一种在绝缘衬底上直接制备层数可控石墨烯的方法

    公开(公告)号:CN106927459A

    公开(公告)日:2017-07-07

    申请号:CN201511019588.6

    申请日:2015-12-29

    CPC classification number: H01L21/265 H01L21/324

    Abstract: 本发明提供一种在绝缘衬底上直接制备层数可控石墨烯的方法,利用离子注入精确控制碳离子剂量,直接在各种绝缘衬底上制备不同层数的石墨烯。首先在绝缘衬底上沉积金属镍薄膜,接着使用离子注入将不同层数对应的碳离子剂量分别注入到镍薄膜中,然后在镍上沉积相对比较厚的铜薄膜。在高温下使镍铜会发生互溶,大量的铜会将碳不断地往下推,最终从镍中推出,在绝缘衬底和镍铜合金的界面处形成石墨烯。本发明可以直接在不同的绝缘衬底上获得大面积层数可控的高质量连续石墨烯,不需要进一步转移,大大提高了石墨烯的质量,本发明高温合成时间极短,可以极大的提高制备效率,为工业化制备绝缘体上高质量石墨烯以及石墨烯应用提供了有效可行地途径。

    一种绝缘体上石墨烯的制备方法

    公开(公告)号:CN105129785B

    公开(公告)日:2017-03-15

    申请号:CN201510532114.5

    申请日:2015-08-26

    Abstract: 本发明提供一种绝缘体上石墨烯的制备方法,包括:提供一锗催化衬底,将其放入生长腔室,并通入含氢气氛,以在所述锗催化衬底表面形成Ge-H键;将所述催化衬底加热至预设温度,并通入碳源,在所述锗催化衬底表面生长得到石墨烯;提供一绝缘衬底,将所述锗催化衬底形成有石墨烯的一面与所述绝缘衬底键合,得到键合片;微波处理所述键合片,以使所述Ge-H键断裂,生成氢气,使得所述石墨烯从所述锗催化衬底上剥离,转移至所述绝缘衬底表面,得到绝缘体上石墨烯。本发明无需经过湿法反应过程,减少了缺陷的引入,且石墨烯转移过程中始终有载体支撑,最大程度保留了石墨烯的完整性,有利于得到大尺寸、高质量的绝缘体上石墨烯。

    基于增强吸附来制备绝缘体上材料的方法

    公开(公告)号:CN103943547B

    公开(公告)日:2017-02-08

    申请号:CN201310024414.3

    申请日:2013-01-23

    CPC classification number: H01L21/76254 H01L21/76256

    Abstract: 本发明提供一种基于增强吸附来制备绝缘体上材料的方法。根据本发明的方法,先在第一衬底上依次外延生长一掺杂的超晶格结构的单晶薄膜、中间层、缓冲层以及顶层薄膜;随后,对形成了顶层薄膜的结构进行低剂量离子注入,使离子注入到所述掺杂的超晶格结构的单晶薄膜上表面之上或下表面之下;接着再将具有绝缘层的第二衬底与已进行离子注入的结构键合,并进行退火处理,使掺杂的超晶格结构的单晶薄膜处产生微裂纹来实现原子级的剥离。本发明采用增强吸附来实现键合片的有效剥离。剥离后的表面平整,粗糙度低,并且顶层薄膜晶体质量高。

    一种制备锗基石墨烯纳米孔的方法

    公开(公告)号:CN106276873A

    公开(公告)日:2017-01-04

    申请号:CN201610642661.3

    申请日:2016-08-08

    CPC classification number: C01P2004/04

    Abstract: 本发明提供一种制备锗基石墨烯纳米孔的方法,包括如下步骤:S1:提供一锗基石墨烯,所述锗基石墨烯包括Ge衬底及形成于所述Ge衬底上的石墨烯;S2:对所述锗基石墨烯进行离子注入,以在所述石墨烯中产生点缺陷;S3:对所述锗基石墨烯进行退火,以从所述点缺陷处对所述石墨烯进行刻蚀,得到纳米孔。本发明的制备锗基石墨烯纳米孔的方法获得的石墨烯纳米孔具有质量好、尺寸易于调节、不会刻蚀石墨烯等优势。另外,离子注入技术、退火技术在目前半导体行业都是非常成熟的工艺。所以本发明的制备方法将能更快地推动石墨烯在单层膜材料上的推广与应用。

