-
公开(公告)号:CN113151898B
公开(公告)日:2021-10-15
申请号:CN202110432545.X
申请日:2021-04-21
申请人: 北京科技大学 , 北京科技大学顺德研究生院
IPC分类号: C30B25/18 , C30B25/04 , C30B25/14 , C30B29/04 , C23C16/01 , C23C16/02 , C23C16/04 , C23C16/27 , C23C16/50
摘要: 本发明涉及一种嵌入式金刚石基碳化硅复合衬底的制备方法,属于半导体材料制备领域。首先对镀制有Si涂层的碳化硅(SiC)基片粘附临时载体,随后对SiC进行表面图形化及反应离子刻蚀,形成具有图案结构的SiC层。接着在其表面沉积一层金刚石以覆盖SiC,并对金刚石层表面进行研磨抛光。随之在去除SiC基片的临时载体后,在金刚石侧再粘附临时载体。通过反应离子刻蚀去掉原有Si涂层后,将金刚石侧临时载体去除,最终得到嵌入式金刚石基SiC复合衬底。能够实现在高功率、高集成条件下热量的快速排散,同时能够充分发挥SiC和金刚石作为宽禁带半导体的优异性能,提供了一种宽禁带半导体异质材料结构设计的制备基础。
-
公开(公告)号:CN112981535B
公开(公告)日:2021-08-24
申请号:CN202110421403.3
申请日:2021-04-20
申请人: 北京科技大学 , 北京科技大学顺德研究生院
IPC分类号: C30B29/40 , C23C14/02 , C23C14/06 , C23C14/35 , C23C16/27 , C23C16/30 , C23C16/56 , C30B25/18 , C30B33/02
摘要: 本发明提供一种金刚石基氮化镓(GaN)复合衬底的制备方法,属于半导体材料制备领域。先将金刚石膜通过摩擦抛光使表面粗糙度低于0.5 nm。接着基于真空互联射频磁控溅射和分子束外延技术进行双腔室薄膜镀制。当真空度达到1×10‑5 Pa后通入Ar和N2并保持工作真空度为0.3‑0.5 Pa,金刚石衬底温度在400℃‑600℃,射频功率在400‑500 W条件下沉积高取向c‑AlN薄层10 nm‑200 nm。随后将衬底移至分子束外延腔室,沉积20 nm‑50 nm的GaAlN过渡层后,提高温度至700‑900℃沉积所需厚度的GaN单晶层。最后对所得衬底保温处理,得到高质量金刚石基GaN复合衬底。本发明方法适用于一种金刚石基氮化镓复合衬底。
-
公开(公告)号:CN114717540A
公开(公告)日:2022-07-08
申请号:CN202210416695.6
申请日:2022-04-20
申请人: 广东奔朗新材料股份有限公司 , 北京科技大学 , 北京科技大学顺德研究生院
IPC分类号: C23C16/513 , C23C8/20 , C23C16/02 , C23C16/34 , C23C16/511 , C23C16/56
摘要: 一种金刚石增强碳化硅(SiC)复合晶圆的制备方法,属半导体材料制备领域。即在经800‑1000℃真空热处理后的SiC碳极性面镀制5‑20nm的SiNx薄层。经微波氢等离子体处理1‑5min后通入氢气流量比例5‑10%的甲烷并持续5‑15min,基于氮原子逃逸和碳原子渗入实现金刚石高密度形核和C‑Si键形成。接着在降低甲烷至3%‑5%生长金刚石的同时通入氢气流量比例0.1‑1%的硅烷,并在10‑30min内缓慢降低硅烷流量直至关闭,沉积SiC/金刚石复合梯度过渡层。随后重复金刚石生长每5‑20min通入氢气流量比例1‑5%的氮气并保持1‑5min的循环过程,待金刚石达到一定厚度后关闭氮气和甲烷,在氢等离子体中缓慢降温至600℃以下后再升高至800‑1000℃处理0.5‑5h后缓慢降温,最终通过抛光金刚石面实现低应力、强结合的金刚石/SiC复合晶圆材料。
-
