-
公开(公告)号:CN103219275B
公开(公告)日:2016-03-23
申请号:CN201210017889.5
申请日:2012-01-19
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/762 , H01L21/36 , H01L21/265 , H01L21/324
Abstract: 本发明提供一种具有高弛豫和低缺陷密度的SGOI或sSOI的制备方法。根据本发明的方法,先在衬底的单晶表面进行离子注入后,再形成包含由Si1-xGex/Ge或Si/Si1-xGex形成的超晶格结构的多层材料层;随后,在已形成多层材料层的结构表面低温生长Si1-yGey和/或Si后,进行退火处理,以使表层的Si1-yGey层发生弛豫现象;最后再采用智能剥离技术将已发生弛豫现象的结构中的至少部分层转移到含氧衬底的含氧层表面,以形成SGOI或sSOI结构;由此可有效避免现有超厚缓冲层在材料和时间方面的浪费及现有先长后注对外延层的影响。
-
公开(公告)号:CN104752309A
公开(公告)日:2015-07-01
申请号:CN201310732418.7
申请日:2013-12-26
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/762
CPC classification number: H01L21/76254 , H01L21/76259
Abstract: 本发明提供一种剥离位置精确可控的绝缘体上材料的制备方法,包括以下步骤:S1:提供一Si衬底,在其表面外延生长一掺杂单晶层;所述掺杂单晶层厚度大于15nm;S2:在所述掺杂单晶层表面外延生长一单晶薄膜;S3:在所述单晶薄膜表面形成一SiO2层;S4:进行离子注入,使离子峰值分布在所述SiO2层以下预设范围内;S5:提供一表面具有绝缘层的基板与所述单晶薄膜表面的SiO2层键合形成键合片,并进行退火以使所述键合片在预设位置剥离,得到绝缘体上材料。本发明利用较厚掺杂单晶层对注入离子的吸附作用,并控制注入深度,使剥离界面为所述掺杂单晶层的上表面、下表面或其中离子分布峰值处,从而达到精确控制剥离位置的目的。
-
公开(公告)号:CN104686575A
公开(公告)日:2015-06-10
申请号:CN201310648050.6
申请日:2013-12-04
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种锗基石墨烯的抗菌用途。抗菌实验表明,锗基石墨烯对多种革兰氏阳性菌及革兰氏阴性菌具有良好的杀菌和抗菌能力,通过接触细菌,使细菌的细胞质流出来达到杀菌效果,有效抑制细菌的增殖和分裂;同时,锗基石墨烯中的锗对人体具有保健功效如抗疲劳、防止贫血、帮助新陈代谢、抑制肿瘤等,因此可以将锗基石墨烯开发为高效、具有保健作用、无毒的新型抗菌材料,并应用于服装、口罩、首饰、电子产品等领域,具有广阔的应用前景。
-
公开(公告)号:CN104152991A
公开(公告)日:2014-11-19
申请号:CN201410441163.3
申请日:2014-09-02
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种具有特定形状且排列整齐的石墨烯单晶畴的制备方法,所述制备方法为以(110)晶面的半导体材料为催化基底,采用化学气相沉积法,通过气态或固态碳源于所述催化基底表面形成具有特定形状且排列整齐的石墨烯单晶畴。本发明通过调节惰性气体、碳源和氢气的浓度比例、生长温度以及生长时间等可以控制单晶石墨烯的尺寸、密度、形状,并且可以直接获得排列整齐的石墨烯单晶畴。本发明获得的石墨烯单晶畴,具有高质量、低缺陷,并且规则排列等优点。
-
公开(公告)号:CN103265021A
公开(公告)日:2013-08-28
申请号:CN201310207387.3
申请日:2013-05-29
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C01B31/04
Abstract: 本发明提供一种层数可控石墨烯的生长方法,至少包括以下步骤:1)提供一Cu衬底,在所述Cu衬底上形成一Ni层;2)采用离子注入法在所述Ni层中注入C;3)对步骤2)形成的结构进行退火处理使得所述Cu衬底中的部分Cu进入所述Ni层中形成Ni-Cu合金,而Ni层中注入的C被进入所述Ni层中的Cu从Ni层中挤出,在所述Ni-Cu合金表面重构形成石墨烯。本发明获得的石墨烯薄膜具有质量好、大尺寸且层数可控的优势,且易于转移。另外,离子注入技术、退火技术在目前半导体行业都是非常成熟的工艺,本发明的层数可控石墨烯的生长方法将能更快地推动石墨烯在半导体工业界的广泛应用。
-
公开(公告)号:CN103247520A
公开(公告)日:2013-08-14
申请号:CN201210026563.9
申请日:2012-02-07
