-
公开(公告)号:CN113044809A
公开(公告)日:2021-06-29
申请号:CN202110299773.4
申请日:2021-03-22
Applicant: 南京大学
IPC: B82B3/00 , B82B1/00 , B82Y40/00 , H01L21/02 , H01L21/3065
Abstract: 本发明公开了一种垂直Ga2O3纳米管有序阵列的制备方法,其基本原理为利用β‑Ga2O3和GaN材料之间的刻蚀差异性,通过ICP刻蚀将热氧化后得到的GaN/β‑Ga2O3纳米线阵列中的GaN核纳米线去除,从而制备出垂直排列的、尺寸可控的β‑Ga2O3纳米管阵列。首先在衬底上GaN薄膜表面蒸镀镍薄膜,退火,使得镍薄膜变成纳米岛状结构作为刻蚀掩膜,利用ICP刻蚀技术来制备获得GaN纳米线有序阵列;将获得GaN纳米线有序阵列在一定温度和氧气氛下进行热氧化,得到GaN/β‑Ga2O3纳米线阵列;采用利于GaN刻蚀的工艺条件,去除作为核的GaN纳米线,即可得到垂直Ga2O3纳米管有序阵列。这是一种全新的、成本较低的、相对简单的制备β‑Ga2O3纳米管的方法,在新型微纳电子学和光电子学领域具有潜在的应用前景。
-
公开(公告)号:CN109841710B
公开(公告)日:2020-05-15
申请号:CN201910293737.X
申请日:2019-04-12
Applicant: 南京大学
Abstract: 本发明公开了一种用于透明显示的GaN Micro‑LED阵列器件,将硅基GaN Micro‑LED阵列器件的硅衬底层刻蚀掉,然后在硅衬底层的位置粘合上玻璃基板。并公开其制备方法。本发明的可用于透明显示的GaN Micro‑LED阵列器件,首先在硅衬底上制备Micro‑LED阵列器件,然后利用粘结键合和刻蚀技术将器件转移到玻璃基板上。本发明通过绝缘层使得Micro‑LED阵列器件的漏电流更小,不易被氧化;使用硅衬底降低制备成本,更有利于走剥离衬底的路线;通过粘结键合、湿法腐蚀、等离子体刻蚀等方法,将GaN Micro‑LED阵列器件从硅衬底转移到了玻璃基板上,实现了背面出光,可以用于透明显示。
-
公开(公告)号:CN108615797B
公开(公告)日:2019-07-02
申请号:CN201810400045.6
申请日:2018-04-28
Applicant: 南京大学
Abstract: 本发明公开了一种具有表面等离激元圆台纳米阵列的AlGaN基紫外LED器件,其特征在于:在LED有源层上设置一层AlN电子阻挡层,在AlN电子阻挡层上覆盖一层p型AlGaN层,在所述p型AlGaN层上刻蚀出AlGaN圆台纳米三角阵列,在AlGaN圆台顶部或间隙内填充有金属纳米阵列。并公开了其制备方法。本发明的纳米圆台阵列相对纳米圆柱阵列而言,由于此时纳米结构的侧面不再垂直于底面,更有利于光的出射,设置于纳米圆台阵列顶部或者间隙的金属薄膜,能通过表面等离激元(SPP)的方式更进一步增强光的出射。相较于传统的常规结构和单一的垂直纳米结构,本发明能更好的增强紫外LED的发光效率,同时将几种不同的工艺结合起来,控制圆台斜面倾角,简化制备过程。
-
公开(公告)号:CN109023515A
公开(公告)日:2018-12-18
申请号:CN201811016833.1
申请日:2018-09-03
Applicant: 南京大学
CPC classification number: C30B25/183 , C30B29/406
Abstract: 本发明公开了一种制备氮化镓衬底的自分离方法,其步骤包括:在蓝宝石衬底上生长厚度范围在1‑5微米且分布均匀的氧化镓薄膜;在氨气气氛中对薄膜进行表面层部分氮化,形成多孔网格状结构分布的氮化镓/氧化镓复合薄膜;在该复合薄膜上进行氮化镓厚膜的卤化物气相外延生长,获得低应力高质量氮化镓厚膜;外延完成后,降温至室温,外延氮化镓厚膜与衬底之间自然分离,得到自支撑氮化镓衬底材料。
-
公开(公告)号:CN107587190A
公开(公告)日:2018-01-16
申请号:CN201710691185.9
申请日:2017-08-14
Applicant: 南京大学
Abstract: 一种制备GaN衬底材料的方法,在多功能氢化物气相外延(HVPE)生长系统中,原位外延Ga2O3和GaN薄膜;先在衬底如蓝宝石或硅片上利用类HVPE方法生长氧化镓薄膜,并在氨气气氛中对氧化镓进行原位部分或全部氮化形成GaN/Ga2O3或者GaN缓冲层;然后在缓冲层上进行GaN的HVPE厚膜生长,获得高质量的GaN厚膜材料;利用化学腐蚀去掉界面层氧化镓即可获得自支撑GaN衬底材料;或者利用传统的激光剥离的方法,实现GaN厚膜与异质衬底如蓝宝石之间的分离,得到GaN自支撑衬底材料。
-
公开(公告)号:CN106206872A
公开(公告)日:2016-12-07
申请号:CN201610635841.9
