stationary component defining a cavity for receiving the rotatable component, the cavity comprising a fluid, wherein movement of the plunger causes rotational and axial movement of the rotatable component, such that an interface between the rotatable component and the stationary component causes an increase in resistance during distal movement of the plunger, and a decrease in resistance occurs upon proximal movement of the plunger.
A method for validating an autonomous vehicle performance using nearby traffic patterns includes receiving remote vehicle data. The remote vehicle data includes at least one remote-vehicle motion parameter about a movement of a plurality of remote vehicles during a predetermined time interval. The method further includes determining a traffic pattern of the plurality of remote vehicles using the at least one remote-vehicle motion parameter. The method includes determining a similarity between the traffic pattern of the plurality of remote vehicles and movements of the host vehicle. Further, the method includes determining whether the similarity between the traffic pattern of the plurality of remote vehicles and movements of the host vehicle is less than a predetermined threshold. Also, the method includes commanding the host vehicle to adjust the movements thereof to match the traffic pattern of the plurality of remote vehicles.
A garage door status monitoring and control system includes a motor operable to move a garage door to alternate garage door positions, an encoder associated with the motor and configured to generate a pulse stream comprising motor signal pulses indicative of movement of the motor, a door control module with a first microprocessor operatively coupled to the encoder via a first path and configured to receive the pulse stream, and a garage door operator having a door controller with a second microprocessor operatively coupled to the encoder via a second path and configured to receive the pulse stream from the encoder independent of the door control module. The first microprocessor is configured to generate a digital door status indicative of one of the alternate garage door positions in response to the pulse stream. The garage door operator provides supervisory control over movement of the motor based upon the pulse stream.
RFID ICs sense and indicate changes in their surrounding environment, such as changes in temperature, humidity, chemical presence, RF signals, and similar. An RFID IC indicates when a significant environmental change has occurred, for example by adjusting the value of a flag, writing data to memory, transmitting a message to an external entity, exiting a sleep state, and/or responding repeatedly to an inventorying reader. In some cases, RFID IC actively notifies an external entity that a significant environmental change has been sensed. For example, RFID IC may alert the external entity by participating in a special inventory process meant for RFID ICs sending environmental change. The RFID IC may alert the external entity by interjecting itself into an inventory round, re-participating in an inventory round, refraining from entering a sleep state after inventorying, and/or adjusting timing of a scheduled reply to communicate with an RFID reader ahead of schedule.
An impact tracking system includes a sensor module that mounts to a fixed crash attenuator, sign, guardrail, or other roadway devices installed along a roadway. When the crash attenuator or other asset is impacted by an errant vehicle, the impact tracker, comprising a sensor system, senses and captures the impact data and sends an alert message to a remote receiver. The receiver may comprise known data receiving means, such as computers or phone systems, which may receive emails, text messages, photos, and the like in real or near real time. Received data may be analyzed, stored, and/or re-transmitted to additional receivers, which may include road authorities, such as transportation departments responsible for inspecting and repairing the impact attenuators.
Smoke detection sample points and systems are described herein. One smoke detection sample point includes a body having a chamber formed within the body, a first air flow conduit formed within the body having two ends and the ends being open, to allow air to pass through the first air flow conduit between an area to be sampled and the chamber, and a second air flow conduit formed within the body having two ends with one end being open and having an air seal, to prevent air from passing through the second air flow conduit between the area to be sampled and the chamber.
An electronic gaming machine includes a processor configured to control display of a plurality of columns of symbol positions, where each column of symbol positions includes a plurality of symbols. The processor is also configured to select the symbols for each column and simulate display of the first reel strip stopping prior to simulating display of the second reel strip stopping, whereby a sub-category of prize associated with a prize sub-category symbol is indicated to a player of the electronic gaming machine prior to indicating a category of prize associated with a prize category symbol. The processor is also configured to determine whether a first column includes the prize sub-category symbol as well as whether a second column includes the prize category symbol. If the prize sub-category and prize category symbols are included, the processor is also configured to provide an award.
Gaming systems and methods that provide multiple player selectable tournaments that can be created by the operator of the gaming system or by one or more players of one or more of the gaming machines of the gaming system.
An electronic gaming machine (EGM) archway includes a first EGM including at least one first curved display device, the at least one first curved display device defining a first portion of the archway. The EGM archway also includes a second EGM including at least one second curved display device, the at least one second curved display device defining a second portion of the archway, the second EGM spaced apart from and diametrically opposing the first EGM. In addition, the EGM archway includes an overhead display portion including at least one third display device, the at least one third display device defining a third portion of the archway, the overhead display portion extending overhead between the at least one first curved display device and the at least one second curved display device.
A system is provided. The system may include a display device and a processor configured to present an array of display positions including columns and rows of display positions, the array including a first row having a reel of symbols associated with each column of the first row for displaying symbols on the reels within the first row, the array including a second row for displaying a set of initial symbols, each row of the array above the first row including a progressively increasing multiplier value, identify an RNG output for each of the reels, perform a lookup within a table associated with a column using the RNG output for the column, determine that a step-up symbol should be displayed in the first column based on the first lookup, and move the initial symbol displayed in the first column up at least one row based on the determination.