公开(公告)号:CN113146158B
公开(公告)日:2021-12-24
申请号:CN202110432577.X
申请日:2021-04-21
申请人: 北京科技大学 , 北京科技大学顺德研究生院
IPC分类号: B23P15/00 , C23C16/01 , C23C16/27 , C23C16/503
摘要: 一种开放式全金刚石散热结构的制备方法,属于半导体器件散热领域。通过精密机加工以实现钼板的通孔结构。接着对高质量自支撑金刚石厚板进行激光切割而得到与钼板孔形相匹配的金刚石棒,并将其填充至钼板的通孔中。随后对填充金刚石棒的钼板上下表面分别进行金刚石生长,直至实现表面金刚石全覆盖并具有一定厚度。最终通过去除钼板而获得开放式全金刚石结构,以实现高热流密度、强热流冲击、宇航空间环境等极端条件下的有效热排散。本发明采用直流电弧等离子体喷射CVD技术制备出面积大、生长速度快、厚板均匀致密,质量优异的金刚石厚板,从而能够形成不同形状的金刚石棒,以满足不同尺寸及形状要求的开放式全金刚石散热结构的要求。
-
公开(公告)号:CN113267082A
公开(公告)日:2021-08-17
申请号:CN202110419168.6
申请日:2021-04-19
申请人: 北京科技大学 , 北京科技大学顺德研究生院
IPC分类号: F28F21/02
摘要: 一种具备歧管式流体路径的全金刚石微槽道散热器的制备方法,属于高功率器件散热领域。歧管式全金刚石微通道由封装盖板、分流基板、微通道基板和封装底板组成。首先,通过二次形核及动态调节沉积面的CVD制备工艺,制备高品质、无裂纹、金刚石自支撑厚膜;再通过机械研磨抛光平整化表面;然后采用特殊的激光加工工艺实现对金刚石板内矩形微通道尺寸定型;同时对焊接面进行金属化处理,提高其焊接性能:最后,通过真空钎焊技术将金刚石板按顺序焊接到一起,获得尺寸及槽型合格的歧管式全金刚石微槽道换热器,使其满足高热流密度换热器的散热设计要求。这种微通道换热器可用于大功率通信及导航卫星、定向高能武器以及宽禁带半导体雷达等高功率先进设备的有效热管理。
-
公开(公告)号:CN113889411A
公开(公告)日:2022-01-04
申请号:CN202111076539.1
申请日:2021-09-14
申请人: 北京科技大学 , 北京科技大学顺德研究生院
IPC分类号: H01L21/335 , H01L29/778 , H01L29/10 , H01L23/373 , H01L23/367
摘要: 一种带金刚石微柱阵列的金刚石基GaN材料制备方法,属于半导体技术与电子器件散热领域。实施步骤为五步,包括:GaN原始硅衬底减薄,硅衬底构建微孔,微孔底部镀至介质层,沉积金刚石微柱阵列,金刚石生长面研抛。最终完成带金刚石微柱阵列的金刚石基GaN材料制备。本发明保留原始衬底的主体结构,显著抑制了制备的GaN‑on‑Diamond晶圆的形变,且不需要反复使用临时载体,可操作性强,通过不连续的结构设计,缓释了由于热膨胀系数失配带来的热应力累积,减小了GaN性能衰减程度,对GaN的保护更全面。采用金刚石与原始衬底硅交替排列的方式及微柱阵列结构,晶格错排和畸变程度降低,增大了导热面积,大幅提高了散热效率,能满足先进电子技术对封装散热材料的要求。
-
公开(公告)号:CN113161307B
公开(公告)日:2021-12-31
申请号:CN202110431336.3
申请日:2021-04-21
申请人: 北京科技大学 , 北京科技大学顺德研究生院
IPC分类号: H01L23/367 , H01L23/373 , H05K7/20
