-
公开(公告)号:CN116356149A
公开(公告)日:2023-06-30
申请号:CN202310205233.4
申请日:2023-03-02
Applicant: 中南大学 , 株洲冶炼集团股份有限公司
Abstract: 本发明提供了一种从含铊高氟氯烟尘中选择性分离铊的方法及应用,该方法包括:将含铊高氟氯烟尘在碱浸液中进行碱浸,得到碱浸后物和含铊浸出液,碱浸液中包括氢氧根离子。将碱浸后物在700~800℃的条件下进行焙烧,得到焙后物和含铊气体。含铊高氟氯烟尘中铊主要以一价铊的形式存在,含铊高氟氯烟尘中的成分包括铅锌硫酸盐、铅锌氧化物以及铅锌氟氯化合物。上述方法中,碱浸使硫酸锌结构转变为氢氧化锌结构,实现铊的释放。碱浸后渣中的铊主要以简单化合物形式存在,在700℃~800℃时铊挥发较快,而碱浸后渣中的铅、锌、镉对应的化合物基本不挥发,从而可以将铊与含铊高氟氯烟尘中其他物质选择性分离。
-
公开(公告)号:CN116479265A
公开(公告)日:2023-07-25
申请号:CN202310205224.5
申请日:2023-03-02
Applicant: 株洲冶炼集团股份有限公司 , 中南大学 , 湖南株冶环保科技有限公司
Abstract: 本发明提供一种从含铊酸浸渣中选择性分离铊的方法,包括步骤:S1,对含铊酸浸渣进行研磨处理,得研磨产物;所述含铊酸浸渣中包括金属铅、以及包裹有所述金属铅的金属镉,且所述金属铅中赋存有铊元素;S2,将所述研磨产物在1100‑1500℃的温度下焙烧0.5‑3h,以选择性地分离所述含铊酸浸渣中的铊;所述焙烧在氧化气氛下进行。本发明能够对含铊酸浸渣中的铊进行高效地选择性分离。
-
公开(公告)号:CN116445741B
公开(公告)日:2025-05-16
申请号:CN202310256663.9
申请日:2023-03-16
Applicant: 中南大学
IPC: C22B30/04
Abstract: 本发明提供了一种砷提纯的方法,将粗砷、铋粉和含碘调质剂封闭在密闭容器内的第一端,密闭容器内为真空或惰性气氛;其中,密闭容器包括相对设置的第一端和第二端;对密闭容器进行第一阶段加热,包括对第一端在第一温度下进行加热和对第二端在第二温度下进行加热,且第一温度大于第二温度,第二温度大于纯砷的沸点;对进行第一阶段加热后的密闭容器进行第二阶段加热,包括对第一端在第三温度下进行加热和对第二端在第四温度下进行加热,得到金属砷;第三温度大于第四温度,第三温度小于纯砷的沸点。解决了现有技术原料为剧毒物质,不利于安全生产;工艺流程冗长;难以获得高纯度金属砷等问题。
-
公开(公告)号:CN119491139A
公开(公告)日:2025-02-21
申请号:CN202411437972.7
申请日:2024-10-15
Applicant: 中南大学 , 中信戴卡股份有限公司
Abstract: 本发明提供了一种再生铝合金富铁相的细化改质剂的制备方法及应用,以质量分数计,所述细化改质剂包括60%~75%助熔剂、15%~30%含硼试剂和9%~11%Co粉;其中,所述助熔剂为NaCl和KCl,NaCl的质量分数为45.0~45.5%;所述含硼试剂为B2O3或Na2B4O7。[B]剂中B元素对废铝熔体中的α‑Al枝晶具有细化作用,从晶粒细化的角度提升再生铸造铝合金性能。[B]剂和Co粉共同作用促进初生α‑Fe形成,最终结合热处理手段使富铁共晶相中的原子溶解、转移,达到细化改质有害富铁相的目的,解决现有低铁含量铝合金液除铁成本高昂、富铁相细化改质效果不佳、残余针片状β‑Fe相问题。该发明制备工艺简单、原料易得、成本较低且环保,其应用到再生铸造铝硅合金的操作简单、富铁相细化改质效率优异。
-
公开(公告)号:CN118813969B
公开(公告)日:2025-02-07
申请号:CN202411293066.4
申请日:2024-09-14
Applicant: 中南大学
IPC: C22B7/04 , C22B5/10 , C22B15/00 , C22B13/02 , C22B19/00 , B09B3/00 , B09B3/35 , B09B3/40 , B09B3/70 , B09B101/55
Abstract: 本发明提供了一种铜渣中有价金属的回收方法及其应用,铜渣中有价金属的回收方法包括步骤:将复合贫化剂加入1180~1320℃的热态铜渣中,待热态铜渣缓冷至室温后,静置35h以上,不经传统磨矿即可得到粒径为1mm‑10mm的自粉化铜渣;自粉化铜渣经浮选,进一步分离回收金属硫化物、合金和/或铁酸锌;其中,复合贫化剂中硫酸钠与碳质还原剂的质量比为2~6:1;复合贫化剂中的硫含量为将铜渣所有金属氧化物全部硫化所需的理论硫含量的6~10倍。本发明高效、清洁地实现了铜渣中有价金属的梯级回收,具备显著的经济效益以及环境效益。
-
公开(公告)号:CN119349754A
公开(公告)日:2025-01-24