An electronic lockbox including a key bin having an embedded insert. The insert is embedded during a die cast process. The insert enhances the attack resistance of the lockbox from hammering, chiseling, and drilling attacks. The insert includes “3D features” that help with the casting process and attack resistance, including at least one through-hole, at least one slot, and at least one ridge. A housing portion is constructed over multiple drawing stages to increase its hardness and strength, thereby increasing resistance to prying attacks.
Embodiments of the present disclosure provide a device and method for displaying an unlock code for a lock upon lock related indicia being detected by a mobile communications device. The lock related indicia can be captured via a camera of the mobile communications device. In various embodiments, the unlock code can be revealed via an augmented reality display of the mobile communications device.
Techniques and systems for testing, evaluating and/or otherwise assessing the operation of vehicles are discussed herein. Aspects relate to a system and method comprising receiving vehicle data derived from a vehicle data logging system, the vehicle data being associated with a vehicle run and comprising a plurality of data topics associated with a corresponding plurality of vehicle components and displaying the vehicle data with a timeline component of a user interface during playback of the vehicle run, the timeline component comprising a portion in the user interface and the portion being configurable with a start time and an end time. The vehicle data may comprise timing data for at least one of the data topics and the vehicle data may be displayed at points in time along the portion in the user interface corresponding to the timing data.
A method for detecting a cue (e.g., a visual cue or a visual cue combined with an audible cue) occurring together in an input video includes: presenting a user interface to record an example video of a user performing an act including the cue; determining a part of the example video where the cue occurs; applying a feature of the part to a neural network to generate a positive embedding; dividing the input video into a plurality of chunks and applying a feature of each chunk to the neural network to generate a plurality of negative embeddings; applying a feature of a given one of the chunks to the neural network to output a query embedding; and determining whether the cue occurs in the input video from the query embedding, the positive embedding, and the negative embeddings.
A video processing device includes a video acquirer, a video recognition unit, a luminance value acquirer, and a luminance adjuster. The video acquirer acquires a video in which the face of an image capture object is captured. The video recognition unit recognizes an iris part and an eyelid part in a video acquired by the video acquirer. The luminance value acquirer acquires a luminance value of each of the iris part and the eyelid part recognized by the video recognition unit. The luminance adjuster adjusts a luminance value of a video such that the luminance values of the iris part and the eyelid part acquired by the luminance value acquirer respectively become closer to a certain iris luminance upper threshold in the iris part and a certain eyelid luminance lower threshold in the eyelid part.
An electronic apparatus includes a memory which temporarily stores image data of an image captured by an imaging device, and a processor which processes image data stored in the memory. The processor: processes image data of plural images captured by the imaging device at predetermined time intervals and stored in the memory to detect face areas with a face captured therein from among the plural images; determines the amount of change in face area position detected from among the plural images, and determines whether or not there is motion in the captured face over the predetermined time intervals based on the amount of change; and determines that a user is present when it is determined that there is motion in the face.
Systems and methods are provided that capture a user's physically observable state, such as body position. A processor analyzes the image to determine if the user's state is unhealthy and, if so whether or not the user is in the unhealthy state for longer than a threshold period of time. If the user is in an unhealthy state, the processor signals an alerting component to energize a circuit. Accordingly, the user may be prompted to alter their physical state to a less unhealthy more healthful state.
The disclosure provides a method and a system for muck processing in a smart city based on Internet of Things. The method is performed by a management platform, including: determining a target monitoring device of a target site based on the construction site information, obtaining muck truck monitoring data of the target site through the target monitoring device, obtaining dropped muck situation information of the muck truck in different time periods and determining muck truck management information by performing muck processing information analysis based on the muck truck monitoring data, determining vehicle dust situation information through a fourth model, determining a dropped muck reason or a dust reason through a third model, and issuing different processing instructions based on different reasons of dropped muck and/or dust produced by the muck truck.
A method for detecting an obstacle, an electronic device, a roadside device and a cloud control platform are provided and relates to the fields of automatic drive and intelligent traffic. The method includes acquiring a current image, wherein the current image includes an obstacle object representing an obstacle located on a predetermined plane; determining a transformation parameter between the current image and a template image based on current coordinates of a plurality of reference points on the predetermined plane in the current image and template coordinates of corresponding reference points for the plurality of reference points in the template image; and determining a position of the obstacle in a world coordinate system utilizing the transformation parameter and pixel coordinates of the obstacle object in the current image.