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/265 , H01L21/02
Abstract: 本发明提供一种基于控制离子注入的能量来制备石墨烯的方法。根据本发明的方法,首先,基于至少一种注入能量向催化衬底注入碳离子;随后,对已注入碳离子的催化衬底进行退火处理以使注入的碳离子析出,并在所述催化衬底表面形成至少一层石墨烯薄膜层;最后,去除所述已形成至少一层石墨烯薄膜层的结构的催化衬底以获得至少一层石墨烯薄膜层。本法所制备出的石墨烯薄膜质量好、尺寸大、且层数可控;相比于SiC升华法,本法制备的石墨烯易于转移;相比与化学气相沉积法,本法制备的石墨烯层数可控。
-
公开(公告)号:CN102874801A
公开(公告)日:2013-01-16
申请号:CN201210390882.8
申请日:2012-10-15
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C01B31/04
Abstract: 本发明提供一种石墨烯的制备方法,在氢气和惰性气氛下将半导体基底加热至810~910℃,保持该温度不变且通入碳源,采用化学气相沉积的方法在所述半导体基底表面进行反应,反应完毕后关闭碳源,并在氢气和惰性气氛下冷却至室温,完成在所述半导体基底表面制备石墨烯。相较于采用化学气相沉积在传统基底表面生长石墨烯而言,本发明直接在半导体材料表面合成制备石墨烯,简化了石墨烯制备工艺;同时,通过调节反应参数,可制备大尺寸、层数可控且无缺陷高质量石墨烯薄膜;另外,本发明与半导体工业相兼容,将能更快地推动石墨烯在半导体工业界的广泛应用。
-
公开(公告)号:CN118263342A
公开(公告)日:2024-06-28
申请号:CN202311717978.5
申请日:2023-12-13
Applicant: 宁波大学 , 中国科学院上海微系统与信息技术研究所 , 南方科技大学
IPC: H01L31/028 , H01L31/0288 , H01L31/0352 , H01L31/102 , H01L31/18 , G01J5/10 , C23C16/50 , C23C16/26
Abstract: 本发明提供了一种红外探测薄膜、制备方法及探测器,包括衬底层、三维石墨烯层和N掺杂三维石墨烯层,三维石墨烯层和N掺杂三维石墨烯层层叠于所述衬底层上。三维石墨烯层不仅电学性能优异,其独特的形貌使其具有极强的捕光效应,促进了其在近红外区域的光吸收,保证了其形成的光生载流子被有效激发,实现了光电子的快速输运。N掺杂三维石墨烯层中氮将三维石墨烯调制成n型,氮原子提供的电子将石墨烯费米能级转移到价带,提供n型非本征电导率。通过提高石墨烯与Si基底界面势垒,有效减低暗电流,潜在地提升光电探测器的探测率。
-
公开(公告)号:CN111312605A
公开(公告)日:2020-06-19
申请号:CN201811520405.2
申请日:2018-12-12
Applicant: 上海新昇半导体科技有限公司 , 中国科学院上海微系统与信息技术研究所
IPC: H01L21/66 , H01L23/544
Abstract: 本发明提供一种晶圆测试装置和方法,所述装置包括测试电源和测试探针,所述测试探针包括柔性电极,当在所述测试探针上加载所述测试电源时,所述柔性电极在测试晶圆上能够形成盘状。根据本发明的晶圆测试装置和方法,测试探针采用柔性电极,在测试探针上加载测试电源时,通过改变柔性电极的形状,使柔性电极与晶圆上的测试点之间形成紧密的接触,接触界面间不存在空气间隙或污染物,有效提升了测试的准确性,同时,根据本发明的晶圆测试装置和方法,柔性电极能够形成盘状而作为测试中形成电容器的一个极板,从而不需要在硅基底表面的介质层上形成导电层以作为测试用电容器,节省工艺,操作简单,减少测试时间和测试成本。
-
公开(公告)号:CN106904599B
公开(公告)日:2019-03-01
申请号:CN201510952653.4
申请日:2015-12-17
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C01B32/186 , H01L21/02
Abstract: 本发明提供一种在绝缘衬底上制备图形石墨烯的方法,包括:1)提供一绝缘衬底,于绝缘衬底上沉积锗薄膜;2)采用光刻刻蚀工艺于锗薄膜中刻蚀出所需图形,形成图形锗薄膜;以及步骤3)以所述图形锗薄膜为催化剂,在高温下生长石墨烯,同时,图形锗薄膜在高温下不断蒸发,并最终被全部去除,获得结合于绝缘衬底上的图形石墨烯。本发明通过在绝缘衬底上制备锗薄膜,并光刻刻蚀所述锗薄膜形成所需图形后,催化生长石墨烯,并在生长的同时将锗薄膜蒸发去除,获得绝缘体上图形石墨烯,克服了采用光刻刻蚀工艺对石墨烯进行刻蚀所带来的光刻胶等污染,提高了绝缘体上图形石墨烯材料的质量及性能。采用本发明的方法可以获得质量很高的图形石墨烯。
-
-
-
-
-
-
-
-
-