    一种制备无褶皱的石墨烯的方法

    公开(公告)号:CN105110324A

    公开(公告)日:2015-12-02

    申请号:CN201510508080.6

    申请日:2015-08-18

    Abstract: 本发明提供一种制备无褶皱的石墨烯的方法,包括以下步骤:S1:提供一催化基底,在所述催化基底表面预设区域进行离子注入以破坏注入区域的催化性能,并使得所述催化基底表面形成若干分立的未注入单元;S2:将所述催化基底放入生长腔室,将所述催化基底加热至预设温度,并往所述生长腔室内通入碳源,在所述催化基底表面生长出若干分立的没有褶皱的石墨烯单元。本发明不仅可以得到高质量的没有褶皱或褶皱密度很低的石墨烯单元还可以通过控制离子注入的区域,得到具有特定形状的石墨烯单元,从而适应多样的器件应用需求。

    一种可控石墨烯阵列的制备方法

    公开(公告)号:CN103204455B

    公开(公告)日:2015-10-28

    申请号:CN201210008150.8

    申请日:2012-01-12

    Abstract: 本发明提供一种可控石墨烯阵列的制备方法,采用晶向相同的两硅衬底进行小角度键合形成方形网格状的螺旋位错,由于位错引起硅表面应力分布不均,利用应力选择性腐蚀,对位错线影响的垂向对应的区域进行刻蚀,形成正方形网格状的图形化硅岛,采用电子束外延形成具有偏析特性的金属纳米颗粒,最后采用化学气相沉积法与偏析方法制备出所述石墨烯阵列。采用本发明制备的石墨烯阵列具有很高的可控性和可靠性,石墨烯阵列的分布通过硅硅小角度键合进行控制,可达到较高的精度。本发明制备方法工艺简单,效果显著,且兼容于一般的半导体工艺,适用于工业生产。

    一种锗纳米线场效应晶体管及其制备方法

    公开(公告)号:CN104332405A

    公开(公告)日:2015-02-04

    申请号:CN201410482922.0

    申请日:2014-09-19

    CPC classification number: H01L29/0669 H01L29/66439

    Abstract: 本发明提供一种锗纳米线场效应晶体管的制备方法,包括步骤1)提供SGOI衬底结构;2)刻蚀SiGe层,形成SiGe纳米线阵列;3)对步骤2)的结构进行锗浓缩,得到表面被SiO2层包裹的锗纳米线阵列;4)去除包裹在纳米线两端表面的SiO2层,裸露出锗纳米线的两端;5)在锗纳米线的延长线上沉积金属引线、源极电极和漏极电极,在硅衬底上制作栅极电极;6)在步骤5)的结构表面形成Si3N4保护层;7)去除纳米线图形区域和金属电极图形区域内的Si3N4保护层,直至完全露出锗纳米线、源极电极和漏极电极。本发明的锗纳米线基于自上而下的方法,工艺过程简单,可控性强,与传统的CMOS工艺完全兼容,成本较低,适于工业生产。

    一种利用C掺杂SiGe调制层制备SGOI或GOI的方法

    公开(公告)号:CN103474386A

    公开(公告)日:2013-12-25

    申请号:CN201310447610.1

    申请日:2013-09-26

    Abstract: 本发明提供一种利用C掺杂SiGe调制层制备SGOI或GOI的方法,包括步骤:1)于SOI的顶硅层表面形成C掺杂SiGe调制层;2)于所述C掺杂SiGe调制层表面形成SiGe材料层;3)于所述SiGe材料层表面形成Si帽层;4)对上述结构进行氧化退火,以氧化所述Si帽层,并逐渐氧化所述SiGe材料层、C掺杂SiGe调制层及顶硅层,使所述SiGe材料层及C掺杂SiGe调制层中的Ge向所述顶硅层扩散并逐渐浓缩,最终形成顶SiGe层或顶Ge层以及上方的SiO2层;5)去除所述SiO2层。本发明利用C掺杂SiGe调制层减小SOI顶硅层和外延的SiGe材料层之间的晶格失配,从而减小浓缩过程中缺陷的产生。本发明所制备的SGOI具有高弛豫、低缺陷密度、高Ge组分等优点。

Patent Agency Ranking