一种热轧精轧区域工作辊辊面质量控制方法

    公开(公告)号:CN107377630B

    公开(公告)日:2020-05-15

    申请号:CN201710556988.3

    申请日:2017-07-10

    IPC分类号: B21B37/00 B21B27/06 B21B45/08

    摘要: 本发明涉及热轧技术领域,尤其涉及一种热轧精轧区域工作辊辊面质量控制方法,所述方法包括:在包含若干工作辊的热轧精轧区域,执行开轧烫辊,其中,开轧烫辊材大于或等于3块,每块所述开轧烫滚材的轧制时间大于或等于3分钟,冷却水流量大于或等于4.5L/min·mm,压力大于或等于1MPa;利用所述工作辊对板材进行轧制。本申请针对热轧精轧区域,在利用该区域内的工作辊对板材进行轧制之前,执行开轧烫辊,并且保证开轧烫辊材大于或等于3块,每块开轧烫辊材的轧制时间大于或等于3分钟,冷却水流量大于或等于4.5L/min·mm,压力大于或等于1MPa,从而轧制后工作辊的辊面质量得到有效地改善,提高了工作辊的辊面质量。

    一种铁素体轧制工艺的精轧控制方法及装置

    公开(公告)号:CN106734233B

    公开(公告)日:2019-10-29

    申请号:CN201611059348.3

    申请日:2016-11-22

    IPC分类号: B21B37/00

    摘要: 本发明提供了一种铁素体轧制工艺的精轧控制方法及装置,方法包括:建立基于铁素体轧制工艺的钢种族号;建立基于铁素体轧制工艺的精轧变形抗力模型;设定精轧变形抗力模型中自学习参数的初始值;其中,在精轧过程中,根据钢种的化学成分对变形抗力模型的调整因子ξi进行调整;i为精轧机的序号,i=1……7。如此,通过单独建立铁素体轧制工艺的钢种族号,根据常规轧制工艺的实际数据来模拟铁素体钢的轧制工艺,不断调整变形抗力模型的自学习参数,最终确定自学习参数的初始值,并在轧制过程中通过调整因子ξi对初始值进行调整,使得在铁素体钢在轧制过程中,机架的变形抗力、轧制力等轧制参数的偏差控制在预设的误差范围内,进而保证了铁素体钢的质量。

    超低碳钢的生产方法
    14.
    发明授权

    公开(公告)号:CN106834906B

    公开(公告)日:2019-04-12

    申请号:CN201710017486.3

    申请日:2017-01-10

    摘要: 本发明公开了一种超低碳钢,其化学成分质量百分比为:C:0.001~0.01%,Si:0~0.03%,N:0~0.005%,Al:0.02~0.05%,Ti:0.02~0.05%,其余为Fe及不可避免杂质。本发明还公开了一种生产上述超低碳钢的方法,将经冶炼获得的化学成分如上述所述的板坯进行加热后,经过半连续式粗轧、精轧获得热轧板,所述精轧时,精轧出口通长的轧制头尾速度差控制在≤1.5m/s,精轧末机架加速度控制在≤0.02m/s2,保证带钢轧制的速度均匀;将所述热轧板经层流冷却后卷取获得成品。本发明提供的一种超低碳钢的生产方法,解决了现有技术中超低碳钢性能不均匀的技术问题,提高了产品性能的均匀性与稳定性。

    一种铁素体轧制工艺的精轧控制方法及装置

    公开(公告)号:CN106734233A

    公开(公告)日:2017-05-31

    申请号:CN201611059348.3

    申请日:2016-11-22

    IPC分类号: B21B37/00

    摘要: 本发明提供了一种铁素体轧制工艺的精轧控制方法及装置,方法包括:建立基于铁素体轧制工艺的钢种族号;建立基于铁素体轧制工艺的精轧变形抗力模型;设定精轧变形抗力模型中自学习参数的初始值;其中,在精轧过程中,根据钢种的化学成分对变形抗力模型的调整因子ξi进行调整;i为精轧机的序号,i=1……7。如此,通过单独建立铁素体轧制工艺的钢种族号,根据常规轧制工艺的实际数据来模拟铁素体钢的轧制工艺,不断调整变形抗力模型的自学习参数,最终确定自学习参数的初始值,并在轧制过程中通过调整因子ξi对初始值进行调整,使得在铁素体钢在轧制过程中,机架的变形抗力、轧制力等轧制参数的偏差控制在预设的误差范围内,进而保证了铁素体钢的质量。

    一种消除带钢表面麻坑缺陷的工艺方法

    公开(公告)号:CN104307897A

    公开(公告)日:2015-01-28

    申请号:CN201410542359.1

    申请日:2014-10-14

    摘要: 本发明公开了一种消除带钢表面麻坑缺陷的工艺方法,所述方法包括:控制所述带钢的板坯出钢温度为1130~1180℃;控制粗轧机组采用3+5道次的轧制模式对所述板坯进行粗轧,通过粗轧工序对所述板坯进行全道次除磷;对粗轧后的中间坯进行精轧,控制所述中间坯精轧入口温度为940-980℃;控制第一精轧机与第二精轧机之间的第一机架间冷却水开启量为25%~30%;控制第二精轧机与第三精轧机之间的第二机架间冷却水开启量为18%~20%;控制第三精轧机与第四精轧机之间的第三机架间冷却水开启量为18%~20%;控制第四精轧机与第五精轧机之间的第四机架间冷却水开启量为45%~50%;控制第七精轧机轧制速度为4.5~5.5m/s。如此,通过对轧制产线的工艺优化,从源头上避免了带钢表面麻坑缺陷的发生。