An embodiment of a Wearable Computer apparatus includes a first portable unit for data gathering and providing a natural user interface, and a second portable unit for processing the gathered data from the first unit and taking an action in respond to the received data. The first portable unit includes an eyeglass frame, at least one first scene camera disposed on the eyeglass frame for capturing at least one scene image corresponding to a field of view of a user, at least one microphone, one speaker and one LED to create a natural user interface, and at least one first processor to receive data from the data gathering units in the first portable unit and communicating that data to the second portable unit. The second portable unit is in communication with the first portable unit and includes at least one second processor configured for receiving data from the first processor. The second portable unit also includes at least one interface of a digital personal assistant that receives at least one scene image from the first portable unit and initiates an object recognition procedure to recognize an object in the at least one scene image. Based on the at least one recognized object, the digital personal assistant takes an action that may include providing a feedback to the user via light or audio.
A dance matching method, according to one embodiment of the present invention, which relates to a method for evaluating a dance of a user on the basis of a reference song video having a dance of multiple dancers, may comprises the steps in which: a group dance part extraction unit extracts a group dance part from the reference song video under a preset dance extraction condition; a song extraction unit extracts a song part corresponding to the extracted group dance part; a communication unit transmits the song part to an electronic device of the user so that the extracted song part is played back in the electronic device; the communication unit receives a user dance video from the electronic device while the song part is being played back in the electronic device; a matching unit calculates a matching rate between a dance of the user in the user dance video and a dance of the dancers in the reference song video; and the communication unit transmits the matching rate to the electronic device.
A system can identify time-series bio telemetry data that corresponds to a first user of an online session, wherein the time-series bio telemetry data identifies a first user engagement of the first user. The system can identify a first video recording of the online session, wherein the first video recording is representative of a first video of the first user. The system can input the time-series bio telemetry data and the first video recording as a first input to a neural network model to produce a trained neural network model, wherein the trained neural network model is configured to classify a second user engagement from a second video recording representative of a second video of a second user. The system can classify the second user engagement of the second user comprising inputting the second video recording as a second input to the trained neural network model.
Apparatuses, systems, and techniques for real-time persistent object tracking for intelligent video analytics systems. A state of a first object included in an environment may be tracked based on a first set of images depicting the environment. The first set of images may be generated during a first time period. It may be determined that the first object is not detected in the environment depicted in a second set of images. The second set of images may be generated during a second time period that is subsequent to the first time period. One or more predicted future states of the first object may be obtained in view of the state of the first object in the environment depicted in the first set of images. A second object may be detected in the environment depicted in a third set of images generated during a third time period that is subsequent to the second time period. A determination may be made as to whether a current state of the second object corresponds to at least one of the one or more predicted future states of the first object. In response to a determination that a current state of the second object corresponds to at least one of the predicted future states of the first object, an identifier associated with the second object is updated to correspond to an identifier associated with the first object.
A method (100), a device (600;700) and a system (800) for processing image data representing a scene for extracting features related to objects in the scene using a convolutional neural network are disclosed. Two or more portions of the image data representing a respective one of two or more portions of the scene are processed (S110), by means of a respective one of two or more circuitries, through a first number of layers of the convolutional neural network to form two or more outputs, wherein the two or more portions of the scene are partially overlapping. The two or more outputs are combined (S120) to form a combined output, and the combined output is processed (S130) through a second number of layers of the convolutional neural network by means of one of the two or more circuitries for extracting features related to objects in the scene.
An encoding device, a decoding device, and a method for mesh decoding are disclosed. The method for mesh decoding includes receiving a bitstream. The method also includes decoding a frame that includes pixels from the bitstream. A portion of the pixels of the frame represent geometric locations of vertices of a 3D mesh that are organized into overlapped patches. The method further includes decoding connectivity information from the bitstream. Additionally, the method includes identifying triangles associated with the overlapped patches. The triangles represented in an overlapped patch of the overlapped patches are allocated to a projection direction based on a normal vector associated with each of the triangles of the overlapped patch. The method also includes reconstructing the 3D mesh based on the connectivity information and the overlapped patches.
A system allows people to more easily find products matching their skin tone. The system includes a scanning device to scan one or more spots of a person's skin. For example, three different spots can be scanned. The scan determines a skin-tone identifier for the person's skin. With this skin-tone identifier, the customer can view products that match their skin tone.
Disclosed herein is a system and method for obtaining and generating motion capture datasets relating to various working activities for ergonomic risk assessment. An example system may comprise a computing device that obtains first data from multiple motion capture cameras, obtains second data from multiple visible light imaging sensors, calculates 3D positions of multiple reflective markers positioned on several subjects performing various working activities based on the first data, labels each marker to generate marker trajectories, performs gap filing and smoothing functions on the marker trajectories to generate global marker positions, transforms the global marker positions into a corresponding image coordinate system of each sensor to generate 3D pose data of the subjects at each sensor viewpoint, projects the 3D pose data into frames of the second data to generate 2D pose data, and generates a dataset comprising the second data, the 2D pose data, and the 3D pose data.