摘要: 一种封闭式全金刚石微槽道热沉的制备方法,属于半导体器件散热领域。基于直流电弧等离子体喷射CVD制备的高质量自支撑金刚石厚板,采用精准激光加工对其进行高低交错翅片结构雕刻成型。接着将钼丝置于低位翅片上,以填补低位翅片与高位翅片的高度差及高位翅片的横向间距。随后经过金刚石生长直至覆盖整个金刚石板并具有一定厚度。最终通过去除钼丝而获得封闭式全金刚石微槽道热沉。本发明所用金刚石厚板生长速度快、厚板均匀致密,质量优异。封闭式全金刚石微槽道换热能力强,能够大幅提升热沉部件的散热性能和应用场景多样性,以实现大功率、高热流、空间环境等极端条件下的有效热排散。
-
公开(公告)号:CN112981365B
公开(公告)日:2021-08-20
申请号:CN202110421428.3
申请日:2021-04-20
申请人: 北京科技大学 , 北京科技大学顺德研究生院
IPC分类号: C23C16/27 , C23C16/511 , C23C16/503 , C23C16/56 , G01N27/30 , C02F1/461 , B32B15/02 , B32B9/00 , B32B9/04 , B32B33/00 , B32B37/00 , B32B37/06 , B32B37/10
摘要: 本发明涉及一种网笼多层结构硼掺杂金刚石电极的制备方法,属于半导体材料制备领域。首先将TiNb金属网和粒径为1μm‑100μm的硼掺杂金刚石微粉逐层交替放置,并在压力为100‑300MPa、温度在1000‑1400°C条件下通过热等静压成型处理30min‑5h。接着再将该金刚石/TiNb复合电极通过微波等离子体或直流电弧等离子体化学气相沉积技术在该金刚石复合电极上下两侧分别沉积硼掺杂金刚石保护层以增强网笼多层结构硼掺杂金刚石电极的强度。随后对电极进行800‑1000℃热处理2‑10h,最终形成稳定的具有更高有效反应表面积的高性能网笼多层结构硼掺杂金刚石电极。本发明适合于制备金刚石电极。
-
公开(公告)号:CN114717540B
公开(公告)日:2022-11-29
申请号:CN202210416695.6
申请日:2022-04-20
申请人: 广东奔朗新材料股份有限公司 , 北京科技大学 , 北京科技大学顺德研究生院
IPC分类号: C23C16/513 , C23C8/20 , C23C16/02 , C23C16/34 , C23C16/511 , C23C16/56
摘要: 一种金刚石增强碳化硅(SiC)复合晶圆的制备方法,即在真空热处理后的SiC碳极性面镀制的SiNx薄层。经微波氢等离子体处理后通入甲烷,基于氮原子逃逸和碳原子渗入实现金刚石高密度形核和C‑Si键形成。接着在降低甲烷生长金刚石的同时通入硅烷,并缓慢降低硅烷流量直至关闭,沉积SiC/金刚石复合梯度过渡层。随后重复金刚石生长通入氮气并保持1‑5min的循环过程,待金刚石达到一定厚度后关闭氮气和甲烷,在氢等离子体中缓慢降温后再升高至800‑1000℃处理后缓慢降温,最终通过抛光金刚石面实现低应力、强结合的金刚石/SiC复合晶圆材料。
-
公开(公告)号:CN112792735B
公开(公告)日:2022-04-05
申请号:CN202110077762.1
申请日:2021-01-20
申请人: 北京科技大学 , 北京科技大学顺德研究生院
摘要: 一种抑制金刚石膜研磨抛光裂纹萌生与扩展的夹具及使用方法。夹具包括底座、水槽、水槽引流孔、底座限位环、张紧环、缓冲垫、张紧螺栓;夹具底座上顶面为施加载荷面,下底面为加热后粘贴金刚石膜面,通过降温在该面与金刚石膜之间预制应力;底座限位环,放置于底座外面,水槽放置于底座限位环顶部,通过水槽底部均布的水槽引流孔,为底座与底座限位环之间缝隙提供水源;缓冲垫放置于底座底面;张紧环,包覆于缓冲垫外沿。完成平整化处理后,整个夹具直接进行快速加热处理,至粘结剂失效,完成平整化处理过程。本发明提高了金刚石膜整膜率和加工效率,解决了卡粉问题,减少环境污染。也可用于已带有裂纹的金刚石膜平整化处理,抑制裂纹扩展,提高金刚石膜的使用面积。
-
-
-
-
-
-
-
-
-