申请日:2016-08-04
Applicant: 南京大学
CPC classification number: H01L33/06 , H01L33/0054 , H01L33/12 , H01L33/14 , H01L2933/0008
Abstract: 本发明公开了一种Si-CMOS阵列驱动电路控制的GaN基可见光微米柱阵列LED器件,其结构自下至上依次包括:蓝宝石衬底、n型GaN层、InxGa1-xN/GaN量子阱有源层、p型GaN层;所述微米柱LED器件刻蚀形成贯穿p型GaN层、量子阱有源层,深至n型GaN层的微米柱阵列,还包括一p型阵列电极,蒸镀在微米柱阵列的p型GaN层上,一n型电极,蒸镀在n型GaN层上;Si-CMOS阵列驱动电路的阵列电路一一对应的键合到p型阵列电极上,Si-CMOS阵列驱动电路的电极键合到n型电极上。并公开了其制备方法。本发明通过将Si-CMOS阵列驱动电路与微米柱阵列LED器件进行对应连接,可以实现CMOS阵列驱动电路对每个像素点的单独控制,能应用于超高分辨照明与显示,可见光通讯,生物传感等众多领域。
-
公开(公告)号:CN103966621A
公开(公告)日:2014-08-06
申请号:CN201410026998.2
申请日:2014-01-21
Applicant: 南京大学
CPC classification number: Y02E60/366
Abstract: 本发明涉及一种分布布拉格反射镜增强InGaN的电极,在衬底从下至上依次包括GaN层、厚度50nm-5um,InGaN层、10nm-1um,从InGaN层暴露出的部分GaN层上设有n电极;衬底另一面为DBR层;所述DBR层由高折射率材料和低折射率材料交替组合构成。GaN层厚度1-5μm、InGaN层厚度100-500nm;DBR层为8-16周期,高折射率与低折射率的材料两者厚度分别为40-70nm和60-90nm。利用生长DBR布拉格反射镜在InGaN电极背面来增强光催化分解水效率的方法,实现了较低的暗电流和低开启电压。
-
公开(公告)号:CN102465335B
公开(公告)日:2014-07-16
申请号:CN201010549563.8
申请日:2010-11-18
Applicant: 南京大学
Abstract: 一种用于半导体材料热壁外延生长系统的加热装置,包括射频加热器和石墨套筒,石墨套筒设置在射频加热器的感应加热线圈中,石墨套筒的内壁和外壁包覆有导热非易燃绝缘层,并置于惰性气体环境中。本发明采用射频加热石墨套筒的方式,可以快速升降温,具有节能,使用寿命长,无需维修等优点。由于感应线圈可以做大直径,因而可以加热大尺寸的石墨套筒来实现大面积反应腔体的快速加热。
-
公开(公告)号:CN103681898A
公开(公告)日:2014-03-26
申请号:CN201310680602.1
申请日:2013-12-12
Applicant: 南京大学
IPC: H01L31/0232 , H01L31/18 , G02B5/20
CPC classification number: Y02P70/521 , H01L31/02165 , G02B5/3041 , H01L31/18
Abstract: 一种基于SiO2/Si3N4分布式布拉格反射镜的紫外带通滤波器,选用蓝宝石(0001)、氮化铝或铝镓氮衬底,衬底的表面为平整面;在衬底上或者具有紫外探测器件结构的表面生长制备一前一后堆叠的分布式布拉格底镜和顶镜两个反射镜,两反射镜间用中间隔离层隔开,形成紫外带通滤波器;生长分布式布拉格反射镜底镜,以形成带通滤波器反射谱中的长波段右禁带,在底镜上继续生长分布式布拉格反射镜顶镜,形成带通滤波器反射谱中短波段左禁带,选择介质薄膜SiO2与Si3N4、TiO2、HfO2中之一两者组成分布式布拉格反射镜(DBR)的单位结构,顶镜或底镜的反射镜周期数为4~20;整个厚度范围为1.5μm~2μm。
-
公开(公告)号:CN102828250A
公开(公告)日:2012-12-19
申请号:CN201210317228.4
申请日:2012-08-31
Applicant: 南京大学
CPC classification number: C30B25/005 , C30B29/406 , C30B29/60
Abstract: 一种制备GaN纳米线的方法,蓝宝石衬底的清洗后,先蒸镀金属Ni薄膜;Ni薄膜厚度5-50nm;将覆有镍薄膜的蓝宝石衬底放入HVPE生长系统中,开始低温生长GaN纳米线;生长温度:500–850℃;高纯N2作为载气,总N2载气流量1-5slm;Ga源采用常规的高纯金属镓和高纯HCl反应生成GaCl,HCl流量:1-20sccm,HCl载气流量10-200sccm;以高纯氨气作为氮源,NH3流量:50–500sccm;生长时间1-10分钟。生长出GaN纳米线。
-
-
-
-
-
-
-
-
-