Methods and systems are disclosed for mapping the coordinate systems of devices for AR applications. A third device may receive a first pose from a first device associated with a first coordinate system and a second pose from a second device associated with a second coordinate system. The third device may receive an image that includes fiducial markers presented by each of the first device and the second device. The first pose and the portion of the image including the first fiducial marker may define a first set of 3D coordinates. The second pose and the portion of the image including the second fiducial marker may define a second set of 3D coordinates. A coordinate-system transform can be generated from a correspondence between the first set and the second of 3D coordinates. The coordinate-system transform may be transmitted to the first device and/or the second device.
A method for calculating a position of a dart pin attached to a dart board divided into a plurality of segments in an apparatus for calculating a position of a dart pin is provided. The method includes obtaining a plurality of optical data from a plurality of optical devices corresponding to at least one of a plurality of holes formed in each segment and installed on the rear surface of the dart board; and calculating a position of a dart pin attached to the dart board using the plurality of optical data.
An information processing device according to the present technology includes a control unit. The control unit estimates a location/posture of a first device detected from a captured image, acquires first environment information of the first device from the detected first device, and generates second environment information on the basis of the estimated location/posture of the first device and the acquired first environment information. This makes it possible to form the network with regard to locations/postures without using a central unit such as a server.
Provided are a depth information processing method, an apparatus, and a storage medium, which relate to the field of image processing and, in particular, to computer vision, deep learning and autonomous driving. A specific implementation includes: determining intermediate depth information of a target scene according to sparse depth information of the target scene by a sub-model unit in a depth information supplementing model; and using intermediate depth information determined by a tail sub-model unit in the depth information supplementing model as dense depth information of the target scene.
Systems, methods and devices for detecting a presence of an analyte in a fluid sample are described herein. The devices include a microfluidic module having a microfluidic channel configured to receive the fluid sample at an inlet thereof and direct the fluid sample towards an outlet thereof. The devices also include an image sensor positioned removably abutting the microfluidic module. The image sensor is positioned laterally between the inlet and the outlet of the microfluidic channel and below a lower surface of the microfluidic channel. The image sensor is communicatively coupled to a processor that is configured to receive signal data from the image sensor. The devices also include a light source configured to direct light through the fluid sample and towards the image sensor as the fluid sample passes through the microfluidic channel. The image sensor receives the light and outputs the signal data to the processor.
Methods, systems, and apparatus for high-fidelity vision tasks using deep neural networks are disclosed. An example apparatus includes a feature extractor to extract low-level features and edge-enhanced features of an input image processed using a convolutional neural network, an eidetic memory block generator to generate an eidetic memory block using the extracted low-level features or the extracted edge-enhanced features, and an interactive segmentation network to perform image segmentation using the eidetic memory block, the eidetic memory block used to propagate domain-persistent features through the segmentation network.
The present invention relates to a method for segmenting overlapping cytoplasm in a medical image, including: establishing a cytoplasm shape hypothesis set (201); and selecting a shape hypothesis for each cytoplasm from the established cytoplasm shape hypothesis set to perform constrained multi-shape evolution (202), thereby segmenting overlapping cytoplasm in the medical image, wherein the constrained multi-shape evolution (202) includes: segmenting a clump area composed of a plurality of overlapping cytoplasm to provide clump evidence (301); performing shape alignment to assess quality of the selected shape hypotheses (302); and performing shape evolution to determine a better shape hypothesis for each cytoplasm (3). The present invention further relates to a system for segmenting overlapping cytoplasm in a medical image. The method and system of the present invention can perform shape prior-based overlapping cytoplasm segmentation more accurately and more effectively.
An inspection system, an inspection method, and non-transitory recording medium. The inspection system acquires an image, captured by an image sensor, of the object to be inspected placed on a placement surface, the object having a printed image printed thereon, displays by a projector, print image data of the print image and attribute information of the object to be inspected, on the placement surface, compares a captured image of the object to be inspected with the print image data to determine whether there is a defect, and based on a determination that there is a defect, output defect information for specifying the defect.
A three-dimensional data generation method includes the following processing. A processor acquires two or more images of a component inside a turbine. The processor detects two or more correspondence regions that are the same regions in at least two images. The processor determines whether at least part of a region of each image is a change region or a non-change region. The processor generates three-dimensional data by using a correspondence region determined to be the change region without using a correspondence region determined to be the non-change region.
A novel disparity computation technique is presented which comprises multiple orthogonal disparity maps, generated from approximately orthogonal decomposition feature spaces, collaboratively generating a composite disparity map. Using an approximately orthogonal feature set extracted from such feature spaces produces an approximately orthogonal set of disparity maps that can be composited together to produce a final disparity map. Various methods for dimensioning scenes and are presented. One approach extracts the top and bottom vertices of a cuboid, along with the set of lines, whose intersections define such points. Tt then defines a unique box from these two intersections as well as the associated lines. Orthographic projection is then attempted, to recenter the box perspective. This is followed by the extraction of the three-dimensional information that is associated with the box, and finally, the dimensions of the box are computed. The same concepts can apply to hallways, rooms, and any other object.