申请号:CN202411337269.9
申请日:2024-09-25
Applicant: 中南大学 , 中国科学院过程工程研究所
IPC: C02F1/78 , C22B3/44 , C22B3/02 , C02F1/52 , C02F1/02 , C02F1/66 , B01J19/18 , B01J4/00 , C02F101/20
Abstract: 本发明公开了一种从含铊溶液中选择性除铊的方法及装置。所述方法以臭氧为氧化剂,反应期间采用剪切强化手段,可在特定的pH范围将Tl+转化为稳定性好的难溶的Tl2O3,从而实现溶液中铊的高效脱除。所述的反应装备由搅拌装置、反应槽、温控装置、剪切机、循环泵等组成。相对于其他方法,本发明具有生产成本低、除铊选择性高、除铊渣产量小、无杂质离子引入等优点,具有较好的工业应用价值。
-
公开(公告)号:CN118835103A
公开(公告)日:2024-10-25
申请号:CN202411055300.X
申请日:2024-08-02
Applicant: 江西永兴特钢新能源科技有限公司 , 中南大学
Abstract: 本发明公开了一种硫酸铵复配低温焙烧锂云母高效提锂的方法,包括以下步骤:将锂云母原料通过预处理得到锂云母精矿,将锂云母精矿通过机械活化的方式处理得到活化锂云母精矿,将辅料与活化锂云母精矿按照1.2g/g‑1.6g/g的物料比混合均匀得到混料,其中,所述辅料为硫酸铵和过硫酸盐的混盐;将焙烧设备预升温至650‑750℃,放入混料焙烧,得锂云母焙烧熟料A;将锂云母焙烧熟料A通过水浸、机械振荡得含锂浸出液。本发明的工艺流程简单,采用的硫酸盐混料价格低廉,焙烧所需的温度远低于传统方法,能耗低,同时保证了锂的高效浸出,极大降低了成本,在锂云母焙烧提锂领域具有广阔的应用前景。
-
公开(公告)号:CN118835073A
公开(公告)日:2024-10-25
申请号:CN202410777150.7
申请日:2024-06-17
Applicant: 中南大学
Abstract: 本发明提供了一种富铍铁渣中铍铁分离的方法,包括步骤:将富铍铁渣粉末于650~750℃下进行焙烧处理,得焙烧产物;富铍铁渣中包括载有氢氧化铍的针铁矿、氢氧化铝和磷酸锆;将焙烧产物采用硫酸溶液进行酸浸处理,得固液混合物;对固液混合物进行固液分离处理,得高铍滤液和含铁滤渣。相比于现有技术,该方法能很好地实现富铍铁渣中铍铁的高效分离;以及渣的减量化,质量约减少为原质量的50%。得到的高铍滤液有益于后续铍的应用;且得到的含铁滤渣具有低毒害的特点,不会对环境造成危害,甚至可以进一步回收其中的铁以进行铁的利用。且该方法对设备工艺要求低、应用性强,适宜工业化推广。
-
公开(公告)号:CN114049919B
公开(公告)日:2024-07-26
申请号:CN202111460477.4
申请日:2021-12-02
Applicant: 中南大学
IPC: G16C10/00 , G16C20/10 , G06F30/28 , G06T17/00 , G06T7/13 , G06T7/11 , G06T7/136 , G06T7/62 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本申请公开了一种污泥脱水性能的微观定量化分析方法和系统,包括:建立污泥微观结构的三维模型;从三维模型中提取二维切片中的关键结构信息;根据关键结构信息和三维模型参数得到用于制备微流体芯片的模型化图纸并进行芯片注水实验,实时观察并记录污泥脱水全过程;对微流体芯片的注水过程进行模拟仿真得到仿真结果;根据微流体芯片注水实验的实验结果对模拟仿真结果进行处理,反馈优化模拟仿真模型;将模拟仿真结果与三维重构模型进行比对反馈,验证三维重构操作的准确性以及该方法的可靠性。通过本申请解决了现有技术中由于忽略污泥微观结构而导致的污泥脱水性能无法进一步提高的问题,为提高污泥的脱水性能提供了支持。
-
公开(公告)号:CN118291774A
公开(公告)日:2024-07-05
申请号:CN202410719150.1
申请日:2024-06-05
Applicant: 中南大学 , 山东恒邦冶炼股份有限公司
Abstract: 本发明提供了一种铜冶炼方法、铜冶炼危废源头减量的方法;所述铜冶炼方法包括步骤:S1,提供铜矿原料和高砷物料;所述铜矿原料包括黄铜矿;所述高砷物料中含有砷酸铅和三硫化二砷,所述砷酸铅和所述三硫化二砷的质量比为6~8:2~4;S2,将所述铜矿原料和所述高砷物料共同作为冶炼原料,并将所述冶炼原料在800~1200℃的温度下进行冶炼,得含砷烟气、铜熔炼渣和熔融态的铜;所述冶炼原料中砷元素的质量占比大于1.5%;所述铜矿原料和所述高砷物料的质量比为8~9.5:0.5~2。本发明通过将铜矿原料和高砷物料共同冶炼,可以在铜冶炼源头实现砷元素的减排和安全处置。
-
-
-
-
-
-
-
-
-