Machines can operate based on electricity received from a charging rail system installed along a route at a worksite. Sensors on the machines capture image data indicating locations and/or orientations of components of the charging rail system. Machine controllers of the machine, and/or a worksite controller, can monitor the integrity of the charging rail system by detecting possible faults if the locations and/or orientations of one or more components vary by more than a threshold amount from target locations and/or orientations. The machine controllers and/or the worksite controller can also initiate one or more response actions when a possible fault in the charging rail system is detected.
An example three-dimensional (3D) printer may include a camera to capture a low-resolution thermal image of a build material bed. The 3D printer may include an interpolation engine to generate an interpolated thermal image based on the low-resolution thermal image. The 3D printer may also include a correction engine to enhance fine details of the interpolated thermal image without distorting thermal values from portions of the interpolated thermal image without fine details to produce an enhanced thermal image.
An inspection apparatus includes an image distortion estimation unit that estimates a distortion amount between a reference image and an inspection image, an image distortion correction unit that corrects the inspection image and/or the reference image using an estimated distortion amount, and an inspection unit that performs inspection using a corrected inspection image and the reference image or the inspection image and a corrected reference image. The image distortion estimation unit estimates a distortion amount in which only distortion occurring in an entire image can be corrected by adjustment of a correction condition.
An object of this disclosure is to allow dose-specific alteration of the noise suppression in X-ray images, wherein the image quality may change only below the threshold of perceptibility. To achieve this, a method is provided for adjusting a parameter for noise suppression in X-ray imaging, in which quality functions are determined in relation to a variation of a noise suppression parameter. Maximum values of the variation are set for each quality function based on a threshold value. The variability of the noise suppression parameter may be limited according to the X-ray dose up to the set maximum value.
The disclosed method enables efficient registration and correction of random vertical and horizontal offsets of a plurality of images of a feature to enable combination thereof with maximum noise suppression. The method includes obtaining image cross correlations and estimating correlation peaks. If a correlation peak cannot be uniquely determined for a given correlation, all candidates are retained. An improved robust weighted regression is applied thereto to obtain estimates of the image shifts. Dimensional symmetry is exploited to remove redundancy from the weighted normal equation, and computational requirements are further reduced by analytically determining the coefficients matrix and the inhomogeneous matrix, thereby circumventing conventional computations. Solution of the resulting consistent, full rank, linear system requires only matrix inversion. For N images, the present method thereby increases computation speed and reduces storage by approximately N2.
Systems and methods for generating secondary content item that includes a first portion that is a reminder of the original interest and a second portion that is content relevant to the original interest are disclosed. The methods provide primary content for the user's consumption. User interest based on a plurality of factors, such as user's gaze, heartbeat, or facial expression, is determined during the user's consumption of the primary content. One or more objects or frames are identified as primary objects or frames of interest. The methods also scan in real-time, real-life objects that are in the field of view of an augmented reality device. A determination that the real-time object is related to the primary object of interest is made. A determination is also made if any environmental or local adjustments need to be made. A secondary content item with any environmental or local adjustments is generated.
A mixed reality (MR) system and method performs three dimensional (3D) tracking using 3D deep neural network structures in which multimodal fusion and simplified machine learning to only cluster label distribution (output of 3D deep neural network trained by generic 3D benchmark dataset) is used to reduce the training data requirements of to directly train a 3D deep neural network structures for non-generic user case. In one embodiment, multiple 3D deep neural network structures, such as PointCNN, 3D-Bonet, RandLA, etc., may be trained by different generic 3D benchmark datasets, such as ScanNet, ShapeNet, S3DIS, inadequate 3D training dataset, etc.
Embodiments are disclosed for optimizing a material graph for replicating a material of the target image. Embodiments include receiving a target image and a material graph to be optimized for replicating a material of the target image. Embodiments include identifying a non-differentiable node of the material graph, the non-differentiable node including a set of input parameters. Embodiments include selecting a differentiable proxy from a library of the selected differentiable proxy is trained to replicate an output of the identified non-differentiable node. Embodiments include generating an optimized input parameters for the identified non-differentiable node using the corresponding trained neural network and the target image. Embodiments include replacing the set of input parameters of the non-differentiable node of the material graph with the optimized input parameters. Embodiments include generating an output material by the material graph to represent the target image using the optimized input parameters for the non-differentiable node.
Exemplary embodiments include an intelligent secure networked architecture configured by at least one processor to execute instructions stored in memory, the architecture comprising a data retention system and a machine learning system, a web services layer providing access to the data retention and machine learning systems, an application server layer that provides a user-facing application that accesses the data retention and machine learning systems through the web services layer and performs processing based on user interaction with an interactive graphical user interface provided by the user-facing application, the user-facing application configured to execute instructions for a method for room labeling for activity tracking and detection, the method including making a 2D sketch of a first room on an interactive graphical user interface, and using machine learning to turn the 2D sketch of the first room into a 3D model of the first room.
A system includes at least one imaging sensor and a processor. The processor is configured to acquire detected data describing an environment of a vehicle using the at least one imaging sensor; derive reference data which describes the environment from a predefined map; compute difference data representing a difference between the detected data and the reference data; and transfer the difference data, wherein an image computed based on the difference data and the reference data represents the detected data.
An imaging processing method that acquires first and second overlapping image data sets by performing first and second measurements on an overlapping location at first and second times, wherein the first and second times are different times; determines whether the first and second overlapping image data sets have substantially a same image quality; and generating and outputting, a first weighted overlapping combined image by combining (a) first weighted image data generated by applying a first weight to an overlapping frequency range of the overlapping image data set having a higher image quality and (b) second weighted image data generated by applying a second weight to the overlapping frequency range of the overlapping image data set having a lower image quality, wherein the first weight is larger than the second weight.
In one example, an apparatus comprises: a buffer memory; and a memory access circuit configured to: fetch, from a first memory, a set of first groups of data elements of a first matrix, each first group of data elements being stored at consecutive memory addresses at the first memory; based on a first configuration, store the set of first groups of data elements at consecutive memory addresses or at non-consecutive memory addresses at the buffer memory; based on a second configuration that defines a memory address offset, fetch a set of second groups of the data elements from the buffer memory, each second group of the data elements being stored at consecutive memory addresses of the buffer memory, each second group being separated by the memory address offset in the buffer memory; and store each fetched second group at consecutive addresses of a destination memory to form a second matrix.
In general, intelligent fuel dispensers are provided. In at least some implementations, an intelligent fuel dispenser can determine customer identities and/or other characteristics and provide customized fueling sessions based on the determined customer identities and/or other characteristics. In at least some implementations, the fuel dispenser includes a touchless interface allowing customers to complete fueling sessions with minimal physical contact with the fuel dispenser.
A method of generating a social platform service screen includes directing, by at least one processor of a computer device, the social platform service screen to land on one of a recommended feed tab and a following feed tab according to a situation associated with the social platform service screen at an entry request point in time, the recommended feed tab configured to display a personalization-based recommended post and the following feed tab configured to display relationship-based following posts contained within a following feed.
Computer-based methods and systems are provided for allocating landed costs. A planned landed cost of materials is calculated based on various planned landed costs. Landed costs are separated into an allocation document to generate a permanent record for cost allocation. When actual landed costs are received the allocation is applied based on different sets of accounting rules and one or more journal entries are generated and persisted based on application of the allocation document and the applied different sets of accounting rules.
Methods and systems for facilitating loss reporting and resolution are described. In some embodiments, a method includes identifying a bounded geographical area affected by a weather event potentially causing property losses to customers of an insurer. The weather event may have an intensity profile in the bounded geographical area. The method further includes generating a customer density profile in the bounded geographical area and predicting resource utilization based on the customer density profile and the weather event intensity profile in the bounded geographical area.
One or more devices in a driving data analysis system may be configured to receive and execute a driving data analysis software application. One or more servers may provide a driving data analysis software application to various driving data analysis devices, such as mobile user devices and/or on-board vehicle systems. The driving data analysis devices may be configured to execute the driving data analysis software application, to receive/collect various driving data, analyze the driving data, and determine eligibility for one or more insurance offers based on the analysis of the driving data. For insurance offers based on driving data, insurance offer vouchers may be generated by the driving data analysis device and transmitted to an insurance provider server to redeem the insurance offer.
The disclosed embodiments relate to creation and dissemination of unique identifiers, i.e. tokens, for use in communication of messages from a transaction processing system, to participants therein whereby messages, or at least a portion of the content thereof, indicative of a response to a request, to transact or modify a prior transaction, are consolidated, or otherwise combined, with the corresponding directed reporting messages communicated to the particular participants participating in the reported transaction while preserving the anonymity of those participants to which messages are particularly directed. The identifiers are structured so as to facilitate rapid validation and dissemination while eliminating the ability to associate any given identifier, or set thereof, with a participant.
Disclosed is a method and an order generation system for a software interface, the method including: by a UE, collecting operation information about a target object, and determining an operation type and an operation coordinate of the target object on the software interface; acquiring a coordinate set in a price coordinate system of the software interface; calculating differences between the operation coordinate and the plurality of coordinate values to obtain a plurality of difference values, extracting a minimum difference value from the plurality of difference values, and obtaining a first price corresponding to the minimum difference value; and generating a first straight line matching the first price and the operation type, and sending a transaction request including the first price and the operation type to a background server after superimposing the first straight line onto the software interface.
A transaction tracking service (TTS). The TTS includes a transaction repository configured to store transaction records organized within a transaction groups. The TTS also includes a computer processor operatively connected to the transaction repository. The computer processor is configured to execute instructions to make a first determination that a first transaction record of the plurality of transaction records is unassigned, generate, based on the first determination, an unassigned transaction list (UTL) comprising a first set of transaction data associated with the first transaction record, and transmit the UTL to a client device operatively connected to the TTS.
An automatic bidding system includes a vehicle agent (a computer). A vehicle agent includes a bidding agent (a bidding unit) that places an automatic bid for power trading related to electric power of a user in accordance with an automatic bidding algorithm, and an information collection agent (an information collection unit) that acquires user information indicating a preference of the user. The bidding agent is configured to set a parameter of the automatic bidding algorithm using the user information.
Techniques for generating a digital wardrobe are presented herein. A transceiver can be configured to receive a request having a garment identifier and a user identifier. Additionally, an access module can be configured to access a first garment model, access a body model of the user corresponding to the user identifier, and access a second garment model corresponding to the user identifier. Furthermore, a processor can be configured by a garment simulation module to position the body model inside the first garment model and the second garment model, and calculate simulated forces based on the positioning. Moreover, a rendering module can be configured to generate an image of the garment models draped on the body model based on the calculated simulated forces. Subsequently, a display module can be configured to cause presentation of the generated image on a display of a device.
A commodity recommendation method includes: receiving at least one image of a first commodity sent by a shopping cart, and the first commodity being a commodity placed in the shopping cart; inputting the at least one image into a commodity recognition model for commodity recognition to obtain commodity recognition information; inputting the commodity recognition information into a commodity recommendation model for purchase demand prediction to obtain at least one target recommended commodity; and sending information of the at least one target recommended commodity to the shopping cart.
An exemplary healthcare services recommender implementation may be configured to recommend selectively redeemable bundled services comprising care for conditions predicted as likely by a machine learning model based on patient data input. The likely conditions may be predicted for a patient or a patient population comprising a plurality of patients. The machine learning model may comprise a neural network trained to determine a probability distribution of patient condition trends for a future time period based on patient data input. The patient data input may comprise data from an Electronic Medical Record (EMR), diagnosis, lab test, patient-provided information such as survey/symptom data, and/or wearable device data. The machine learning model may be trained using a training data set including at least healthcare outcomes sampled during a past time period from a plurality of patient healthcare episodes each comprising a plurality of procedures performed for the patient in at least one encounter.
A method and apparatus for a commerce platform coordinating a purchase of a product sold by a merchant system through a third party application are described. The method may include receiving a notification from the third party application requesting to purchase a product from within the third party application, wherein the notification comprises an identifier for the product and an identifier for the merchant system that sells the product. The method may also include a product checkout interface having an appearance consistent with an appearance of a user interface of the third party application, and transmitting the product checkout interface generated by the commerce platform to a user device executing the third party application causing the third party application to render the product checkout interface within at least a portion of the user interface of the third party application.
A subscription-based system for providing commerce information for one or more mobile devices for one or more merchants. Some techniques employed feature a subscription-based method for presenting commercial resources to a mobile device. The method involves receiving mobile device user information relating to a geographic location to locate one or more merchants within a subscription-based shopping network, and receiving mobile device user information relating to a merchant type within the subscription-based shopping network. The method also involves receiving, from a database over a communication network, information for one or more merchants associated with the mobile device user information for the geographic location and the merchant type, and presenting the associated merchant information on the mobile device. The associated merchant information can include a merchant name and address, a merchant telephone number, a merchant advertisement, a merchant coupon, or a merchant product or service offering to subscribers of the shopping network.
In an embodiment, a computer-implemented method comprises receiving supplier invoice data comprising one or more supplier payment objects corresponding to a supplier to a customer of a supplier-customer transaction. A match determination is made between the supplier payment object and a verified payment object. In response to a no-match determination, a customer transaction system is queried to validate the supplier, and in response to the supplier validation, a validation payment object is created, validating the supplier. A match determination is made between the supplier payment object and the verified payment object, and the supplier invoice is automatically generated. In response to receiving subsequent supplier invoice data corresponding to the supplier of subsequent supplier-client transactions, for each subsequent supplier-client transaction, the subsequent supplier invoice is automatically generated with the verified payment object.
An ambient transaction system is described for facilitating various transactions types between a management system and a connected device over a transaction platform. Based on a variety of different triggering conditions, the transaction platform may establish an integrated session among the transaction platform, the management system, and the connected device. The transaction platform includes integrated logic of the management system such that a presentment layer provided to the connected device by the transaction platform via the integrated session includes features of the management system associated with the transaction type. When the transaction is a payment transaction, the features may include a payment feature through which checkout options may be selected for payment via the connected device. Upon receiving a payment selection from the connected device, the transaction platform may transmit the payment information to a payment processing system, and provide payment confirmation to at least the management system.
Method for celebrity-based advertising includes storing, in a server, a likeness of subject and a corresponding booking that includes parameters outlining availability of the subject for digital advertising. The method further includes receiving or creating, by the server, a pitch that falls within the parameters of the booking, the pitch corresponding to the subject. The method further includes receiving, by the server and from a first user device, a first image of the likeness of the subject or another likeness of the subject. The method further includes determining, by the server, that the image matches the likeness of the subject. The method further includes transmitting, by the server, the pitch to the first user device to be output by the first user device.
A system and method generate location-based real-time pop-ups to user portable devices utilizing a computing system storing target information and user profiles and providing a downloadable pop-up display application. A user portable device running the application sends user identification and current location information to the computing system. The computing system uses the current location and the stored user profile associated with the identified user to select relevant stored target information and send the selected information as pop-up data to the portable device across a wireless communication channel only when the user portable device current location is within the predetermined distance of the associated target location. The application generates pop-up images from the received pop-up data on the portable device display for use by the user in purchasing products and/or services from the targets. The user profiles include preferences that facilitate the target selection and the image display positioning.
A method, system, apparatus, and computer program product provide the ability to utilize household connections. A device is associated with a primary household. The primary household is connected with one or more additional households. Within a primary household profile, identification information (for the one or more additional households that are connected to the primary household) are stored. Media content based on data associated with the primary and connected households is then targeted.
A computer-implemented process includes receiving with an eCommerce platform from a user over a network a first product-search keyword, generating to a display of the user a graphical user interface (GUI) including a first selectable icon showing the first keyword, a first selectable image of a first product and a first connector between the first icon and first image, the first connector indicating that the first product was previously purchased using the eCommerce platform in response to the platform receiving the first keyword, and in response to user selection of the icon, generating to the GUI a set of performance indicators characterizing an advertising campaign associated with at least one of the first keyword and first product within the eCommerce platform.
A method and device for assigning a product collateral value in a metaverse warehouse can include receiving, by a product collateral valuation device, product distribution data and determining, by the product collateral valuation device, product collateral value data on the basis of the product distribution data. The product distribution data can include product warehousing data, product unstoring data, and product storage data generated from the metaverse warehouse.
A system and method for creation, distribution and tracking of advertising via electronic networks, enabling creation of advertisements using licensed third-party content and placement of the ads at desired network locations, utilizing an auction of ad spaces based on bids placed by advertisers to have their ads displayed at such locations. When a network user/ad viewer requests an ad by clicking or other action, an auction algorithm executes to select the ad to be displayed from those that bid for display at such ad space location and then the ad is composed and delivered to the ad space location by accessing a relational database storing commands that retrieve, assemble and dispatch the licensed ad content. Usage and display of licensed content on designated ad space is tracked to enable cost-per-use charging for both use of licensed content and ad display at the designated ad space.
Requests to perform activity with respect to a customer account can be monitored to attempt to detect fraudulent activity due to compromised customer credentials or other unauthorized access. The unauthorized party can request actions such as to create a new account, mount a snapshot of customer data, and exfiltrate the customer data. Various embodiments monitor such requests and permissions granted to accounts not directly owned by a customer, and can apply automatic mitigations for suspicious activity in order to reduce the risk of exposing data to unauthorized accounts. Such an offering determines mitigations to perform, such as to block, alert, rate limit, or terminate the linked or non-linked account based on account reputation. The detection mechanism can use various heuristics to make mitigation decisions, as may consider factors such as account age, geolocation, access history, device fingerprint, network domain, payment type, prior suspicious activity, and the like.
A method and system are provided for environmental credit scoring of a plurality of users, partners, and distributors comprising: registering the plurality of users, partners, distributors, and verifiers; receiving information from the registered users; receiving environmental activity records from partners, and distributors; assigning each activity an identification number; verifying the environmental activity records; calculating a score of each environmental activity; calculating an environmental credit score of the partners and distributors; receiving data from a point of service system; identifying the environmental activity records of users, partners and distributers, and crediting respective environmental activity records; calculating an environmental credit score for the users based on the environmental activities' data credited under the environmental activity record of the users; analyzing the environmental credit score of the users, partners, and distributors; and publishing the environmental credit scores.
The present disclosure is directed to various ways of improving the functioning of computer systems, information networks, data stores, search engine systems and methods, and other advantages. Among other things, provided herein are methods, systems, components, processes, modules, blocks, circuits, sub-systems, articles, and other elements (collectively referred to in some cases as the “platform” or the “system”) that collectively enable, in a single database and system, the development and maintenance of a set of universal contact objects that relate to the contacts of a business and that have attributes that enable use for a wide range of activities, including sales activities, marketing activities, service activities, content development activities, and others, as well as improved methods and systems for sales, marketing and services that make use of such universal contact objects.
A contactless card reader comprises a contactless card reader front-end coupled to a processor. A communications module is coupled to the processor and a set of sensors is coupled to the processor. The set of sensors determines parameters related to the location, orientation and motion of the card reader. The processor receives the parameters from the set of sensors and utilizes the parameters and scenario configuration data to evaluate a rule. The result of the evaluation of the rule results in a limitation on the operation of the card reader. The communications module is configured to intermittently receive the scenario configuration data from external sources.